
Abstract
The disequilibrium between the production of reactive 
oxygen (ROS) and nitrogen (RNS) species and their 
elimination by protective mechanisms leads to oxidative 
stress. Mitochondria are the main source of ROS as 
by-products of electron transport chain. Most of the 
time the intestine responds adequately against the 
oxidative stress, but with aging or under conditions 
that exacerbate the ROS and/or RNS production, the 
defenses are not enough and contribute to developing 
intestinal pathologies. The endogenous antioxidant 
defense system in gut includes glutathione (GSH) 
and GSH-dependent enzymes as major components. 
When the ROS and/or RNS production is exacerbated, 
oxidative stress occurs and the intestinal Ca2+ absorp
tion is inhibited. GSH depleting drugs such as DL-
buthionine-S,R-sulfoximine, menadione and sodium 
deoxycholate inhibit the Ca2+ transport from lumen to 
blood by alteration in the protein expression and/or 
activity of molecules involved in the Ca2+ transcellular 
and paracellular pathways through mechanisms of 
oxidative stress, apoptosis and/or autophagy. Quercetin, 
melatonin, lithocholic and ursodeoxycholic acids block 
the effect of those drugs in experimental animals by 
their antioxidant, anti-apoptotic and/or anti-autophagic 
properties. Therefore, they may become drugs of choice 
for treatment of deteriorated intestinal Ca2+ absorption 
under oxidant conditions such as aging, diabetes, gut 
inflammation and other intestinal disorders.
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expression and/or activity of molecules involved in the 
transcellular and paracellular Ca2+ pathways through 
mechanisms of oxidative stress, apoptosis and/or 
autophagy. Quercetin, melatonin, lithocholic and 
ursodeoxycholic acids block the effect of those drugs 
in experimental animals by their antioxidant, anti-
apoptotic and anti-autophagic properties. Therefore, 
they may become drugs of choice for treatment of 
deteriorated intestinal Ca2+ absorption under oxidant 
conditions such as aging, diabetes, gut inflammation 
and other intestinal disorders.
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INTRODUCTION
The imbalance between the production of reactive 
oxygen (ROS) and nitrogen (RNS) species and 
their elimination by protective mechanisms leads 
to oxidative stress[1]. This response occurs in vari­
ous pathophysiological conditions such as aging, 
inflammation, cardiovascular and neurodegenerative 
diseases, damaging many components including 
proteins, DNA/RNA and lipids[2-5]. The cellular 
dysfunctions caused by excessive ROS and/or RNS 
might produce loss of energy metabolism, altered cell 
signaling and cell cycle, gene mutations and impaired 
cellular transport mechanisms. Taken together, 
the oxidative stress promotes decreased biological 
activities, immune activation and inflammation. 
Moreover, the nutritional stress produced by high-fat 
and high-carbohydrate diets also generates oxidative 
stress, which leads to initiation of pathogenic milieu 
and development of different chronic diseases[6-8]. 
ROS are also generated by other exogenous sources 
such as ultraviolet radiation, alcohol consumption, 
cigarette smoking, ingestion of nonsteroidal anti-
inflammatory drugs and infections[9,10]. Ischemia/
reperfusion (I/R) injuries also contribute to exacerba­
ting ROS production[11]. ROS are normally produced 
within the body in small quantities and are involved 
in the regulation of processes, maintenance of cell 
homeostasis and functions such as signal transduction, 
gene expression, and activation of receptors[12]. 
Mitochondria are one of the most relevant sources 
of ROS and RNS. The organelles produce ROS 
and organic peroxides as by-products during the 
functioning of the electron transport chain (ETC), 
and, in hypoxic conditions, they also produce nitric 
oxide (˙NO), one RNS that can further lead to 
produce reactive aldehydes, malondialdehyde and 
4-hydroxynonenal[13,14]. Peroxisomes also play a major 
role in the cellular ROS and RNS-metabolism, not 

only because they contain a large number of ROS-
producing enzymes, but they also interplay with 
other organelles, mainly with the mitochondria and 
endoplasmic reticulum (ER)[15]. The accumulation of 
unfolded and misfolded proteins in the ER lumen, 
known as ER stress, activates the unfolded protein 
response, which enhances the ER capacity for protein 
folding and modification, attenuates global mRNA 
translation, and disposes misfolded proteins by ER-
associated protein degradation and autophagy. The 
dysregulated disulfide bond formation and breakage 
in a stressed ER, may produce ROS accumulation and 
cause oxidative stress[16]. 

The small intestine is the main organ of exposure 
and/or absorption of nutrients, toxic food contaminants 
and therapeutic drugs. It is also exposed to secreted 
metabolites and the metabolic products coming from 
the intestinal bacteria. The alteration of the integrity 
and/or function of the intestinal epithelium produce 
a negative impact on the rest of the organism[17]. 
Therefore, the disequilibrium in the redox state of 
gut is not only important for its functionality, but 
also for the entire body. Fortunately, most of the 
time the intestine responds adequately against the 
oxidative stress, but with aging or under conditions 
that exacerbate the ROS and/or RNS production 
the defenses are not enough, which contribute to 
developing intestinal pathologies such as inflammatory 
bowel disease (IBD), gastroduodenal ulcers, colon 
cancer and others[18-20]. 

FORMATION OF ROS AND RNS IN THE 
GUT
ROS are not only highly reactive and continuously 
produced as by-products of cellular respiration, but are 
also generated by enzymatic reactions. ROS include 
radical compounds such as superoxide (O2

-˙), hydroxyl 
radicals (˙HO), lipid hydroperoxides, and reactive 
nonradical compounds including singlet oxygen (1O2), 
hydrogen peroxide (H2O2), hypochlorous acid (HOCl) 
and others[21]. RNS include radical compounds such 
as ˙NO, nitrogen dioxide (˙NO2), and nonradical 
compounds such as peroxynitrite (ONOO-) and dini­
trogen trioxide (N2O3). Most of these compounds are 
unstable because of unpaired electrons in the outer 
electron orbit. When ROS are accumulated, the major 
cellular antioxidants such as glutathione (GSH) and 
thioredoxin alter their redox state, and the antioxidant 
defenses decline.

In the mitochondria, the electron leakage from ETC 
complexes Ⅰ and Ⅲ produces a reduction of molecular 
oxygen forming O2

-˙[22]. In contrast, cytochrome c 
oxidase (complex Ⅳ) is not an important source of 
ROS. It reduces molecular oxygen to two molecules 
of H2O through a four-electron reduction[23]. NADPH 
oxidase, present in the plasma membrane and 
phagosomes of phagocytes (monocytes, macrophages, 
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neutrophils and eosinophils), also produces an im­
portant amount of O2

-˙ in the intestine, mainly in 
conditions of inflammation induced by Helicobacter 
pylori, IBD, and tumor development[8]. Xantine oxidase 
(XO) is another enzyme that generates O2

-˙ as a by-
product by oxidation of hypoxanthine to xanthine, and 
then to uric acid during purine catabolism. In the I/R 
of gut, this enzyme produces an enormous quantity 
of ROS because the oxidation of hypoxanthine is 
increased[24,25]. XO exists mainly in the small intestine 
and it may be a major source of ROS in patients 
during colon surgery[26]. The enzyme is predominantly 
present as xantine dehydrogenase under physiological 
conditions, but it can be transformed by proteolysis 
into XO. In acute pancreatitis, XO is mobilized from 
the gastrointestinal endothelial cell surface[27]. The 
enzymes of the XO family share a molybdenum 
cofactor (Moco), which is a trace element and crucial 
for life[28]. The reason the mature enterocytes, located 
at the tip of the microvilli, are more sensitive to I/R 
than their undifferentiated counterparts located in 
the villus base seems to be related, at least in part, 
to the higher expression and activity of XO[29]. The 
nutritional deficiency in Mo has been associated 
with high risk of esophageal cancer in populations 
consuming food grown in molybdenum-poor soil[30]. 
ROS are also produced in the intestine by other 
enzymes such as myeloperoxidases, lipoxygenases, 
ciclooxygenases and transition metals as copper and 
iron. ˙NO is a weak oxidant generated by oxidation of 
L-arginine, reaction catalyzed by nitric oxide synthase 
(NOS). When ˙NO combines with O2

-˙, it generates 
OONO-, which is highly reactive[31]. OONO- provokes 
enterocyte apoptosis, reduces enterocyte proliferation 
and interferes with epithelial renewal[32]. ˙NO and 
OONO- produce stable nitrite and nitrate ions, which 
can be accumulated in cells leading to form high 
reactive intermediates, such as ˙NO2 and N2O3. These 
intermediates may cause nitration and nitrosation of 
DNA, RNA, proteins and lipids with the consequent 
dysfunction of these molecules[33].

ENDOGENOUS ANTIOXIDANT DEFENSE 
SYSTEM IN THE GUT
Any substance or compound that scavenges oxygen 
free radicals or inhibits the cellular oxidation process is 
considered an antioxidant[34]. The main non enzymatic 
antioxidants in gut are GSH and the thioredoxin 
system. GSH is a tripeptide formed by L-glutamate, 
L-glycine and L-cysteine, and is present in millimolar 
concentration (2-10 mmol/L) in all eukaryotic cells. 
The oxidation of GSH to disulfide of glutathione 
(GSSG) and subsequent decrease in the GSH/GSSG 
couple is often a useful indicator of cellular oxidative 
stress[35]. There are different pools of GSH in the cell. 
The total cellular GSH/GSSG ratio mainly represents 
the cytoplasmic GSH/GSSG pool. GSH/GSSG ratios 

are not in equilibrium with each other in mitochondria, 
nucleus, the secretory pathway and the extracellular 
space[36]. Mitochondrial GSH is responsible for 15% 
to 30% of total GSH[37]. In the ER, the GSH/GSSG 
ratio ranges between 3/1 and 1/1. It is more oxidized 
than cytoplasmic GSH/GSSG ratio, which varies 
between 30/1 to 100/1. GSH in the ER was mainly 
detected as protein mixed disulfides, which means 
that it would regulate the activity of redox-active thiol-
containing proteins[38]. Protein S-glutathionylation 
is independently controlled in the cytoplasmic and 
nuclear compartments and the GSH/GSSG redox 
potential is probably more reduced in nucleus than in 
cytoplasm[36]. The cytosolic enzymes γ-glutamylcysteine 
ligase and GSH synthetase are involved in de novo 
GSH synthesis, while the regeneration of GSH from 
GSSG is catalyzed by NADPH-dependent GSSG 
reductase[39]. In transport epithelial cells as occurs in 
enterocytes, γ-glutamyltransferase and dipeptidase 
catalyze the hydrolysis of extracellular GSH to its 
constituent amino acids[40].

The distribution between nuclear GSH and cyto
plasmic GSH is dynamic. The GSH concentration in 
nucleus is 4 times higher than in cytoplasm during cell 
cycle and is equal in both compartments when cells 
are confluent[41]. The intestinal GSH levels depend on 
the de novo synthesis, regeneration from GSSG and 
the GSH uptake at the apical membrane[40]. It appears 
that the cellular GSH/GSSG redox status governs cell 
transitions from quiescence to that of a proliferative 
state, as well as the growth arrest, differentiation 
and apoptosis, not only in the intestine but also in 
other cells. A reducing redox environment favors 
proliferation, whereas an oxidized milieu stimulates 
growth arrest and differentiation[42]. If the redox 
environment is highly oxidized, it promotes apoptosis 
or necrosis. Mitochondria are involved in the oxidant-
mediated cellular apoptosis[43]. Loss of mitochondrial 
GSH (mtGSH) produces mitochondrial transition pore 
opening[44], inhibits ETC, decreases ATP and increases 
ROS generation, which leads to cell apoptosis[45,46]. 
mtGSH also preserves intestinal mitochondrial genes and 
functional integrity[47]. Another GSH pool, the luminal 
GSH pool, has an important role in the processes of 
absorption and detoxification as well as in maintenance 
of mucus fluidity[48-50]. 

The thioredoxin system is composed of thioredoxin 
(Trx) and thioredoxin reductases (TrxR). It has a large 
number of functions in DNA synthesis, defense against 
oxidative stress and apoptosis or redox signaling. It is 
located in the cytoplasm, membranes, mitochondria, 
and in the extracellular space. Oxidized Trxs are 
reactivated by TrxRs through the reducing power of 
NADPH[51]. Trx expression is very high in the intestine 
and has an important role in gut immune response[52]. 
It has been demonstrated that Trx is involved in redox 
regulation of human β-defensin 1, a protein with 
antimicrobial activity[53]. Ulcerative colitis involving Trx 
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segment and the Ca2+ solubility are important factors 
affecting the intestinal Ca2+ absorption. The solubility 
depends on the environmental pH. Although the 
solubility is higher in the stomach because of the acidic 
pH, this is less relevant because Ca2+ is absorbed 
in the small and large intestine. It appears that the 
duodenum is the site with the maximum solubility 
of Ca2+ because the average pH is 6.0, the lowest of 
the entire gut[63]. The Ca2+ absorption rate occurs in 
this order: duodenum > jejunum> ileum[64]. Since 
the major source of ATP is the mitochondria, the 
integrity and functionality of these organelles are 
necessary to produce an appropriate intestinal Ca2+ 
absorption. Growth, pregnancy and lactation promote 
the intestinal Ca2+ absorption, while aging decreases 
cation absorption[65-68]. The efficiency of the intestine to 
absorb Ca2+ increases not only when the requirements 
enhance, but also when the intake is low[69]. In other 
words, the intestinal Ca2+ absorption depends on the 
physiological needs of Ca2+. 

There are two mechanisms of intestinal Ca2+ 
absorption: transcellular and paracellular. Both 
mechanisms are regulated by hormones, nutrients 
and other factors. The transcellular pathway comprises 
three steps: entry across the brush border membrane 
(BBM) of the enterocytes, intracellular diffusion 
from one pole to the other of the epithelial cells and 
exit through the basolateral membrane (BLM). In 
the BBM there are Ca2+ epithelial channels, called 
transient receptor potential vanilloid-family member 
6 (TRPV6) and transient receptor potential vanilloid-
family member 5 (TRPV5), which are apparently 
involved in the Ca2+ uptake from the lumen to inside 
the cell through the BBM[70]. TRPV6 predominates in 
the intestine, whereas TRPV5 in the kidney. Cav1.3 is 
another channel from the BBM, which is apparently 
involved in the active transcellular Ca2+ absorption. 
TRPV6 would predominate under polarizing condi­
tions between meals, whereas Cav1.3 would play a 
dominant role under depolarizing conditions during 
digestion, mainly when diet is plentiful in Ca2+[71]. In 
contrast, some authors demonstrate that Cav1.3 is not 
critical for active intestinal Ca2+ absorption in vivo in 
mice[72]. Calbindin D9k in mammals and calbindin D28k 
in birds are cytoplasmic proteins that carry the cations 
as a ferry from the BBM to the BLM[73]. Calbindins 
also buffer Ca2+, which maintains intracellular Ca2+ 
concentrations below 10-7 M and prevents cell death 
by apoptosis. The excess of Ca2+ that occurs when 
there is a down-regulation of calbindins may trigger 
apoptosis in the epithelial cells, as shown in different 
tissues[74,75]. In the BLM, there are two proteins 
involved in the Ca2+ exit to the lamina propria: the 
plasma membrane Ca2+-ATPase (PMCA), an ATP-
dependent transporter that pumps Ca2+ out of the 
cytosol[76], and the Na+/Ca2+ exchanger (NCX), whose 
activity depends on the gradient created by Na+/K+-
ATPase[77]. The predominant isoform in the intestine 

as a candidate marker has been revealed by proteomic 
profiles of colonic biopsies[54].

The major GSH-dependent enzymatic antioxidants 
in the intestine are superoxide dismutase (SOD), 
glutathione peroxidase (GPx), glutathione-reductase 
(GR) and catalase (CAT). SOD and CAT provide 
major antioxidant defenses against ROS[8]. SODs 
are enzymes that catalyze dismutation of O2

-˙ into 
O2 and H2O2. In humans there are three isoforms of 
SOD: cytosolic copper and zinc-containing enzyme 
(Cu2+/Zn2+-SOD), manganese-requiring mitochondrial 
enzyme (Mn2+-SOD), and an extracellular Cu2+/Zn2+ 
containing SOD. Mn2+-SOD has an indispensable role 
in protecting aerobic life from deleterious effects of 
oxygen. It could be considered as the guardian of the 
powerhouse. Mn2+-SOD can scavenge O2

-˙ genera­
ted by the ETC complexes and may be important 
in preventing ROS-induced inactivation of these 
complexes[55]. Injuries of the GIT can be prevented by 
SOD in the gastrointestinal mucosa. Intestinal epithelia 
from IBD patients have enhanced levels of all three 
SOD isoforms[56]. H2O2, itself a ROS, is decomposed 
into water by different enzymes including GPx, CAT 
and peroxiredoxins[57]. GPx reduces not only H2O2, but 
also lipid hydroperoxides. In the intestine there are 
four isoforms of GPx[58]. GPx1 is present in all cell types 
of the gut, GPx2 is predominantly expressed in the 
epithelial cells, GPx3 is secreted in plasma, and GPx4 is 
expressed in epithelial cells and the lamina propria[59]. 
GPx2 is in the first line of defense against ROS derived 
from inflammation associated with both pathogenic 
and nonpathogenic bacteria from the intestine[58]. GR 
is a ubiquitous enzyme that reduces GSSG to GSH. 
GR is a NADPH-dependent flavoprotein. Two electrons 
of reducing power are extracted from NADPH and 
transferred to reducing GSSG into two molecules of 
GSH[60]. CAT, which is found mainly in peroxisomes, 
dismutates H2O2 to H2O and O2. It is present in all 
human organs and in many pathogens in the GIT to 
evade host response and survive within the host. In 
addition, CAT is also expressed in mitochondria and 
is considered to protect cells from apoptosis[61]. Taken 
together, all these enzymes and endogenous non 
enzymatic antioxidants contribute to the equilibrium 
in the redox state of the intestine under physiological 
conditions. However, excessive ROS and/or RNS may 
still lead to oxidative damage to tissue and organs. 
Hence, the application of antioxidants seems to be 
a rational therapeutic strategy to prevent or cure 
diseases involving oxidative stress.

MECHANISMS OF INTESTINAL CALCIUM 
ABSORPTION
The intestinal Ca2+ absorption is an active process (ATP 
dependent) that mainly occurs in the small intestine, 
which is responsible for approximately 90% of overall 
Ca2+ absorption[62]. The sojourn time in each intestinal 
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is PMCA1b, mainly located in the caveolae. PMCA1b 
is responsible for the major Ca2+ exit to the lamina 
propria. Its expression and activity are higher in 
villus tip enterocytes than in villus crypt cells, which 
is in agreement with the hypothesis that mature 
enterocytes have the greatest ability for transcellular 
Ca2+ movement[78]. NCX also presents several isoforms, 
but NCX1 predominates in the intestine[79]. It has a 
stoichiometry of 3 Na+:1 Ca2+and can function in either 
a forward mode (Ca2+ extrusion) or in a reversed mode 
(Ca2+ entry), depending on the Na+ and Ca2+ gradients 
and the membrane potential[80]. Another novel protein 
4.1R, which co-localizes with PMCA1b, could have an 
important role in the transcellular Ca2+pathway, but its 
physiological function is not well known[81].

The paracellular Ca2+ pathway occurs through tight 
junctions (TJ), intercellular structures where plasma 
membranes of adjacent enterocytes have very close 
contact. This pathway has been poorly studied, but 
apparently Claudin (Cldn)-2 and Cldn-12 would be 
responsible for transporting Ca2+ in the intestine[82]. 
Ca2+ movement through the TJ is a non-saturable 
process, which depends on the concentration and 
the electric gradient across the epithelium. High Ca2+ 
intakes switch on the paracellular route due to a short 
sojourn time in the intestine and a down-regulation 
of proteins involved in the transcellular pathway[83]. It 
has been observed that the expression of paracellular 
TJ genes is regulated by the transcellular calbindin 
protein, suggesting that active and passive Ca2+ 
transport pathways may work cooperatively[84].

ACTIONS OF PRO-OXIDANTS ON 
INTESTINAL CALCIUM ABSORPTION
Twenty years ago, we reported that DL-buthionine-S,R-
sulfoximine (BSO), an inhibitor of GSH biosynthesis, 
decreased the intestinal Ca2+ absorption in vitamin 
D-deficient chicks treated with cholecalciferol. This 
response was reversed by addition of GSH monoester 
to the intestinal sac, demonstrating for the first time 
that the intestinal GSH normal levels are essential 
for an adequate intestinal Ca2+ absorption. In vitamin 
D-deficient chicks without treatment, BSO did not affect 
the Ca2+ transport and the GSH content beyond the low 
values already triggered by the vitamin deficiency[85]. 
The activity of intestinal alkaline phosphatase (IAP), 
an enzyme presumably involved in the intestinal Ca2+ 
absorption, was also highly reduced by BSO in vitamin 
D-deficient chicks treated with vitamin D3. The effect of 
BSO was observed either in vivo or in vitro. BSO did not 
act directly on IAP, but it caused GSH depletion which 
led to changes in the redox state of the enterocyte, as 
evidenced by the ˙HO production and an incremental 
increase in the protein carbonyl content. Again the 
reversibility of the BSO effect was demonstrated by 
addition of GSH monoester to the gut loop[86,87].

Menadione (MEN) or vitamin K3 is another pro-

oxidant compound that alters the intestinal Ca2+ 
absorption via GSH depletion[88]. MEN metabolism 
involves redox cycling, resulting in the release of ROS. 
MEN may undergo one or two-electron reduction. 
When MEN suffers one-electron reduction, there is 
formation of very unstable semiquinone radicals; 
they react rapidly with O2 resulting in regeneration of 
the parent compound and production of O2

-˙ yielding 
H2O2 through enzymatic or spontaneous dismutation. 
Two-electron reduction of MEN by DT-diaphorase 
produces hydroquinone, a pathway that constitutes 
a detoxification mechanism[89]. GSH is the electron 
donor in both cases, which explains the depletion of 
the intestinal tripeptide after MEN treatment. GSH 
depletion triggers oxidative stress as demonstrated by 
generation of ˙HO and O2

-˙ groups and an increase 
in the protein carbonyl content, which deteriorate the 
activities of enzymes or proteins involved in the Ca2+ 
movement from lumen to blood. In fact, the activities 
of IAP and the plasma membrane Ca2+-ATPase as well 
as the expression of PMCA1b, calbindin D28k and Cldn-2 
were decreased by MEN treatment[88,90]. At the studied 
doses, the inhibitory action of MEN on intestinal Ca2+ 
absorption began in half an hour, lasted for several 
hours and finished after 9 or 10 h of treatment, 
indicating that the effect was transient, probably 
because the intestine could reinforce its ability to 
overcome the oxidative stress[88]. The inhibitory effect 
of MEN on intestinal Ca2+ absorption implied intestinal 
mitochondrial dysfunction. As mentioned above, the 
optimal intestinal Ca2+ absorption needs the integrity 
of intestinal mitochondria because it is the main source 
of metabolic energy. MEN caused mtGSH depletion, 
but it rapidly normalized. However, the mitochondrial 
membrane potential decreased and, simultaneously, 
cytochrome c was released from the intermembrane 
space to the cytoplasm, at least in mature enterocytes, 
which suggested triggering of apoptosis. In fact, this 
process was confirmed by DNA fragmentation that 
occurred in the 30%-40% of enterocytes, without 
affecting 60%-70% of the absorptive cells. In other 
words, the inhibitory effect of MEN on intestinal Ca2+ 
absorption was partial and transient. The activity of 
two oxidoreductases from the Krebs cycle, malate 
dehydrogenase and α-ketoglutarate dehydrogenase, 
was reduced by MEN in 18% and 30%, respectively. 
This means that the majority of mitochondria remained 
competent for ATP synthesis, making possible the 
process of apoptosis[91] and a poor intestinal Ca2+ 
absorption. MEN not only produced intestinal apoptosis 
through the mitochondrial pathway, but also by 
triggering the expression of FAS/FASL/caspase-3[92]. 
Although an enhancement in the Cu2+/Zn2+-SOD, 
CAT, GPx and Mn2+-SOD activities could represent 
cytoprotective mechanisms against the oxidant effects, 
they were insufficient to avoid an inhibition in the 
overall process of intestinal Ca2+ absorption[92-94]. The 
results supported previous data showing alterations 
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in the intracellular thiols and Ca2+ homeostasis, 
ATP depletion and DNA breakage after toxic MEN 
concentrations[95-97].

Sodium deoxycholate (NaDOC), a sodium salt 
of a major hydrophobic bile acid, also inhibits the 
intestinal Ca2+ absorption at high physiological doses. 
This inhibition is time and dose dependent. We have 
demonstrated that PMCA1b decreased by the bile salt 
and the same occurred with the protein expression 
of PMCA1b, calbindin D28k and NCX1. NaDOC also 
produced GSH depletion, as well as ROS generation 
and mitochondrial swelling, which in turn led to 
mitochondria mediated apoptosis. Briefly, a single 
high concentration of NaDOC inhibits intestinal Ca2+ 
absorption via downregulation of proteins involved 
in the transcellular pathway, as a result of oxidative 
stress and apoptosis[98]. Similarly, in a rat model of 
type 1 Diabetes mellitus induced by streptozotocin, 
we have also demonstrated oxidative stress in the 
intestine at early stages of developing of disease, 
leading to inhibition of the intestinal Ca2 + absorption. 
Simultaneously, time-dependent adaptive mechanisms 
triggered an increment in the protein expression 
of molecules involved in both the transcellular and 
the paracellular pathways, which contributes to 
normalizing the intestinal Ca2 + absorption as well as 
the duodenal redox state[99].

Diets rich in fat also produce redox imbalance and 
increased oxidative stress in the duodenum causing 
down-regulation of calbindin D9k, PMCA1b and NCX, 
and consequently, an inhibitory effect on intestinal 
Ca2+ absorption[100]. Orihuela et al[101] have found that 
aluminium interferes with Ca2+ uptake by enterocytes 
through a decrease in the intestinal GSH level 
affecting calbindin D function and/or synthesis, which 
leads to a reduced transcellular Ca2+ absorption. Wu et 
al[102] have reported that advanced oxidation protein 
products decrease the expression of Ca2+ transporters 
in small intestine via the p44/42 MAPK signaling 
pathway. They consider that these data are relevant 
to understanding the mechanisms of IBD-associated 
osteoporosis.

In summary, not only drugs but diet components 
or pathophysiological conditions that occur with GSH 
depletion or increased oxidative stress are deleterious 
for the intestinal Ca2+ absorption because they alter 
the protein expression and/or activities of molecules 
involved in the transcellular and/or paracellular Ca2+ 

pathways. Figure 1 is a schematic representation of 
the possible mechanisms involved in the inhibition of 
intestinal Ca2+ absorption caused by oxidative stress.

ANTIOXIDANTS AND THEIR MOLECULAR 
MECHANISMS FOR THE PRESERVATION 
OF INTESTINAL CALCIUM ABSORPTION
As mentioned earlier, endogenous enzymatic and 
nonenzymatic compounds defend the cells under 

oxidant conditions[40]. However, when there is a 
noticeable shift to the oxidation, they cannot respond 
adequately. It has been suggested that natural or 
synthetic compounds would help to overcome the 
disequilibrium[103,104]. In our laboratory, we have 
demonstrated that the inhibition of intestinal Ca2+ 
absorption caused by oxidants, mainly causing GSH 
depletion, could be either prevented or restored 
by quercetin[92] (QT, a plant derived flavonoid), 
melatonin[90,94] (MEL, a natural antioxidant present 
in humans), lithocholic (LCA)[105] or ursodeoxycholic 
(UDCA)[106] acids (bile acids less hydrophobic than 
deoxycholic acid). QT is a polyphenolic flavonoid 
found in several fruits and vegetables of the human 
diet[107], mainly highly concentrated in onions, tea and 
apples[108]. It is a potent scavenger of ROS with various 
pharmacological properties such as anticancer-activity, 
anti-virus and anti-inflammatory effects reducing the 
risk of cardiovascular and renal diseases[109,110]. QT 
inhibits enzyme systems responsible for the generation 
of ROS (cyclooxygenase, lipoxygenase and xanthine 
oxidase)[111], binds to superoxide anions, singlet 
oxygen and hydroxyl radicals, and as a consequence 
reduces lipid peroxidation[112], chelates transition 
metals such as iron and copper[113,114], and inhibits the 
aldose reductase activity[115]. We could demonstrate 
that QT protects the intestinal Ca2+ absorption against 
the inhibition provoked by MEN, but by itself does not 
affect it. Similarly, QT abolishes the GSH depletion 
caused by the quinone, but QT alone does not modify 

the intestinal GSH content. The flavonoid also avoids 
changes in the mitochondrial membrane permeability 
and abrogates the activation of FASL/FAS/caspase-3 
pathway caused by MEN[92]. Conclusively, QT may 
be useful to prevent the inhibition of intestinal Ca2+ 
absorption caused by MEN or other GSH depleting 
drugs by blocking the oxidative stress and apoptosis. 
In contrast, the soy isoflavones have shown a lack of 
dose-responsive on transepithelial Ca2+ transport in 
human intestinal-like Caco-2 cells[116], although they 
may reduce bone loss in postmenopausal women, 
which suggests that they act directly on bone cells.

We have also demonstrated that MEL may also 
restore the intestinal Ca2+ absorption altered by 
MEN[94]. MEL is an indolamine that is present in 
all phyla of multicellular animals[117]. Although its 
main site of synthesis is the pineal gland, MEL is 
synthesized in other extracellular sites such as the 
intestine[118], where the MEL level is 400 times larger 
than that from the pineal gland[119]. It has been shown 
that MEL scavenges ROS and protects against the 
deleterious effects of I/R through a stimulation of 
certain antioxidant enzymes preserving cellular energy 
and preventing mitochondrial damage[120,121]. In our 
study, we have shown that MEL blocks the inhibition 
of the intestinal Ca2+ absorption caused by MEN, at 
least in part, by increasing the activity of antioxidant 
enzymes, returning GSH and protein carbonyl values 
to control levels, and rescuing the epithelial cells from 
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apoptosis[94]. More recently, we have also proven that 
MEL not only restores but also prevents the inhibition 
of intestinal Ca2+ absorption provoked by GSH de
pleting drugs such as MEN and BSO[90]. MEL restores 
partially both the transcellular and paracellular Ca2+ 

pathways altered by the quinone, through dampening 
the O2

-˙ levels without affecting the ˙NO system. MEL 

was able to return the decreased protein expression 
of calbindin D28K and Cldn-2 caused by MEN to the 
control values, but it could not restore the levels of 
PMCA1b. As MEL has beneficial effects on both Ca2+ 
transport mechanisms, it might improve the intestinal 
Ca2+ absorption under conditions of low or adequate 
Ca intake. The modulation of Ca2+ transporters by MEL 

Figure 1  Schematic representation of the possible mechanisms involved in the inhibition of intestinal Ca2+ absorption caused by oxidative stress. TRPV6: 
Transient receptor potential vanilloid 6; TRPV5: Transient receptor potential vanilloid 5; IAP: Intestinal alkaline phosphatase; GSSG: Disulfide of glutathione; GSH: 
Glutathione; GPx: Glutathione peroxidase; GR: Glutathione reductase; SOD: Superoxide dismutase; CAT: Catalase; Cyt c: Cytochrome c; Cldns: Claudins; iNOS: 
Inducible nitric oxide synthase; NCX1: Intestinal Na+/Ca2+ exchanger; PMCA1b: Plasma membrane Ca2+- ATPase 1b; TJ: Tight junctions.
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has also been reported in pancreatic acinar cells[122] 
and in pituitary cells[123]. Another mechanism by which 
MEL blocked the inhibition of intestinal Ca2+ absorption 
was the attenuation of the mitochondrial dysfunction 
in the duodenum, which has been also observed to be 
produced by MEL in other tissues and cells[124-126].

Two other molecules with antioxidant properties such 
as UDCA and LCA were shown to block the inhibitory 
effect of NaDOC on intestinal Ca2+ absorption. UDCA 
and LCA are two bile acids with different solubility, 
chemical properties and physiological functions[127]. 
UDCA is a non-toxic hydrophilic bile acid used for 
treatment of gallstones and primary biliary cirrhosis 
(PBC)[128]. UDCA is naturally present in humans in a 
concentration of about 1%-3% of the total bile acid 
pool. When used in PBC treatment, its concentration 
increases to 40%-60%, making UDCA the predominant 
bile acid. The hydrophilicity of bile via UDCA serves to 
ameliorate cholestasis and minimize toxicity[129]. At the 
intestinal level, we have shown that UDCA increases 
the Ca2+ absorption modulating positively the Ca2+ 
uptake by mature enterocytes, which occurs in part 
as a result of increasing the vitamin D receptor (VDR) 
unit numbers[106,130]. When UDCA is simultaneously 
administered with NaDOC, UDCA avoids the inhibitory 
effect of NaDOC on intestinal Ca2+ absorption. One of 
the molecular mechanisms involved in this response 
is the attenuation of the apoptotic extrinsic pathway 
triggered by NaDOC. UDCA by itself decreases FAS 
and FASL protein expression and neither alters caspase 
8 protein expression nor caspase 3 activity. In the 
presence of NaDOC, UDCA avoids the apoptotic effect 
of NaDOC normalizing the protein expression of FAS, 
FASL, caspase-8 and the enzyme activity of caspase-3. 
The NaDOC induced apoptosis is mediated by increment 
in the NO content and in the iNOS protein expres­
sion, effects that were abolished by UDCA. Another 
molecular mechanism triggered by UDCA is to avoid the 
enhancement in the LC3 II protein expression and the 
number of acidic vesicular organelles in the presence 
of NaDOC. In other words, UDCA avoids efficiently 
not only NO induced apoptosis, but also autophagy 
triggered by NaDOC[130].

LCA is a secondary bile acid produced by the intes­
tinal microflora. It binds to VDR[131], has antibacterial 
activity[132], produces antiproliferative and pro-apoptotic 
effect on human cancer cell lines[133,134], inhibits 
proteasome[135], acts as a membrane pore[136] and has 
anti-aging properties[137]. It is worldwide recognized 
that 1,25(OH)2D3 is the main stimulator of the intestinal 
Ca2+ absorption, and both LCA and 1,25(OH)2D3 are 
VDR ligands, although they have different VDR binding 
affinity[138]. In a recent study, we have demonstrated 
that neither the intestinal Ca2+ absorption nor the 
redox state of enterocytes is changed by LCA alone. 
Interestingly, LCA did not alter the intestinal Ca2+ 
absorption but prevented the inhibitory effect of 
NaDOC[105]. LCA blocked a decrease caused by NaDOC 

on gene and protein expression of molecules involved in 
the transcellular pathway of intestinal Ca2+ absorption, 
ameliorated changes in mitochondrial membrane 
permeability and abrogated the enhancement in the 
protein expression of molecules from the apoptotic 
extrinsic pathway[105]. In addition, the simultaneous 
treatment of NaDOC and LCA blocked the oxidative 
stress caused by NaDOC, which indicates that LCA 
shows antioxidant and antiapoptotic properties in the 
presence of a pro-oxidant molecule as NaDOC. The 
functional toxicity of LCA in humans is in question due 
to the efficient human detoxification[139], therefore, the 
use of LCA to protect the intestinal Ca2+ absorption 
under oxidant conditions caused by medications or 
pathological conditions might become a possible 
therapeutic strategy. 

CONCLUSION
The optimal intestinal Ca2+ absorption is highly 
dependent on the intactness of intestinal GSH content. 
GSH depleting drugs such as BSO, MEN or NaDOC 
trigger oxidative stress, leading to apoptosis and/or 
autophagy to finally produce inhibition of intestinal 
Ca2+ absorption. Similarly, pathological conditions 
associated with intestinal GSH depletion provoke 
oxidative stress and, hence, inhibition of intestinal Ca2+ 
absorption, as occurs in type 1 diabetes mellitus. The 
use of antioxidants could be a therapeutic strategy to 
protect or to restore the intestinal normal redox state 
maintaining an adequate intestinal Ca2+ absorption. 
QT, MEL, UDCA and LCA have been proven to be 
successful to normalize the Ca2+ transfer from lumen-
to-blood in experimental animals under oxidant 
conditions. Therefore, they could be drugs of choice for 
the treatment of altered intestinal Ca2+ absorption in 
pathophysiological conditions such as diabetes, celiac 
disease, IBD, aging and other disorders associated 
with intestinal oxidative stress.
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