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Tumour antigens have attracted much attention because of
their importance to cancer diagnosis, prognosis and targeted
therapy. With the development of cancer genomics, the
identification of tumour-specific neoantigens became possible,
which is a crucial step for cancer immunotherapy. In this study,
we developed software called the tumour-specific neoantigen
detector for detecting cancer somatic mutations following the
best practices of the genome analysis toolkit and predicting
potential tumour-specific neoantigens, which could be either
extracellular mutations of membrane proteins or mutated
peptides presented by class I major histocompatibility complex
molecules. This pipeline was beneficial to the biologist with
little programmatic background. We also applied the software
to the somatic mutations from the International Cancer Genome
Consortium database to predict numerous potential tumour-
specific neoantigens. This software is freely available from
https:/ /github.com/jiujiezz/tsnad.
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1. Introduction

Tumour antigens have attracted much attention for their importance in cancer diagnosis, prognosis and
targeted therapy, as they are crucial tumour biomarkers for identifying tumour cells and are potential
targets for cancer therapy [1-3]. Tumour antigens can be broadly classified into two categories based on
their specificity: tumour-specific antigens, which are only present in tumour cells; and tumour-associated
antigens, which are overexpressed or aberrantly expressed in tumour cells and are also expressed in some
normal cells [1]. In addition to abnormal expression patterns, tumour cells also contain a range of cancer
somatic mutations and mutations in protein-coding regions might produce tumour-specific mutant
proteins [4,5]. Tumour antigens derived from these tumour-specific mutant proteins are unparalleled
tumour biomarkers, as they are only produced by tumour cells and are potential tumour-specific mutant
antigens or neoantigens [3].

Tumour antigens recognized by T cells or antibodies should present on the surface of tumour
cells [6,7]. A major part of tumour antigens used as drug targets are membrane proteins, such as
HER2 and CD19, which are targets of the antibody trastuzumab [8] and chimaeric antigen receptor
T-cell immunotherapy (CAR-T) for B-cell cancer [9,10], respectively. Additionally, tumour antigens
presented by class I major histocompatibility complex (MHC) molecules for recognition by T cells
(i.e. tumour-specific neoantigens) could also be used as drug targets [2,11,12]. On the other hand, in
the immune checkpoint blockade therapy, the neoantigen load is associated with the therapy efficacy
(i.e. PD-1, CTLA-4 blockade), which indicates that the neoantigen load is a great biomarker in cancer
immunotherapy [13]. Because of their potential application to be targets and biomarkers in cancer
immunotherapy [1,12,14,15], tumour-specific neoantigens have attracted much attention in biomedical
research. Several prediction tools have been developed to predict tumour-specific neoantigens from
cancer somatic mutations, such as pVAC-seq [16] and INTEGRATE-neo [17], which can predict
neoantigens produced by non-synonymous somatic mutations and gene fusions, respectively. However,
these tools only predict neoantigens presented by class I MHC molecules that can be recognized by T
cells, they do not consider the mutations in the extracellular regions of membrane proteins that can be
recognized by mutation-specific antibodies [18,19].

In this study, we developed integrated software with a graphical user interface (GUI), called the
tumour-specific neoantigen detector (TSNAD), which can identify cancer somatic mutations following
the best practices of the genome analysis toolkit (GATK v. 3.5) [20] from the genome/exome sequencing
data of tumour-normal pairs. We also provided a filter for calling tumour-specific mutant proteins. Then,
we conducted two strategies to predict neoantigens. First, we extracted the extracellular mutations of
membrane proteins according to the protein topology. Second, we invoked NETMHCPAN (v. 2.8) [21]
to predict the binding information of mutant peptides to class I MHC molecules. Finally, we applied
TSNAD on the cancer somatic mutations collected in the International Cancer Genome Consortium
(ICGC) database to predict potential neoantigens.

2. Material and methods
2.1. Tools

Standard sequencing data processing consists of preprocessing, alignment, variants calling, annotation
and further analysis. Given that the existing software or tools are designed for specific functions, it was
necessary to develop an automated and user-friendly framework that calls a series of software. This
section summarizes the required software and its main features.

2.1.1. Data filtering software

TRIMMOMATIC (v. 0.35) [22]. Original raw sequences have random lengths and contain adaptors that will
be harmful to the subsequent data processing. This software can trim and crop raw reads and remove
artefacts.

2.1.2. Genome mapping software

BURROWS-WHEELER ALIGNER (BWA, v. 0.7.12) [23,24]. This alignment toolkit is used for mapping short
sequences to a reference genome. This software is based on the Burrows-Wheeler transformation and is
highly efficient at finding locations of low-divergent sequences on a large genome.
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2.1.3. Alignment manipulating tool

SAMTOOLS (v. 1.3) [25]. Its view and sort functions transform sequencing data format from SAM
(sequence alignment/map) to BAM (binary alignment/map), which will save an enormous amount of
storage space. Moreover, it can manage duplicate reads and index alignments.

2.1.4. Data processing tool

PICARD TOOLS (v. 1.140) [26]. This program consists of a set of Java command lines to handle with
different sequencing data format (such as SAM, BAM and VCEF). Given redundancy data may influence
further processing, Picard MARKDUPLICATES tool can thus be applied to remove repeat sequences.

2.1.5. Variant calling software

GENOME ANALYSIS TOOLKIT (GATK v. 3.5) [20], MUTECT2 [27]. The main function of GATK is variant
discovery in high-throughput sequencing data. MUTECT2 is a package in GATK to identify somatic SNVs
and INDELs.

2.1.6. Mutation annotation software

ANNOVAR (14 December 2015) [28,29]. We use it to functional annotate somatic mutations, including
position, change of nucleotide, change of amino acid for protein-coding region, and other functions. We
can then extract tumour-specific mutant proteins.

2.1.7. Human leucocyte antigen typing software

SOAP-HLA (v. 2.2) [30]. This software detects the human leucocyte antigen (HLA—the MHC in humans)
types for each sample. The program takes sorted aligned sequencing data (BAM format) as the input and
outputs HLA types. The HLA types are critical for the MHC-binding predictions.

2.1.8. Protein topology indicating software

TMHMM (v. 2.0) [31]. This tool is used to predict the topology of membrane proteins based on a hidden
Markov model (HMM). The prediction of transmembrane helices and membrane proteins is highly
accurate [32].

2.1.9. Major histocompatibility complex-binding predicting software

NETMHCPAN (v. 2.8) [21]. This software can forecast peptides that can bind to MHC class I molecules
using artificial neural networks.

2.2. Datasets

The somatic mutations were collected from the whole-genome/exome sequencing data of 9155 tumour-
normal pairs in the ICGC database (Release 20, http://icgc.org). This dataset has compiled over 1.5
million sample somatic mutations in coding regions, among which 828129 missense variants have
caused amino acid changes with a frequency range from 1 to 476 out of 9155 tumour samples.

The HLA types were extracted from the 1000 Genome Project. We choose 16 HLA alleles with
frequencies of more than 5% in the population collected in the 1000 Genome Project [33], which
includes five HLA-A (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*11:01 and HLA-A*24:02), four
HLA-B (HLA-B*07:02, HLA-B*35:01, HLA-B*40:01 and HLA-B*51:01) and seven HLA-C (HLA-C*01:02,
HLA-C*03:03, HLA-C*03:04, HLA-C*04:01, HLA-C*06:02, HLA-C*07:01 and HLA-C*07:02) alleles.

2.3. ldentification of extracellular region of membrane proteins

The list of human membrane proteins was extracted from the human protein atlas [34]. The amino acid
sequences of these membrane proteins were downloaded from ENSEMBL (GRCh37 v. 75) [35]. TMHMM
(v. 2.0) was used to identify the transmembrane topology and extracellular region of each membrane
protein [31].
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1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21
posO 123 45 6 7 8 posO 1 2 3 4 5 6 7 8 9
posl 2 3 45 6 7 89 posl 2 3 45 6 7 8 910
pos2 345 6 7 8 910 pos2 3 45 6 7 8 9 1011
pos3 4 5 6 7 8 9 10 11 pos3 4 5 6 7 8 9 10 11 12
pos4 5 6 7 8 9 10 11 12 pos4 5 6 7 8 9 10 11 12 13
pos5 6 7 8 9 10 11 12 13 pos5 6 7 8 9 10 11 12 13 14
pos6 7 8 9 10 11 12 13 14 pos6 7 8 9 10 11 12 13 14 15
pos7 8 9 10 11 12 13 14 15 pos7 8 9 10 11 12 13 14 15 16
pos8 9 10 11 12 13 14 15 16 pos8 9 10 11 12 13 14 15 16 17
pos9 10 11 12 13 14 15 16 17 pos9 10 11 12 13 14 15 16 17 18
pos10 1112 13 14 15 16 17 18 pos10 1112 13 14 15 16 17 18 19
posll 12 13 14 15 16 17 18 19 posll 12 13 14 15 16 17 18 19 20
pos12 13 14 15 16 17 18 19 20 pos12 13 14 15 16 17 18 19 20 21
posl3 14 15 16 17 18 19 20 21
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21
pos0 1 2 3 45 6 7 8 9 10 pos0 1 2 3 4 5 6 7 8 9 1011
posl 2 3 45 6 7 8 9 1011 posl 2 3 45 6 7 8 9 1011 12
pos2 3 45 6 7 8 9 1011 12 pos2 3 45 6 7 8 9 1011 1213
pos3 4 5 6 7 8 9 10 11 12 13 pos3 4 5 6 7 8 9 10 11 12 13 14
pos4 56 7 8 9 10 11 12 13 14 pos4 5 6 7 8 9 10 11 12 13 14 15
pos3 6 7 8 9 10 11 12 13 14 15 pos3 6 7 8 9 10 11 12 13 14 15 16
pos6 7 8 9 10 11 12 13 14 15 16 pos6 7 8 9 10 11 12 13 14 15 16 17
pos7 8 9 10 11 12 13 14 15 16 17 pos7 8 9 10 11 12 13 14 15 16 17 18
pos8 9 10 11 12 13 14 15 16 17 18 pos8 9 10 11 12 13 14 15 16 17 18 19
pos9 10 11 12 13 14 15 16 17 18 19 pos9 10 11 12 13 14 15 16 17 18 19 20
pos10 11 12 13 14 15 16 17 18 19 20 pos10 11 12 13 14 15 16 17 18 19 20 21
posll 12 13 14 15 16 17 18 19 20 21

Figure 1. Mutant peptides with 21amino acids and corresponding 8—11 mer peptides. MHC molecules always bind to 8—11 mer peptides,
so we extracted peptides 21 amino acids in length, with 10 amino acids upstream and 10 amino acids downstream of mutation sites for
NeTMHCpan prediction. The number 11 in red indicates the mutated site, and the peptides in yellow represent all the possible peptides
which may bind to MHC molecules.

2.4. Prediction of class I major histocompatibility complex binding

After we obtained the list of the tumour-specific mutant proteins, we extracted the peptide sequences
around the mutation sites. As MHC molecules always bind to peptides 8-11 amino acids in length,
we extracted peptides 21 amino acids in length, with 10 amino acids upstream and 10 amino acids
downstream of mutation sites for NETMHCPAN prediction (figure 1). Wild-type peptides with the same
length as the mutant peptides were extracted as references. These wild-type and mutant peptides were
measured for their binding affinities (50% inhibitory concentration [ICsp], nM) to each class I HLA
allele. The binding was considered strong if the ICs5y value wasless than 150nM, and a weak binding
had an ICsp value between 150 and 500nM. Non-binding occurred if the IC5y value was more than
500nM [11].

2.5. Experimental validation of peptide biding to class | major histocompatibility complex
molecular

Peptides were obtained lyophilized (more than 95% purity) from Bankpeptide Biological Technology
Co., Ltd (Hefei, China), dissolved in 10% DMSO in sterile water and tested for sterility, purity, endotoxin
and residual organics. Peptide binding to HLA-A*02:01 was determined by T2 assay [36]. T2 cells were
washed in phosphate buffered saline (PBS) and RPMI-1640 without serum. In total, 5 x 10° cellml™! were
incubated with 5ugml~! peptide and 10 ug ml~! human beta-2-microglobulin in serum-free RPMI-1640
for 4h or overnight at 37°C. The pulsed cells were pelleted and followed by 3 x 1 ml rinses in PBS with
centrifugation at 500¢ for 5min at 4°C. Cells were resuspended in 200 ul PBS and stained with 1ul of
w6/32 (Thermo Fisher) for 30 min on ice, followed by three rinses with 1ml PBS at 4°C. Cells were
then resuspended in 200 pl PBS and 1 ul of goat anti-mouse antibody-FITC (Beyotime Biotechnology) for
30min on ice, followed by three rinses at 4°C. Then, cells were resuspended in 500 ul PBS. Stained T2
cells were analysed using a FACSCalibur.

3. Results

3.1. Software overview

We developed integrated software, called TSNAD, under the Linux operation system through a GUIL
The platform is completely automated and is mainly designed for users who have little programming
experience. There are several neoantigen prediction pipelines such as pVAC-seq, INTEGRATE-neo:
pVAC-seq combined the tumour mutation and expression data to predict neoantigens by invoking
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NETMHC v. 3.4; INTEGRATE-neo was designed to predict neoantigens from fusion genes based on
the pipeline INTERGRATE and NETMHC v. 4.0. Similar with these pipelines, TSNAD also used
widely approved software NETMHCPAN v. 2.8 to predict neoantigens. Compared with other neoantigen
prediction pipelines, TSNAD has lists of advantages: first, TSNAD offered a pipeline for mutation calling
from sequencing data; second, TSNAD not only considered the neoantigens presented by class I MHC
molecules, but also took mutations in membrane proteins into consideration; third, unlike other pipelines
that performed through command lines, TSNAD provided a GUI for biologists without programming
background to analyse their data easily. The software consists of two toolkits: mutation detection and
neoantigen prediction. Each toolkit is a two-step process as follows: configure the parameters and run
the corresponding toolkit.

The first step is to configure the software paths and parameters. This step is of great significance, and
users are expected to ensure the appropriateness and correctness of the configurations. Users can find
the detailed instructions about how to set paths and parameters in the user’s manual. For the software
paths, the users do not need to change these parameters once they are set because TSNAD will import
the existing configuration files by default. Users can also edit partial parameters by GUI or by manually
modifying the configuration files. It is worth noting that TSNAD requires its own naming convention for
the input files. The users can choose to either manually or use the tool we provided to rename the names
of sequencing files to suit the criteria of TSNAD.

After setting the configurations, non-expert users can run the pipeline by just clicking on the
appropriate toolbar. In the processing monitoring window, the users can observe the pipeline
progression. The pipeline, which was written in Python programming language (v2.7), calls for standard
third-party software and applies multiprocessing strategy to speed up the data processing.

When the pipeline is finished, all of the results will be stored in a user-specified folder. The mutation
detection pipeline returns the list of somatic mutations with annotations. The neoantigen prediction
pipeline returns extracellular mutations of the membrane proteins and the MHC-binding information
(all in TXT format).

3.2. Detection of cancer somatic mutations

The software can detect single-nucleotide variants (SNVs) and small insertions or deletions (INDELs)
according to the pipeline as depicted in figure 2. The raw paired-end sequence data were in FastQ format
from the whole-genome sequencing, the whole-exome sequencing or the targeted gene panel sequencing
using the [llumina platform. The raw data were cleaned using TRIMMOMATIC [22]. BWA-MEM was used
to map the reads to the reference genome sequences [23,24]. SAMTOOLS [25] and PICARD [26] were used
to address files in SAM or BAM formats, including transform, sort, merge and mark duplicates. GATK
[20] was used to pre-process the BAM files, such as realigning the INDELs and recalibrating the bases.
MUTECT?2 [27] in GATK was used to call the somatic SNVs and INDELSs between tumour and normal
samples. ANNOVAR [28,29] was used to annotate the detailed mutation information.

We further provide a filter to detect the somatic mutations in the protein-coding regions and the
somatic missense variants which fit the cut-off (tumour reads > 10, normal reads > 6, tumour alteration
reads > 5, variant allele frequency (VAF) in tumour DNA > 0.05 and VAF in normal DNA = 0).

3.3. Prediction of neoantigens

When peptides differ by only one amino acid change, specific antibodies can be generated [19,37].
Therefore, missense mutations that are present on the surfaces of tumour cells are important targets
for antibody-based immunotherapy. We performed two strategies to predict the neoantigens that would
present on the surfaces of tumour cells [1,2]. First, we extracted the somatic mutations in the extracellular
regions of the membrane proteins. Second, we predicted the neoantigens that would present on the cell
surface by evaluating the binding affinity between the peptides and class | MHC molecules.

According to the Human Protein Atlas, there were 5462 predicted membrane proteins [34]. We
identified the transmembrane topologies and the extracellular regions of these proteins using TMHMM
[31]. To identify the extracellular mutations of membrane proteins, the filtered cancer somatic missense
variants were mapped to the extracellular regions of membrane proteins. We further verified the
characteristics of the mutant amino acids. Mutations that change the polarity of the amino acids have
gained more attention, as they may be more likely to cause differences in binding features to antibodies
between wild-type and mutant proteins.
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Figure 2. The software pipeline of TSNAD. The pipeline performs best practices for somatic SNVs and INDELS in whole-genome/exome
sequence with GATK. Then, we extracted the extracellular mutations of membrane proteins according to the protein topology, and invoked
NeTMHCpan to predict the binding information of mutant peptides to class | MHC molecules.

In addition to the membrane proteins, peptides could be present on the cell surface because of
the antigen presenting system, which is mediated by MHC molecules. SOAP-HLA was used for the
HLA typing of each sample [30]. NETMHCPAN was used to predict the binding affinity between
the class I MHC and wild-type/mutant peptides [21]. We further compared the binding information
of the HLA molecules to the wild-type and mutant peptides. The mutant peptides that can bind
to the HLA-A/B/C molecules were extracted for further analysis; the specific bindings of the HLA
proteins to the mutant peptides were preferred for their potential to be drug targets without affecting
normal tissues.

3.4. Prediction of neoantigens based on the somatic mutation data from the International
(ancer Genome Consortium database

In previous study, we performed oncogene targeted depth sequencing on a malignant peritoneal
mesothelioma [38]. Applying the TSNAD to analyse the sequence data of the tumour sample and
the paired peripheral blood sample, we detected 2897 somatic SNVs and 218 somatic INDELs. Four
SNVs of NOTCH?2, PDE4DIP, ATP10B and NSD1 and one frameshift INDEL of BAP1 were validated
by Sanger sequencing on tumour RNA. We also predicted the neoantigens on these mutated proteins,
and found specific-binding of neo-peptide generated by BAP1 frameshift INDEL to HLA-B*35:42 of
the patient. A polyclonal antibody of the neo-peptide of BAP1 were produced in rabbits and showed a
good antibody-neoantigen specificity, which indicates that the neo-peptide of BAP1 could be a potential
tumour-specific neoantigen [38].

In addition to handling original sequencing data, TSNAD could also analyse exiting mutations data to
predict potential neoantigens. We applied TSNAD to the simple somatic mutations of 9155 samples from
the ICGC database and predicted numerous neoantigens, including extracellular mutations of membrane
proteins and peptides presented by the class I MHC molecules.
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Table 1. Top 20 most frequent extracellular mutations in 9155 donors.

DNA mutation protein mutation mutation frequency
12615C>G H4205Q 44 out of 9155

3.5. Prediction of neoantigens from membrane proteins

To identify the extracellular mutations of membrane proteins, we mapped all of the missense mutations
to the extracellular regions of membrane proteins. A dataset containing 88354 extracellular mutations
was obtained. A majority of these extracellular mutations (89.6%, 79 198 out of 88 354) occurs only once
in the 9155 donors (electronic supplementary material, table S1 and figure S1), which illustrates the
high heterogeneity in tumour samples. However, membrane proteins with mutations that occur in more
samples are also ideal drug targets for antibody-based immunotherapy. The top 20 frequent extracellular
mutations are listed in table 1 and MUC4:H4205Q is the most frequent extracellular mutation
(44 out of 9155).

3.6. Prediction of neoantigens through major histocompatibility complex-binding information

Peptides could also present on the cell surface via the antigen presenting system, mediated by MHC class
I'molecules. In this manner, mutant peptides that are present exclusively in tumour cells are the potential
neoantigens, and the MHC—-peptide complexes are called neoantigens.

Based on the missense mutations of the 9155 tumour samples from the ICGC, we extracted peptides
21 amino acids length, with 10 amino acids upstream and 10 amino acids downstream of the mutation
sites. Both the mutant and reference peptides were extracted. Combined with the 16 HLA alleles whose
frequencies were more than 5% in the population collected in the 1000 Genome Project, we used
our software, invoking NETMHCPAN (v2.8) [21] to predict the binding affinity between HLA and the
collected peptides. Then, we compared the binding information of the HLA proteins to wild-type and
mutant peptides, and the specific bindings of the HLA proteins to mutant peptides were collected. These
mutant peptides are seen as potential neoantigens. Finally, we obtained a dataset containing 1420785
records. We also analysed the distribution of the dataset (electronic supplementary material, table S2 and
figure S2). The results showed a similar phenomenon with that in membrane proteins.

00021 % 'Ps uado 0y 610 Buiysigndfiaposieforsoss H



Table 2. Sixty five potential common neoantigens and their corresponding genes and mutation frequency.

role in tumour no. mutation no. neoantigen
KRAS oncogene 5 ll

mutation affinity (nM) mutation frequency
322 out of 9155

Mutations with more frequencies in the samples may play important roles in tumorigenesis. There
are 65 potential common neoantigens whose corresponding mutations appear in at least 20 out of the
9155 donors from the ICGC database and had an ICsg of less than 500. The 65 neoantigens are related
to the 23 somatic mutations of 12 genes (table 2; electronic supplementary material, table S3). KRAS,
PIK3CA and TP53 occupy more potential neoantigens than other genes, indicating that these genes play
more important roles in tumour immunotherapy, corresponding to former research results that KRAS
and PIK3CA are oncogenes and that TP53 is a tumour suppressor gene [39]. Moreover, we also found
some genes that have not been identified as tumour-associated genes by Cancer Gene Census also encode
potential neoantigens, such as MUC4, FAM194B, OPRD1 and FRG1.

We found that the most frequent potential neoantigens are encoded by gene KRAS, which has been
identified as an oncogene in vivo. There are six potential neoantigens related to the KRAS gene in the
top 10 potential neoantigens, with two different mutations: G12D and G12 V. Among the six peptides,
three of them (KLVVVGADGYV, KLVVVGAVGYV and KLVVVGAV) are presented by HLA-A*02:01, one
(TEYKLVVVGAV) is presented by HLA-A*40:01, one (GAVGVGKSAL) is presented by HLA-A*03:04 and
one (GAVGVGKSAL) is presented by HLA-C*03:03 (table 3).

To study the distribution of the neoantigens across different HLA type, we classified the 1420785
records into 16 parts according to the HLA type we used (figure 3a). It was found that approximately 10
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Figure 4. Specific binding of mutant peptide of TP53 to HLA-A*02:01. Blank control: FITC-goat anti-mouse gG + T2 cells; negative
control: human beta-2-microglobulin were incubated with T2 cells overnight at 37°C 4 W6/32 + FITC-goat anti-mouse IgG; wide-
type (WT) peptide binding affinity analysis: WT peptide (GMNRRPILTII) and human beta-2-microglobulin were incubated with T2 cells

overnight at 37°C + W6/32 + FITC-goat anti-mouse IgG; mutated peptide binding affinity analysis: mutated peptide (GMNWRPILTII)
and human beta-2-microglobulin were incubated with T2 cells overnight at 37°C 4 W6/32 + FITC-goat anti-mouse IgG.

mutant peptides could bind to each HLA type in each sample, which means that we can find about 60
neoantigens in each tumour sample on average.

Because of the highly heterogeneity of tumours, we further investigated the distribution of
neoantigens in each tumour type (based on the tissue origin; figure 3b). The results showed that the
neoantigen load is related to the somatic mutation burden. The cancer types have more mutation load,
such as skin and lung cancer, have more neoantigens in average. Interestingly, uterus cancer has the
largest number of neoantigens on average (715.98, electronic supplementary material, table S4), but the
median number of neoantigens of uterus cancer ranks 10th among the 20 cancer types (figure 3b). The
reason may be that the number of neoantigens varies greatly among different patients of uterus cancer,
several uterus tumours have large numbers of neoantigens. The nervous system cancer possesses the
least neoantigens (2.39) on average. The results indicated that the neoantigen load is not only quite
different between different cancer types, but also quite different between different tumours from the
same tissue.

3.7. Specific binding of the TP53 mutant peptide to HLA-A*02:01

We choose one of the 65 potential common neoantigens, which was generated by the TP53 R248 W
mutation, to experimentally confirm the specific-binding of neoantigen to HLA-A*02:01 using T2
assay [36]. We predicted that the wild-type (WT) peptide (GMNRRPILTII) could not bind to HLA-
A*02:01, while the mutant peptide (GMNWRPILTII) could weakly bind to HLA-A*02:01 with the ICsq
value =350nM (electronic supplementary material, table S3). The T2 cell line was widely used to
confirm the binding of the peptides to HLA-A*02:01 as its HLA levels can be stabilized by the addition
of exogenous HLA-binding peptides but unable to present the endogenous HLA-associated peptides
[15,36]. To assess binding strength, we first incubated T2 cells with the WT and mutant peptides,
respectively, and then used the W6/32 antibody that targets HLA molecules stabilized by any HLA-
binding peptides. The strength of peptide binding between WT and mutant peptides were comparable
as suggested by W6/32 staining. Analysis of the pulsed cells by flow cytometry showed that binding
of the TP53 (R248 W) mutant peptide to T2 cells was more significant than the background levels of
staining to the WT peptide or negative control cells (figure 4), which confirms the specific binding
of the TP53 mutant peptide to HLA-A*02:01. Therefore, the R248 W mutation of TP53 can generate a
potential tumour-specific neoantigen in the patient with HLA-A*02:01, which can be an ideal target for
neoantigen-specific cancer immunotherapy.
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4. Discussion

TSNAD is a tool for detecting cancer somatic mutations following the best practices of GATK [20].
TSNAD can also provide potential neoantigens [1], which can be either extracellular mutations of
membrane proteins or mutant peptides presented by class I MHC molecules. It is critical for biologists
without programming background. We applied the antigen-predicting tool of TSNAD to predict
neoantigens, including extracellular mutations of membrane proteins and neoantigens presented by
MHC class I molecules. And we experimentally verified the specific-binding of the mutated peptide of
TP53 we predicted (R248 W, wild-type: GMNRRPILTII, mutant: GMNWRPILTII) to HLA-A*02:01. The
predicted neoantigens in our study were important sources for selecting suitable drug targets. In further
study, these predicted neoantigens would need more experimental validation for their potential to be
employed as drug targets of T cell or antibody-based immunotherapy.

Data accessibility. The software and codes are freely available from https://github.com/jiujiezz/tsnad and the predicted
neoantigens are freely available from http:/ /biopharm.zju.edu.cn/lab/database/tsnadb.
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