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Abstract Inflammatory diseases such as inflammatory bowel disease (IBD) require recurrent inva-

sive tests, including blood tests, radiology, and endoscopic evaluation both to diagnose and assess

disease activity, and to determine optimal therapeutic strategies. Simple ‘bedside’ biomarkers could

be used in all phases of patient management to avoid unnecessary investigation and guide further

management. The focal adhesion complex (FAC) has been implicated in the pathogenesis of multiple

inflammatory diseases, including IBD, rheumatoid arthritis, and multiple sclerosis. Utilizing omics

technologies has proven to be an efficient approach to identify biomarkers from within the FAC in

the field of cancer medicine. Predictive biomarkers are paving the way for the success of precision

medicine for cancer patients, but inflammatory diseases have lagged behind in this respect. This

review explores the current status of biomarker prediction for inflammatory diseases from within

the FAC using omics technologies and highlights the benefits of future potential biomarker

identification approaches.
Introduction

Disease biomarkers have the potential to be medically valuable
at all stages of the disease process from diagnosis, identifica-

tion of disease subtypes, and prognosis to therapeutic adjust-
ment. Inflammatory bowel disease (IBD) is an exemplar of a
chronic, complex inflammatory disease. IBD has two major

subtypes, ulcerative colitis (UC) and Crohn’s disease, which
nces and
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have different clinical courses and management strategies with
a wide phenotypic variability among patients. Figure 1 high-
lights the points at which biomarkers have potential use in

IBD.
Biomarkers need to be specific, stable, and consistent across

multiple platforms of testing in order to be used as a clinical

application. This raises challenges associated with biomarker
identification in IBD, as with any complex inflammatory con-
dition, partly due to our limited understanding of the patho-

genesis of these diseases and poor appreciation of the
difference between what is healthy and what is a disease pro-
cess. Hypothesis-driven biomarker discovery via traditional
one protein–one metabolite or one cell analysis from cellular

disease models or tissues compared between control and dis-
ease samples is laborious. Such an approach is also limited
by the fact that gene expression and signalling of tissues

depends on the context and their native environments [1].
For this reason, very few biomarkers make it to clinical prac-
tice [2]. Further challenges posed by complex diseases are that

they often need to be stratified into sub-phenotypes via
patients’ genetic features, which need to be taken into account,
making identification of a broad generalizable biomarker diffi-

cult [3]. High throughput, hypothesis-free techniques are
required for biomarker discovery. With the advent of high-
throughput omics technologies and advances in computational
biology, researchers are now able to generate, analyse, and

interpret a variety of datasets and apply them on biomarker
discovery at a scale, which were previously impossible
(Figure 2). One of the cellular signal transduction pathways

supplying candidate biomarkers that have become prominent
through the use of omics technologies and computational
biology, certainly for the cancer field, is the focal adhesion

complex (FAC).
FACs are dynamic, large protein assemblies that mechani-

cally link and transduce signals from the extracellular matrix

to the intracellular milieu via integrins [4] or other receptor
modules such as cluster of differentiation 47 (CD47). The
complex consists of core structural proteins such as paxillin,
talin, actinin, and vinculin, with dynamic signalling proteins
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Figure 1 Potential sites of biomarker used in IBD
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including protein kinases, phosphatases, small guanosine
triphosphatases (GTPases) with regulatory molecules, and
adapter molecules that mediate core protein–protein interac-

tions (Table 1). The ‘adhesome’ network contains 156 compo-
nents with 690 interactions between them [26], highlighting the
complexity of the focal adhesion function.

The focal adhesion function is both mechanical and respon-
sive. It is mechanical in terms of anchoring the cell to the extra-
cellular matrix via binding of integrins to their extracellular

ligands and to the actin cytoskeleton to modify the physical
and topographical characteristics of the cell. This has direct
implications for wound healing as well as invasion and the
metastatic nature of the cancer cell. The responsive function

of the FAC is diverse and multi-layered. Depending on the ini-
tiating signal, FAC can be involved in regulating inflammatory
gene expression via signal transduction pathways such as inter-

leukin 1 (IL-1) signalling [27,28] or regulating calcium fluxes
via phosphatidyl inositol signalling [29], which impact on
inflammatory cascades. Many molecules in the FAC are

involved in downstream signalling pathways, for instance,
the MAPK/ERK pathway [30], AKT1 [22], and Wnt signalling
[31,32]. In this way, pathways impacted by the FAC are as var-

ied as apoptosis [21], production of cellular protrusions [33],
cell cycle progression [34], and cell proliferation [35].

The number of publications listed in PubMed involving
FAC (‘focal adhesion complex’) has had a 5-fold increase from

141 published in 1996 to 709 published in 2015. The role of
FAC in cancer has been a consistent focus of approximately
44% of publications over the past 20 years (Figure 3). Given

the critical roles that focal adhesions play in regulating cell
structure, proliferation, survival, migration, and invasion, it
is not surprising that this makes the complex a prime target

for biomarker candidacy and drug targeting in cancer, which
is reflected in the overrepresentation of papers with the terms
‘cancer’, ‘focal adhesion’, and ‘biomarker’ from a cohort of

‘focal adhesion’ and ‘biomarker’ publication subset.
Of the publications identified using the Medical Subject

Headings (MeSH) terms ‘cancer’, ‘focal adhesion’, and also
adding ‘biomarker’, 39 out of 745 used bioinformatics
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� Highest amount and variety of
datasets

� Multitude of techniques (GWAS,
WGS, WES, epigenomics) 

Proteomics 

� Potential for large-scale MS and
biological network analysis when
looking for biomarkers

� Proteome data for pathway
enrichment analysis
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� Potential for combinatorial
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Figure 2 Omics approaches with complementary potential to be integrated

Genomics, transcriptomics, and proteomics approaches can be used to identify and discover the detailed component, mechanisms, and

regulation of the FAC members in normal and in diseased states. The differential analysis is capable to point out novel biomarkers. FAC,

focal adhesion complex; GWAS, genome-wide association studies; MS, mass spectrometry; WES, whole-exome sequencing; WGS, whole-

genome sequencing.
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approaches for biomarker identification. It is of note that all
these 39 studies were published after 2007.

The role of FAC in the pathobiology of inflammatory dis-
eases such as IBD or rheumatoid arthritis (RA) has been less
well exploited for biomarker discovery. However, the role of

FAC in inflammatory diseases can be well illustrated in UC.
UC is a relapsing-remitting disease which causes ulceration
of the lining of the large bowel and is thought to be a disease

of the epithelial barrier [36]. The epithelial barrier is an
immuno-mechanical barrier consisting of mucous layers,
intestinal epithelial cells, and closely-residing immune cell pop-
ulations. The mechanical barrier is provided in part by the

enterocytes joined by intercellular junctions, of which the tight
junction is a major component. May et al. [37] identified that
activation of focal adhesion kinase (FAK) is necessary for

maintaining and repairing the epithelial barrier in cell culture
via tight junctions. This was further examined by Khan et al.
[38] in both T84 cell lines and surgical specimens from IBD

patients. They demonstrated that activation of M1 muscarinic
acetylcholine receptor augmented the recovery of epithelial
barrier function via phosphorylation of FAK. Further evi-
dence for the role of FAK in maintaining intestinal epithelial

barrier function in the presence of pathogenic factors was
highlighted by Guo and colleagues [39]. Utilizing intestinal
epithelial cell cultures, they identified that gut-derived bacterial

lipopolysaccharide induced tight junction permeability via the
FAK/myeloid differentiation primary response gene 88
(MyD88)/IL1 receptor pathway. GTPases such as Rac1 [40]

and tyrosine phosphatase members of FAC have a role in reg-
ulation of the NACHT, LRR and PYD domains-containing
protein 3 (NLRP3; also known as cryopyrin) inflammasome

[41], which mediates the release of IL-1 and IL-18 from cells.
IL-18 signalling drives the breakdown of barrier integrity in
murine models of UC [42]. Further evidence of FAC involve-

ment in inflammasome activation was provided by Thinwa
et al. [43] who demonstrated that the initial signal for intestinal
cell inflammasome activation in pathogen recognition is via

integrins. It is interesting to note that NLRP3 was identified
as a candidate gene for susceptibility of Crohn’s disease [44],
whereas IL-1 has been put forward as a faecal marker of
inflammation in UC [45].

The evidence described above has been hypothesis-driven,
utilizing mainly cellular models to describe a pathogenic sys-
tem. In this review we will consider the literature field of

FAC in inflammatory diseases focusing on those utilizing a sys-
tems medicine approach, where omics data and computational
biology are combined for potential biomarker identification.

In the last two decades, omics technologies have made a
great impact on medical research, turning biological research
into a data-intensive science [46]. These high-throughput
methodologies are now routinely used to provide a top-down

approach in understanding biological systems. The power of
omics approaches in systems medicine is due to their ability
to detect context (e.g., cell, disease, or treatment) specific data

for a signalling system. The challenge of these approaches is
that it often requires either a computational biology expert
or familiarity with sophisticated computational software solu-

tions to extract biological insights from the datasets [47]. A



Table 1 Component examples of the focal adhesion complex

Category Example Function Refs.

Actin binding Actinin1, filamin A, cortactin, zyxin Crosslink actin; remodel cytoskeleton [5,6]

Adapter SORBS1, ABI1 Link proximal signal pathways; facilitate signal

transduction

[7,8]

Cytoskeletal Actin, vinculin, plectin, ezrin, paxillin Facilitate and stabilize signalling platforms; remodel cell

shape and movement

[9,10]

GAP/GEF DOCK1, ELMO1 Activate small GTPases [11]

GTPase Rac1, RhoA Signal cytoskeletal remodelling, cell growth, phagocytosis,

and ruffled borders

[12]

Metalloproteinase ADAM12 Disintegrin [13]

PIK/phosphatase PI3K, INPPL1, PTEN Regulate AKT/PKB signalling pathway; regulate

signalling via IRS proteins

[14,15]

Receptor Integrins, IL1R, CD47 Bind to ligands for extracellular matrix constituents

including fibronectin and thrombospondin

[16,17]

Serine/threonine kinase PAK1, AKT, PRKCA Effectors linking Rho GTPases to cytoskeletal

reorganization; phosphorylate BCL2

[15,18]

Transcription factor ITGB3BP Transcriptional co-regulator [19]

Tyrosine kinase FAK, SYK, SRC Regulate FAC assembly and disassembly [20–22]

Tyrosine phosphatase PTPN1, 2, 6, 11, 12, 22, PTP-PEST Regulate maturation of focal adhesion; recruit signalling

molecules

[23–25]

Note: GTPase, guanosine triphosphatase; GAP, GTPase activating protein; GEF, guanine nucleotide exchange factor; PIK, phosphoinositide

kinase; SORBS1, sorbin and SH3 domain-containing 1; ABI1, Abelson interactor 1; DOCK1, dedicator of cytokinesis protein 1; ELMO1,

engulfment and cell motility protein 1; Rac1, Ras-related C3 botulinum toxin substrate 1; RhoA, Ras homologue gene family, member A;

ADAM12, disintegrin and metalloproteinase domain-containing protein 12; PI3K, phosphatidyl-inositol-3-kinase; INPPL1, inositol polyphos-

phate phosphatase like 1; PTEN, phosphatase and tensin homologue; IL1R, interleukin-1 receptor type 1; CD47, Cluster of Differentiation 47;

PAK1, serine/threonine-protein kinase 1; AKT, RAC-alpha serine/threonine-protein kinase; PRKCA, protein kinase C alpha type; ITGB3BP,

integrin subunit beta 3 binding protein; FAC, focal adhesion complex; FAK, focal adhesion kinase; SYK, spleen tyrosine kinase; SRC, proto-

oncogene tyrosine-protein kinase; PTPN, tyrosine-protein phosphatase non-receptor type; PTP, protein tyrosine phosphatase; PKB, protein kinase

B; Bcl2, B-cell lymphoma 2.
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further complication is that genomic or transcriptomic data
are often best interpreted in the context of the heterogeneous

large-scale datasets that have already been deposited in
publicly-available databases [47].

Genomics

Genomic approaches provide the highest number and variety
of datasets on human diseases. These approaches include (1)

whole-genome or whole-exome sequencing that identify
genetic mutations or copy number variations; (2) genome-
wide association studies (GWAS) used to identify genetic vari-

ants associated with a disease; (3) microarray or RNA-seq
techniques for measuring the mRNA or microRNA (miRNA)
expression of cells and comparing the levels between states

(transcriptomics); and (4) epigenomics analyses focusing on,
for example, DNA methylation and its change during differen-
tiation, ageing, and cancer progression. To analyse the geno-

mic datasets of complex diseases, the systems medicine
approach is a highly-effective framework to understand the
complexity. Disease-related genes may differ among affected
individuals, but the affected pathway or network region is

likely to be shared [47]. The identified disease-related genes
can be used to list potential biomarkers by filtering those
specifically relevant to a given disease or disease stage.
In particular, the advent of GWAS identifying candidate
susceptibility genes has opened the door to the pathobiology

of chronic inflammatory disease. With this, the prospect of a
genetic marker for disease diagnosis, prognosis, and therapeu-
tic efficacy in what can otherwise be very heterogeneous dis-

eases is very appealing. GWAS in large populations of
patients with chronic inflammatory diseases such as RA can
identify common genetic variants that are associated with hav-

ing that disease [48].
Zhang et al. [49] undertook analysis of the KEGG path-

ways [50] affected by 11,922 differentially-expressed genes
(DEGs), which had been identified by genome-wide associa-

tion scans in RA patients. The focal adhesion and extracellular
matrix receptor interaction pathways were considered high risk
RA pathways. Core members of FAC with genetic variants

included integrin subunits A and B, actinin, dedicator of
cytokinesis 1 (DOCK1), and B cell lymphoma 2 (BCL2). Their
data correlate well with the DNA methylome signature in RA,

comprising genome-wide DNA methylation loci from
fibroblast-like synoviocytes removed at the time of joint
replacement from five patients with osteoarthritis and six
patients with RA [49]. Nakano et al. [51] undertook global

methylation status analysis and identified differential methyla-
tion between osteoarthritis and RA in 1206 different genes.
Differentially-methylated genes were mapped to KEGG path-
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Figure 3 Biomarker related publications about focal adhesion complex

We compared the total publications in PubMed identified with MeSH terms ‘focal adhesion and biomarker’ with ‘cancer, focal adhesion

and biomarker’ from the last 20 years. The figure highlights the unchanged and low number of biomarker-related studies involving the

FAC and non-cancer diseases compared to cancer related studies. FAC, focal adhesion complex.
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ways for gene ontology, which highlighted hypomethylation
enrichment in the RA sample in loci including genes encoding
integrin subunits A and B, actinin, receptor tyrosine kinases,

parvin, DOCK1, and BCL2. Hypomethylation of inflamma-
tory genes has been associated with an increased inflammatory
response, as hypomethylation in promoter regions of a gene

makes it transcriptionally active [52,53].
Utilizing GWAS-mapped genes or methylome signatures

alone for biomarker prediction has its limitations. Firstly,
the differential expression of said genes is not assessed. Sec-

ondly, the presence or absence of a single polymorphism
within a gene may not have a strong enough phenotype to
be a useful biomarker [54]. Moreover, the use of methylation

status as a biomarker is currently plagued by inaccuracy and
poor replication, as there is a need for standardized methods
and controls [55].

To overcome the potential limitation of not taking into
account differential gene expression, He et al. [56] examined
the Gene Expression Omnibus (GEO) microarray data to

assess mRNA expression in the specific cell type involved in
RA, synovial fibroblasts, to identify DEGs by comparing six
RA patients to osteoarthritis patients (an age related, non-
autoimmune arthritis) using the linear models for microarray

analysis (LIMMA) [57]. The authors undertook functional
enrichment of the DEGs using KEGG pathways, with the
analysis performed using the database annotation visualization

and integrated discovery (DAVID) [58]. Using STRING [59],
they created a larger protein–protein interaction (PPI) network
for a further functional enrichment, looking for functional

complexes using the MCODE plugin for Cytoscape [60]. This
multi-layered approach comparing the two types of arthritis
identified DEGs for collagen (a predominant member of the
extracellular matrix) that were enriched in focal adhesion path-
ways and extracellular matrix receptor interactions for

osteoarthritis, but not RA. The difficulty of biomarker identi-
fication based on gene expression studies only is that the stud-
ies are often small, thereby not taking into account the rich

genetic variability of these complex diseases, and neither gene
regulation nor protein levels of DEGs.
Transcriptomics

Combinatorial approaches utilizing DEGs and their regulation
have been more successful for biomarker discovery. One mech-

anism of gene regulation is via small non-coding RNAs
(ncRNAs) such as miRNAs. miRNAs function in RNA silenc-
ing, by base pairing binding of complementary sequences in

mRNAs, thus targeting them for cleavage [61]. In the field of
oncology, integrating miRNA, gene expression, and transcrip-
tion factor signatures has been used to identify biomarkers for
papillary thyroid cancer by using pathway enrichment to iden-

tify dysregulated pathways including in focal adhesion [62].
Such approach of integrating miRNA data and differential
gene expression for identification of molecular prognostic

biomarkers was taken further by Cai and colleagues [63],
who identified three potential biomarkers, CALM2, miR-
19b, and miR181b, for gastric cancer that were related to the

FAC and the extracellular matrix receptor. This integrative
approach has been, however, less widely used in inflammatory
models. For IBD [64] and many other autoimmune diseases

including Sjogren’s disease [65], we are still at the stage of
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documenting differential expression levels of miRNAs between
disease and control cohorts.

Therefore, despite the central role FAC plays in inflamma-

tory diseases, the number of ncRNAs that could be used as
potential biomarkers are still scarce. In the case of UC and
Crohn’s disease, miRNAs are the most explored ncRNAs in

the literature. There is experimental evidence showing elevated
levels of specific miRNAs in active UC tissues and in serum [66].

In recent years, many computational methods emerged that

allow the analysis of specific ncRNA–disease associations, pre-
dict such connections and select the ones most suitable for
experimental validation. For example, heterogeneous graph
inference for miRNA–disease association prediction

(HGIMDA) [67] and improved random walk with restart for
lncRNA-disease association prediction (IRWRLDA) [68] are
two viable, novel methods that could be potentially used to

describe new targets. HGIMDA constructs a heterogeneous
graph out of separate networks: a functional similarity net-
work of miRNAs and a semantic similarity network of dis-

eases, which in combination allowed predicting potential
disease–miRNA associations. IRWRLDA uses an improved
random walk with restart algorithm on a lncRNA similarity

network to rank potentially useful candidate lncRNAs.
Proteomics

Protein biomarker identification is driven by better under-
standing of the disease processes and signalling pathways
involved in perpetuation of pathogenic states. Combining

large-scale mass spectrometry (MS)-based proteomics and bio-
logical network analysis has been fundamental in the under-
standing of signalling networks [69], so it stands to reason

that using similar techniques may drive biomarker identifica-
tion for the large datasets that have been proved by proteomic
platforms. Like genomics and transcriptomics, biomarker dis-
covery using proteomics has often involved proteome analysis

with pathway enrichment. A good example of this is reported
by Rukmangadachar and colleagues [70]. They differentiated
intestinal tuberculosis (TB) and ileal Crohn’s disease, utilizing

MS-based proteome analysis on ileal biopsies of 15 patients, in
combination with pathway enrichment using KEGG pathways
and the PANTHER annotation resource, and identified

biomarkers of both intestinal TB and Crohn’s disease. They
were able to identify overexpressed proteins in Crohn’s disease
patients compared to intestinal TB patients. These proteins

were annotated to pathways such as the integrin signalling
pathway, including a core FAC member, vinculin. However,
the proteins they identified were unable to be validated as dif-
ferential biomarkers in their 52-patient validation cohort using

immunohistochemistry. This emphasizes the point that a one-
step, single-omics approach on a small cohort of patients,
whilst identifying potential pathways, lacks the finesse to com-

plete the biomarker discovery.

Systems biology and focal adhesion — the promise

for novel biomarker discovery

Looking again at the cancer model, we can see that integrative

approaches using both omics data and computational biology
have been successful in producing panel biomarkers for cancer
subtypes. A good example of this is reported by Zhang and col-
leagues [71]. They took a systems biology approach to discover,
characterize, and validate a panel of breast cancer biomarkers

from breast cancer proteomics data. Using liquid chromatogra-
phy (LC)-coupled MS data from 40 women with breast cancer
and 40 women without breast cancer, they identified statisti-

cally significant differentially-expressed proteins. They further
identified PPI networks and performed pathway analysis with
significant literature curation (hypothesis-driven). As a result,

they identified a panel of 25 breast cancer biomarkers, which
were able to be validated against other proteomic datasets.
The top three pathways they identified for the biomarker panel
were focal adhesion, regulation of the actin cytoskeleton, as

well as complement and coagulation cascades. Combining gene
expression data with PPI networks and analysis by a computa-
tion network method that utilizes PPI affinity has been equally

successful in another breast cancer biomarker discovery study.
Protein interactors specific for metastatic breast cancer were
identified, which unsurprisingly are part of FAC [72]. Like in

cancer, FAC has clearly been implicated in the pathogenesis
of complex inflammatory diseases including RA [73] and
IBD, leading to the tantalizing possibility of clinical biomarkers

identified from within the ranks of FAC.
Utilizing single omics technologies with computation biol-

ogy has provided potential markers, but these have often failed
to stand up to rigorous validation due to small sample sizes,

differences in tissues sampled, or methodological differences.
Perhaps a more holistic, integrated approach is needed to meet
the needs of modern medicine. This approach towards a more

systemic view necessitates obtaining significant insights by
adopting a variety of complementary approaches, such as (1)
genomics and transcriptional profiling (including miRNA

and lncRNA analysis); and (2) functional and phospho-
proteomics (affinity purification and MS), as well as other
types of large-scale studies, including lipidomics (isolation

and MS analysis of lipid content and protein�lipid interac-
tions), chemical proteomics, and compound screening. With
the combined and integrated use of these omics approaches,
we can identify potential novel biomarkers and drug targets.

All biomarkers to be used in clinical practice need independent
validation with clinical samples. One such way as used by
Szasz et al. [74] is to merge transcriptomic data from multiple

independent datasets to cross validate gene expression
biomarkers using univariate and multivariate analyses in
1065 patients. Where such samples are not available or not

appropriate, clinical trials with patient cohorts need to be
undertaken comparing the biomarker candidates identified
against a gold standard. An example of this can be seen in
Brandse et al. [75] comparing an inflammatory marker, faecal

calprotectin, against the gold standard of leukocyte scintigra-
phy for denoting inflammatory burden in UC.

Conclusions

The FAC is a large, dynamic, multimeric structural and sig-

nalling opportunity for biomarker identification. Cancer
research has led the way with FAC members being implicated
as biomarkers of invasion [76], differentiation between normal
and cancer cells [77], prognosis [78], and diagnosis [63]. It is

clear that the FAC has a role to play in many inflammatory
diseases. However, which member, by which mechanism (be
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it genomic, transcriptomic, proteomic, or a combinatorial
approach with a panel of biomarkers [79]) and in which cell
type, remains to be formally validated. Here we presented a

few examples of how omics approaches could be exploited,
separately or in combination, to provide valuable novel
biomarkers for inflammatory diseases from members of the

FAC that can undergo further validation in a clinical trial.
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