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Abstract
The heterogeneous group of diseases collectively termed cancer results not
just from aberrant cellular proliferation but also from a lack of accompanying
homeostatic cell death. Indeed, cancer cells regularly acquire resistance to
programmed cell death, or apoptosis, which not only supports cancer
progression but also leads to resistance to therapeutic agents. Thus, various
approaches have been undertaken in order to induce apoptosis in tumor cells
for therapeutic purposes. Here, we will focus our discussion on agents that
directly affect the apoptotic machinery itself rather than on drugs that induce
apoptosis in tumor cells indirectly, such as by DNA damage or kinase
dependency inhibition. As the roles of the Bcl-2 family have been extensively
studied and reviewed recently, we will focus in this review specifically on the
inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of
proteins that all contain a baculovirus IAP repeat domain, which is important for
the inhibition of apoptosis in some, but not all, family members. We describe
each of the family members with respect to their structural and functional
similarities and differences and their respective roles in cancer. Finally, we also
review the current state of IAPs as targets for anti-cancer therapeutics and
discuss the current clinical state of IAP antagonists.
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Introduction to inhibitor of apoptosis family of 
proteins
The inhibitor of apoptosis protein (IAP) family is a functionally 
and structurally related group of proteins that serve as endog-
enous inhibitors of programmed cell death, or apoptosis. In addi-
tion, some family members are regulators of another form of 
programmed cell death termed necroptosis1,2. Whilst some of the 
IAPs have also been shown to be involved in immune regulation3,4,  
chromosome segregation, and cytokinesis5–7, this review will focus 
on their roles in explicitly regulating apoptosis. Although the 
various IAPs have somewhat differing functions, they are linked  
by one unique domain: membership of the IAP family is ascribed 
if the gene/protein in question possesses a baculovirus IAP 
repeat (BIR) domain. Indeed, as the name suggests, BIR domains  
were first identified in a baculoviral protein capable of inhibiting 
cell death in virally infected cells8–10. BIR domains are zinc finger 
domains and invariantly contain three cysteines and one histidine, 
which co-ordinate the zinc ion10, and these domains are involved 
in various protein-protein interactions (PPIs). IAPs were subse-
quently identified and characterized by various techniques in yeast,  
worms, insects, and mammalian cells5,11–15. The first human IAP 
revealed was neuronal apoptosis inhibitory protein (NAIP or 
BIRC1), which was serendipitously discovered in a search for 
genes involved in the autosomal recessive condition spinal mus-
cular atrophy (SMA)16. The next human IAPs to be characterized 
were the cellular IAPs 1 and 2: cIAP1 (or BIRC2) and cIAP2 (or 
BIRC3). These proteins were discovered to have a role in tumor 
necrosis factor receptor (TNFR) signaling through associa-
tion with the adaptor proteins TRAF1 and TRAF217–20. The fact 
that several proteins shared the common BIR domain led to the  

identification of more family members via traditional homology-
matching database searches (reviewed in 21). Notably, many of 
these proteins were further shown to be involved in the regulation 
of apoptosis15,22–27. Rounding out the group of eight human BIR-
containing proteins are XIAP (BIRC4), Survivin (BIRC5), Apollon 
(BIRC6), Melanoma IAP (ML-IAP or BIRC7), and IAP-like pro-
tein 2 (ILP-2 or BIRC8)15,22,25,28–37. A schematic of the general IAP 
family structure is shown in Figure 1. Figure 2 shows the intracel-
lular signaling interplay of IAPs with respect to cell survival and 
apoptosis.

Survivin and ML-IAP are small proteins with only one BIR  
domain, yet their functions are enigmatic, having been ascribed 
to various processes, including apoptosis inhibition. As such, 
their roles, especially with respect to cancer, will be discussed in 
greater detail later in this review. ML-IAP additionally possesses 
an E3 ubiquitin ligase domain named RING (really interesting new  
gene), a domain also present in other IAPs and believed to be 
important in many signaling events38–41. ILP-2, likewise with only 
one BIR domain, also contains a RING domain and a ubiquitin-
associated (UBA) domain. Whilst ILP-2 shows high homology 
to XIAP, it is a product of a separate gene and its expression in  
healthy tissues appears to be restricted to the testes36. Overexpres-
sion studies have shown that ILP-2 has no effect on extrinsic death 
receptor-induced apoptosis but that it can inhibit intrinsic (also 
known as mitochondrial) apoptosis through a potential interac-
tion with caspase-9, an apical protease involved in mitochondrial  
apoptosis36. However, others have shown that its BIR domain is 
unstable and, as such, it is only a weak binder of caspase-9, at least 
in the absence of other cellular factors42.

Figure 1. Domain structures of all known members of the human inhibitor of apoptosis protein (IAP) family, with a focus on the different 
baculovirus IAP repeat (BIR) domains. The representation of the homology between the different BIR domains of the IAP family reflects the 
accepted designation of BIR1, BIR2, and BIR3. The BIR domains of Survivin (BIRC5) and Apollon (BIRC6) can be aligned with either BIR1 or 
BIR2, depending on the specific alignment criteria, but owing to their uniqueness they are colored and labeled accordingly. CARD, caspase 
recruitment domain; cIAP1, cellular inhibitor of apoptosis protein 1; cIAP2, cellular inhibitor of apoptosis protein 2; ILP-2, inhibitor of apoptosis 
protein-like protein 2; LRR, leucine-rich repeat; ML-IAP, melanoma inhibitor of apoptosis protein; NAIP, neuronal apoptosis inhibitory protein; 
RING, really interesting new gene; UBA, ubiquitin-associated; UBC, ubiquitin-conjugating.

Page 3 of 18

F1000Research 2017, 6(F1000 Faculty Rev):587 Last updated: 27 APR 2017



Figure 2. Schematic of pertinent inhibitor of apoptosis signaling pathways relevant to tumor cell survival and apoptosis. Dashed lines 
indicate potential degradative events (blue = ubiquitin-mediated, black = caspase-mediated). cIAP1, cellular inhibitor of apoptosis protein 1; 
cIAP2, cellular inhibitor of apoptosis protein 2; ML-IAP, melanoma inhibitor of apoptosis protein; NAIP, neuronal apoptosis inhibitory protein; 
TNF, tumor necrosis factor.

Apollon is an extremely large protein (approximately 528 kDa) 
containing only one BIR domain that is thought to be membrane-
associated as well as a C-terminal ubiquitin-conjugating (UBC)  
domain43. It has been shown to attenuate apoptosis44–46 and to  
directly engage and interfere with both the second mitochondria-
derived activator of caspases (Smac, discussed in greater detail 
below) and caspase-943,47. Others have confirmed that Apollon 
is involved in caspase-9-mediated apoptosis but that it can also  
regulate p53 and is essential in murine embryo development48.

The remaining four IAPs each possess three BIR domains in  
tandem and are the most studied members of the IAP family.  
Whilst XIAP and cIAP1 and 2 each contain a UBA and a RING 
domain, NAIP differs in that it has neither of these features but 
instead contains a “NACHT” domain and a C-terminal leucine- 
rich repeat (LRR). The NACHT domain is so named because of  
its presence in NAIP, C2TA, HET-E, and TEP1, and it is predicted 
to be a nucleoside-triphosphatase (NTPase) domain49. Whilst its 
original discovery as the causative gene in SMA proved errone-
ous, NAIP has been shown to attenuate apoptosis in multiple  
models15,50,51. The main role of NAIP, however, appears to be  
in the regulation of innate immunity. Thus, NAIP, which is also  
part of the NOD-like receptor (NLR) family, is important for 

NLRC4 inflammasome activation in response to certain bacterial 
ligands52–54.

cIAP1 and 2, whilst showing similar architecture to XIAP,  
also possess a caspase recruitment domain (CARD). Somewhat 
confusingly, however, the CARD of the cIAPs does not bind to 
caspases, but it appears to function in an auto-inhibitory manner 
to block the cIAP RING domain’s E3 ubiquitin ligase activity55.  
The cIAPs are structurally very similar to each other with only a 
short linker sequence difference, are functionally redundant56,57, 
and are believed to have resulted from a recent evolutionary gene  
duplication. As with XIAP, they contain three BIR domains, 
and BIR1 is essential for binding to the TNFR adapter protein 
TRAF258,59. The third BIR domain (BIR3) in these three proteins, 
as well as the homologous BIR domain in ML-IAP, all potently  
bind to Smac, a negative regulator that will be discussed in much 
greater detail in subsequent sections of this review.

The cIAPs have been highly characterized in signaling events  
associated with a subset of TNFR superfamily members, called 
the death receptors (DRs), and it appears that their E3 ubiquitin 
ligase activity is especially pertinent in this regulation. DRs are  
categorized on the basis of the presence of a so-called death 
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domain (DD). DDs are approximately 80-amino-acid alpha-helical  
structures that recruit adapter proteins capable of binding mul-
tiple other proteins in supramolecular complexes that regulate 
distinct signaling pathways based on composition (reviewed  
in 60–63). cIAPs recruited to these complexes can be involved in 
both degradative K48- and non-degradative K63-branched ubiq-
uitination. Indeed, cIAP1 has been shown to control the levels of 
cIAP2 via degradative signaling, as depletion of cIAP1 results in 
a “rebound” of cIAP2 levels64. Similarly, levels of nuclear factor-
kappa B (NF-κB)-inducing kinase (NIK or MAP3K14) are tightly 
controlled by cIAPs, and these protein levels are almost unde-
tectable when the E3 ubiquitin ligase activity of the proteins is  
available64–66. Much more significant, however, are the cIAP- 
mediated non-degradative K63-branched ubiquitination and  
ensuing signaling. This ubiquitination of receptor-interacting  
protein 1 (RIP1) results in the formation of a signaling complex 
that can recruit further ubiquitin ligases and kinases that ulti-
mately result in classical NF-κB activation67,68 (and reviewed  
in 69). Indeed, recruitment of RIP1 to these complexes has  
led to the coining of the term “RIPoptosome” to describe  
them70–72. When cIAPs are absent—owing to genotoxic stress 
or chemical depletion with Smac mimetics (see below), for  
example—and the relevant receptor agonist is engaged, RIP1 
is not degraded but forms a death signaling RIPoptosome72 with  
apoptosis effected via the apical caspases-8 or -10 or both.  
Furthermore, in the absence of these caspases (or upon their  
inhibition), necroptosis can occur1,2. Necroptosis has been  
demonstrated to be dependent on RIP1 and specifically on its 
kinase activity (reviewed in 73). RIP1 phosphorylation of RIP3 
results in the activation of mixed lineage kinase domain-like pro-
tein (MLKL)74–76, which induces necroptotic death by rupturing  
of the plasma membrane77–79.

In sum, the cIAPs are integral components of multiple signal-
ing complexes emanating from TNFR superfamily members and,  
as a consequence, can regulate diverse cellular responses such as 
cell survival, apoptosis, and necroptosis via the RIPoptosome80,81.

XIAP is by far the most studied and highly characterized  
member of the IAP family. It is a potent inhibitor of apopto-
sis as judged by multiple model systems and techniques and has 
been clearly demonstrated to effect such inhibition due to direct 
binding of caspases24. BIR2 and a short linker section between  
BIR1 and BIR2 are essential for binding and sequestration of  
the effector caspases -3 and -724,82–84, whilst BIR3 is crucial for  
binding to the apical caspase-985–87. As with the cIAPs, the BIR3 
of XIAP also binds Smac, and this interaction results in caspase 
de-repression85,88–90. Thus, XIAP BIR3 binding of Smac has been 
shown to result in the release of active caspases from the XIAP 
protein complex and thus BIR3-Smac interaction is permissive for 
apoptosis induction88,91. As such, Smac is not a direct activator of 
caspases, despite its name, but rather an “inhibitor of the inhibitor”. 
Smac effects this displacement of factors from the BIR domains 
because of a four-amino-acid sequence of Ala-Val-Pro-Ile (AVPI) 
in Smac. Exposure of cells to this peptide motif can therefore sen-
sitize cells to apoptotic stimuli or, in the case of cIAPs, result in 
their auto-degradation and subsequent switch from inhibitory to 
pro-apoptotic events from TNFRs. Owing to these effects, the AVPI 

tetrapeptide sequence has drawn much attention as a potential anti-
cancer agent, and multiple Smac mimetics have been developed 
with a view to promoting apoptosis in tumor cells, where normal 
apoptotic signaling is perturbed. The current clinical progress of 
these agents is described in detail later.

In summary, the IAP family, whilst small in number, contains a 
series of diverse members with differing but somewhat overlap-
ping biological roles. The most relevant of these roles in tumors is  
apoptosis inhibition, and the mechanisms governing how each 
member is involved are somewhat unique. The next section will 
discuss the roles of these proteins in cancer, and finally we will  
discuss the application of IAP inhibitors (Smac mimetics) as  
potential anti-cancer agents.

Inhibitor of apoptosis and cancer
The evasion of apoptosis is one of the hallmarks of cancer92–95,  
and, as noted above, the IAP family of proteins plays an impor-
tant role in attenuating programmed cell death pathways, predomi-
nantly through modulation of the caspase cascade (extensively  
reviewed in 27,96–103). Furthermore, IAPs are often upregulated 
in cancers104 and are believed to underlie the resistance of many 
tumors to chemotherapeutics105,106. Ablation or antagonism of  
IAPs is therefore an attractive strategy to sensitize or re-sensitize 
tumor cells to apoptosis induced by other agents. The roles that  
the eight IAPs found in humans play in cancer are discussed 
below.

NAIP
NAIP (BIRC1) was first identified and named in 1995 by Roy  
et al.16 as a potential modulator of the neuronal apoptotic path-
way. As noted earlier, the main biological role for NAIP appears to  
be the regulation of innate immunity. Nevertheless, NAIP has  
been weakly linked to unfavorable prognosis in esophageal  
cancer107, breast cancer108, prostate cancer109, and neuroblastoma110. 
The precise role of NAIP in the dysregulation of apoptosis in  
cancer and its value as a potential therapeutic target need further 
study.

cIAP1, cIAP2, and XIAP (BIRC2, BIRC3, and BIRC4)
As noted above, XIAP is a very potent binder and inhibitor of  
caspase-3. Accordingly, research by pharmaceutical companies  
has primarily focused on antagonizing this protein for oncology 
applications (reviewed in 111,112). cIAP1 and cIAP2 have also 
been implicated in cancer, and their role in the modulation of the 
NF-κB signaling pathway has been investigated in detail113. It 
was also found that cIAP1 can protect cancer cells from the lethal  
effect of TNF through synergy with the MYC oncogene, thus 
driving tumorigenesis114–116. As cIAPs suppress TNF-induced cell  
death, it is likely that increased levels of cIAPs support tumor 
cell survival by modulating cellular responses to TNF. cIAPs and  
XIAP are additionally thought to contribute to cancer cell 
invasion and metastasis through their ability to drive NF-κB- 
mediated expression of genes involved in cell motility, migra-
tion, and invasion117,118. Similarly, in lymphomas, cIAP2 is often  
found as a fusion protein with mucosa-associated lymphoid  
tissue 1 (MALT1), resulting in the activation of NF-κB signaling 
(reviewed in 119). IAPs have been shown to be overexpressed  
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in many cell lines from the NCI60 panel as compared with the  
corresponding normal tissue120. XIAP overexpression in turn has 
been reported in childhood acute myeloid leukemia (AML)121,  
renal carcinoma122,123, multiple myeloma (MM)124, and bladder  
cancers125, and AML patients with low levels of expression of  
XIAP were shown to have a statistically significant survival  
advantage compared with those patients with higher levels120,126.  
In summary, the role and importance of these members of the  
IAP family of proteins in cancer have been extensively investigated 
and reviewed.

Survivin
Survivin (BIRC5) was first identified by Altieri et al. as an  
anti-apoptosis gene expressed in various cancer cells25,127. Survivin 
is an example of one of the earliest IAP proteins strongly impli-
cated in oncogenesis128 and has been well established as a prog-
nostic marker with a negative correlation on outcome in many  
cancers129–133 (reviewed in 134–138). Consistent with this, exces-
sive levels of Survivin inhibit both intrinsic and extrinsic path-
ways of apoptosis25,139–141. Of note, however, Survivin is only a 
weak apoptosis inhibitor at physiological concentrations and 
may in fact exert anti-apoptotic activity through stabilization of  
XIAP142. Recent studies have shown Survivin to be an important 
regulator of cell division, and this appears to be its main biologi-
cal function5–7,143. The role of Survivin in cancer has recently been 
reviewed extensively144–147. Therapeutic targeting of Survivin has 
been mostly confined to non-small-molecule strategies148,149 and 
repression of protein translation150–152 (reviewed in 153), and only 
recently have small-molecule inhibitors been reported154,155.

Apollon
Apollon (BIRC6, the human homolog of murine BRUCE) was 
first identified in 1999 by Chen et al.32 as a marker in brain and 
ovarian cancer cell lines that is linked to resistance to various anti-
cancer drugs. A number of subsequent studies have concluded that 
elevated levels of Apollon are linked to poor prognosis in a range 
of cancers, such as leukemia156,157, breast158, neuroblastoma159, 
prostate160–162, lung163, ovarian164, colorectal165, hepatocellular166, 
and head and neck167 cancers. It is largely understood that the role 
of Apollon as an oncogene is centered on its role in modulating  
Smac and caspase-9 levels, where overexpression of Apollon 
leads to increased silencing of apoptosis through Smac degrada-
tion as well as to attenuation of the caspase cascade by targeting  
caspase-9 for ubiquitination and subsequent degradation43,45,47. 
Based on these predictive findings, the role of Apollon as a ther-
apeutic target has been evaluated in a number of studies using  
functional genomic approaches, since no appropriate small- 
molecule tool has yet been developed158,159,166,168. Undoubtedly, the 
development of potent and selective small-molecule antagonists  
to Apollon will allow detailed elucidation of its potential as a  
therapeutic target in oncology.

ML-IAP
ML-IAP (BIRC7, also known as Livin or KIAP) was first  
identified as a member of the IAP family because of its single 
BIR domain33,35. The ML-IAP BIR domain is also responsible for 
apoptosis inhibition, and small molecules that target this region 
could potentially re-sensitize cancer cells to chemotherapeutics.  

In particular, the RING domain of ML-IAP has been shown to 
function as an E3 ubiquitin ligase facilitating the ubiquitination 
and subsequent degradation of itself169,170 and, more importantly, 
of Smac170, the natural caspase antagonist that modulates apoptotic 
signaling. Thus, inhibition of ML-IAP leads to a direct increase of 
Smac and a re-sensitization of cells to apoptotic stimuli. Both pro-
tein and mRNA levels of ML-IAP are low to undetectable in most 
adult tissues171 but are highly expressed in several cancers33,171–179, 
including various lung cancers, melanoma, liver cancer, glioblas-
toma, and oral squamous cell carcinoma. This protein is also highly 
expressed in renal cell carcinoma180,181, and this is why the original 
name of kidney IAP (KIAP) was coined. ML-IAP maps to chro-
mosome 20q13, a region frequently implicated in the mutagenic 
etiology of lung cancers33. ML-IAP levels have been shown to be 
highly relevant as a prognostic biomarker in lung172,173,182,183 and  
other174,175,177,179,180,184–187 cancers. These studies have consistently 
reported that high ML-IAP expression correlates with a poor  
outcome but that lower levels predict a more favorable progno-
sis. A number of recent studies have clearly shown the consider-
able therapeutic potential of ML-IAP inhibition to treat cancer.  
A wealth of data has been presented in cellular contexts188–195 
as well as in xenograft studies196,197. In particular, the mouse 
xenograft studies by Chen et al.196 and the cell-line-based work by  
Zhuang et al.198 showed a substantial benefit gained from BIRC7 
gene ablation in models of lung cancer. However, all of these  
studies inhibited ML-IAP through RNA knockdown approaches 
because of the unavailability of a selective and potent small- 
molecule antagonist. Recently, however, potent and uniquely selec-
tive ML-IAP inhibitors have been reported, which will help more 
comprehensive elucidation of the role of ML-IAP in cancers199.

ILP-2
ILP-2 (IAP-like protein-2 or BIRC8) was originally detected  
only in the testis and lymphoblastoid cells36. However, some  
recent work has established a tenuous link to breast cancer200,  
and it will be of interest to see whether this link gains further  
support to establish ILP-2 as a novel biomarker in human  
malignancies as well as a potential target for therapy.

Inhibitor of apoptosis inhibitor development for 
cancer therapeutics
In the mid-1990s, it was shown that the BIR domains were  
necessary and responsible for the anti-apoptotic and caspase- 
suppressing activity of the IAP proteins10,14,84. With the subsequent 
discovery of the endogenous IAP ligand Smac in 200088,201, the  
path toward the development of small-molecule inhibitors of the 
IAPs unfolded. Historically, however, the development of small-
molecule inhibitors of such PPIs has been quite difficult. Most 
of these interactions are devoid of the classic druggable binding  
pockets (about 300–500 Å2) with which most drug discovery  
scientists are familiar202. Rather, these PPIs typically derive  
their binding energy from a large number of intermolecular  
interactions along a relatively flat and large (about 1,000–2,000 Å2) 
surface.

It was a critical observation made by Xiadong Wang et al.  
regarding the loss of Smac activity upon the addition of a glu-
tathione s-transferase (GST) fusion to its N-terminus that paved  
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the way for the current crop of Smac mimetics203. Mutation  
studies further confirmed the importance of the post- 
translationally processed and flexible N-terminus of mature Smac. 
Perhaps equally important was the contribution from Fesik et al. 
that year, generating the first nuclear magnetic resonance struc-
ture of truncated Smac bound to one of the IAPs, XIAP BIR389.  
Specifically, four residues, AVPI, that bind to a surface groove on 
the IAP BIR domains proved indispensable for activity. As shown 
in Figure 3, there exists in the IAP BIR domains a negatively  
charged cleft of perfect size to accept the alanine. Furthermore, 
the proline of Smac allows for a crucial reverse turn feature to 
maintain close contacts with the binding site. These are two key 
elements represented in nearly all of the reported IAP inhibi-
tors. Early on, several groups showed that synthetic oligopeptides  
(4–9-mers) exhibit better binding affinity than native Smac 
for XIAP BIR3 and are notable for their apoptosis-inducing  
ability204–206. These oligopeptides served an important role as a 
drug discovery proof-of-concept: that mimicking a small por-
tion of Smac is a viable strategy to target the IAPs. Subsequent 
reports took this concept a step further and focused on developing 
more drug-like peptidomimetics of the N-terminal AVPI tetrapep-
tide binding motif to disrupt the IAP-caspase PPI, and thus far 
this has proven to be the most popular and successful tactic. The 
first true medicinal chemistry work reported by Fesik et al. in  
2004207 laid the groundwork for the advances that would follow 
in subsequent years, and, also in 2004, seminal work from Wang 
and Harran showed that a small-molecule Smac mimetic could 
potentiate TNF-induced and TNF-related apoptosis-inducing lig-
and (TRAIL)-induced apoptosis208. A summary of the collective  
structure-activity-relationship (SAR) conclusions from Smac 
mimetic medicinal chemistry work is shown in Figure 4.

A number of research groups from both academia and industry  
have initiated programs in the space since these early discoveries, 
focusing on Smac mimetics66,199,209–256 (also reviewed in 257,258). 
Some of these compounds remain in pre-clinical testing, whereas 
others have entered but are no longer active in clinical trials.  
Our laboratories are currently testing a series of Smac mimetics 
developed by us at Sanford Burnham Prebys Medical Discovery 
Institute. A representative compound with encouraging pre- 
clinical data in several cancer cell lines is shown in Figure 5199. 
SBI-0636457 has demonstrated potent cell-killing effects in  
several subtypes of breast, ovarian, and prostate cancer cell lines  
but only when the DR ligand TRAIL or another such apoptosis 
inducer is co-administered. Furthermore, SBI-0636457 admin-
istered as a single agent exhibited no toxicity to normal human 
fibroblasts.

Bivalent Smac mimetics take advantage of the homodimeric 
nature of native Smac and are able to bind both the BIR2 and 
the BIR3 domains. The consequence of this improved binding 
mode is poorer drug-like properties, as the Smac mimetics must 
adopt a larger molecular size in order to access both binding sites.  
Impressive binding data (K

d
 = 300 pM for the BIR2–BIR3  

Figure 3. Crystal structure of Ala-Val-Pro-Ile (AVPI), a Smac core 
motif, bound to the BIR2 domain of XIAP (Protein Data Bank 
code = 4J46). Binding is strongly driven by hydrogen-bond formation 
(dashed cyan lines) and non-polar interactions. Hydrophobic 
surface properties of the BIR2 domain are shown in yellow. Note that 
the color scheme of the tetrapeptide sequence is maintained for the 
subsequent figure.

Figure 4. Structure-activity relationship of Smac mimetics is 
largely based on the original amino acid positions from the Ala-
Val-Pro-Ile (AVPI) peptide.

Figure 5. Structures of the Smac mimetic SBP-0636457 
being developed by Sanford Burnham Prebys Medical 
Discovery Institute and the bivalent agent JP1201 from Joyant 
Pharmaceuticals.

Page 7 of 18

F1000Research 2017, 6(F1000 Faculty Rev):587 Last updated: 27 APR 2017



construct) were observed for the first reported bivalent IAP  
inhibitor (JP1201) from the Wang and Harran labs (Figure 5)208.

Current clinical status of inhibitor of apoptosis 
inhibitors in oncology
In the US, several monovalent Smac mimetic compounds and one 
bivalent compound have entered the clinic and are still active in 
clinical trials (Figure 6). All of the compounds for which clinical 
data have been reported so far demonstrated generally favorable 
safety profiles in phase I, and amylase/lipase elevation, alanine and 
aspartate transaminase (ALT and AST) elevation, cytokine release 
syndrome (CRS), and Bell’s palsy were the dose-limiting serious 
adverse events112. Of note, however, the Bell’s palsy toxicity has 
been observed only with bivalent and not with monovalent Smac 
mimetics. It has been suggested that CRS may result from the Smac 
mimetic-induced degradation of cIAP1 and the consequent activa-
tion of the NF-κB pathway and an autocrine/paracrine TNF signal-
ing loop. Other possibilities exist, however, as work from Silke and 
Vaux suggests that triple knockdown of cIAP1, cIAP2, and XIAP 
results in a hyperactive inflammatory state through still-undefined 
mechanisms (reviewed in 259). While TNF release potentially 
enables the efficacy of Smac mimetics as single agents in cancer 
therapy, the possibility of inducing a “cytokine storm” may render 
this approach less desirable compared with a combination approach 
(TNFR agonists + Smac mimetics), especially for indications  
outside of cancer260,261. Indeed, Smac mimetics have demonstrated 
synergy with other modes of treatment, including cytotoxic agents 
(that is, carboplatin262 and paclitaxel263), radiation therapy264, and cell 
DR ligands (TRAIL analogues)265. These synergies are well defined 
in pre-clinical models, but, so far, they have been less successful in 
clinical settings (see below). In general, any treatment that stresses 
the cells, such as standard chemotherapy or radiation therapy, and 
induces either intrinsic or extrinsic apoptosis via upstream activa-
tion could be combined with the caspase-liberating effect of IAP 
inhibitors to kill cancer cells. Although a number of Smac mimetics 
have already entered clinical trials, we shall focus our discussion 
here on those for which trials are currently active (Table 1).

Birinapant
Birinapant is a bivalent Smac mimetic developed by Tetralogic 
Pharmaceuticals and currently owned by Medivir. Owing to the  
size of this molecule, only administration by intravenous line has 
been reported for birinapant, both as a single agent and in com-
bination with several chemotherapeutics (azacitidine, gemcit-
abine, irinotecan, and conatumumab)266. The data released so far 
have been lackluster, and poor efficacy has been demonstrated in 
the completed studies. In NCT01681368, no complete nor partial 
response was observed in solid tumors of 11 patients, and accrual 
was terminated for lack of detected clinical benefit267. Good, though 
muted, news came in the phase I/II trial NCT01188499. In patients 
with metastatic colorectal cancer who previously failed irinotecan 
treatment, the combination of irinotecan with birinapant resulted in 
disease stabilization in 62% of patients, higher than the 41% rate 
shown by the recently approved kinase inhibitor regorafenib268. The 
other silver lining for these results is that the response rate as meas-
ured by tumor regression was higher, albeit small, at 8% compared 
with regorafenib at 1%269 and that the enrolled patients had previ-
ously failed all available treatments. When comparing these two 
sets of trial data, one must bear in mind that the regorafenib data 
come from an earlier and much larger phase III trial. The failure 
of birinapant versus placebo in a study (NCT02147873) investigat-
ing its capacity to treat myelodysplastic syndrome resulted in the 
folding of Tetralogic and transfer of assets to Medivir, where trials 
are ongoing270. Given the previous failures, it will be critical to see 
favorable clinical outcomes for the conatumumab (DR5 agonist) 
combination therapy trial (NCT01940172) as well as the trial with 
pembrolizumab (PD-1 inhibitor) as co-treatment (NCT02587962). 
CRS has so far proven to be a relatively minor adverse event in 
patients who received birinapant, and only 10% of patients reported 
low-grade symptoms266.

LCL161
LCL161 is a monovalent IAP inhibitor developed by Novartis  
that is currently in active clinical trials and has also shown gen-
erally good safety up to a 1,800 mg dose; CRS was the major  

Figure 6. Chemical structures of inhibitor of apoptosis inhibitor compounds in active clinical trials.
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Table 1. Ongoing clinical trials with inhibitor of apoptosis inhibitors.

NCT 
number

Phase Title Interventions Conditions Sponsor

02587962 I/II Dose escalation study of birinapant and 
pembrolizumab in solid tumors

Birinapant, 
pembrolizumab

Solid tumors TetraLogic 
(Medivir)

02756130 II Proof-of-concept study of birinapant in combination 
with platinum-based chemotherapy in subjects with 
high-grade serous carcinomas

Birinapant, paclitaxel, 
carboplatin

Advanced newly 
diagnosed or 
recurrent high-grade 
serous carcinomas

TetraLogic 
(Medivir)

01486784 I/II A phase I-II open-label non-randomized study 
using TL32711 for patients with acute myelogenous 
leukemia, myelodysplastic syndrome, and acute 
lymphoblastic leukemia

Birinapant Acute myelogenous 
leukemia

Tetralogic 
(Medivir)

01934634 I Phase I trial of LCL161 and gemcitabine plus  
nab-paclitaxel in metastatic pancreatic cancer

LCL161, gemcitabine, 
nab-paclitaxel

Metastatic 
pancreatic cancer

Novartis

01955434 II SMAC mimetic LCL161 alone or with 
cyclophosphamide in treating relapsed or refractory 
multiple myeloma

LCL161, 
cyclophosphamide

Recurrent and 
refractory plasma 
cell myeloma

Mayo Clinic

02649673 I/II LCL161 plus topotecan for patients with relapsed/
refractory small cell lung cancer and select 
gynecologic malignancies

LCL161, topotecan Small cell lung 
cancer, ovarian 
cancer

Novartis

02098161 II Phase II LCL-161 in patients with primary 
myelofibrosis, post-polycythemia vera 
myelofibrosis, or post-essential thrombocytosis 
myelofibrosis

LCL-161 Leukemia Novartis

02890069 I A study of PDR001 in combination with LCL161, 
everolimus, or panobinostat

LCL161, PDR001, 
everolimus, 
panobinostat

Colorectal cancer, 
non-small cell lung 
carcinoma, triple-
negative breast 
cancer

Novartis

02022098 I/II Debio 1143-201 dose-finding and efficacy phase 
I/II trial

Debio 1143, cisplatin, 
radiotherapy

Squamous cell 
carcinoma of the 
head and neck

Debiopharm

02503423 I/II Phase I-II study of ASTX660 in subjects with 
advanced solid tumors and lymphomas

ASTX660 Solid tumors, 
lymphoma

Astex

adverse event271. Despite the encouraging safety profile, early 
results in a phase I trial (NCT01098838) indicate no objective 
response from LCL161 single-agent treatment in patients with 
solid tumors, and the best response was stable disease observed 
in 19% of patients. These early trial data indicate that the use of 
Smac mimetics as a monotherapy may be limited by the amount 
of CRS elicited by the drug or, more broadly, the class of drugs272.  
Results from the phase II study (NCT01617668) testing LCL161 
in combination with paclitaxel in triple-negative breast cancer  
indicate that this approach may circumvent the CRS issues, as 
it was a serious adverse event for only 0.94% of patients273. It 
must be noted that it is not clear why the LCL161 plus paclitaxel  
treatment did not elicit the same CRS response as observed in 
the phase I study of LCL161 single-agent treatment at the same  
1,800 mg dose. The study also revealed a 38% pathological com-
plete response rate versus 17% for paclitaxel alone in a select 
patient population (for details of the study design, see 274).  

Interestingly, the increased pathological response rate is  
observed in a subgroup of patients who showed an elevated TNF-
alpha/RIP1 gene signature prior to treatment. These data are  
encouraging and also help to further the idea of the need for 
a combination therapy with Smac mimetics. More recently, 
LCL161 has been tested in combination with cyclophosphamide  
in MM (NCT01955434). The combination of cyclophospha-
mide with LCL161 resulted in progression-free survival of 10 
months in patients with relapsed/refractory MM275. LCL161 
was also shown to be effective in a transgenic mouse myeloma 
model, appearing to act via an immunological mechanism275. 
Chesi et al.275 demonstrated that the antagonism of IAPs by 
LCL161 does not result in direct killing of tumor cells, but  
rather it induces a tumor-cell autonomous type 1 interferon  
response. This results in a strong inflammatory response that ulti-
mately leads to phagocytosis of the cancer cells. Intriguingly, the 
authors further show that LCL161 combination with PD-1 blockade 
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was curative of all mice that completed 2 weeks of treatment275. 
Expanding on these findings is recent evidence that immune check-
point blockade combined with Smac mimetics is efficacious in  
pre-clinical models of glioblastoma276. As such, the immune regula-
tory roles of IAPs may also be of much therapeutic relevance.

Debio 1143
Debio 1143 is another monovalent Smac mimetic in ongoing 
clinical trials for a number of different malignancies. It was devel-
oped in its early stages by the Wang group at the University of  
Michigan and later at Ascenta Therapeutics, ultimately being 
licensed to Debiopharm. Phase I safety studies were in line with 
the previously reported Smac mimetics reported above, when tested 
as a monotherapy: generally mild adverse events with a highest  
tested dose of 900 mg277. On-target pharmacodynamic modula-
tion was achieved at doses above 80 mg, as measured by cIAP1  
degradation. Preliminary efficacy data from the trial indicated 
that 20% of patients exhibited stable disease as the best response.  
With the encouraging safety data, a phase I/II trial (NCT02022098) 
with cisplatin and radiotherapy as co-treatment was undertaken  
for squamous cell carcinoma of the head and neck, and the expected 
completion date is 2019.

ASTX660
UK-based Astex Pharmaceuticals recently initiated their own  
phase I/II trial (NCT02503423) for the small-molecule ASTX660 
for solid tumors and lymphomas. Envisioning ASTX660 as part 
of a two-pronged cell death approach, Astex screened a number 
of breast, colorectal, ovarian, leukemia, and melanoma cell lines 
for their response to monotherapy versus co-treatment with  
TNF-alpha278. It will be interesting to see how well the pre-clinical 
data correlate with the clinical data expected in 2018.

While the ability of the reported Smac mimetics to induce  
cancer cell death in pre-clinical models was exciting and held  
much promise, so far the first-in-human studies have presented 
lackluster results. Several compounds that were able to induce 
cancer cell death and thus partial or complete remission in tissue 
culture and animal studies have not had similar success in trials as 
a monotherapy. However, given the promising clinical pharmaco-
dynamics and safety data, further research and development efforts 
are certainly warranted.

Conclusions and future work
As detailed above, the IAPs are at the nexus of cancer cell sur-
vival and, conversely, apoptosis. As such, the inhibition of pertinent 
family members would be expected to afford a valuable therapeutic 

intervention strategy for cancers, as these diseases are largely con-
ditions of increased proliferation and impaired apoptosis. As often 
occurs, however, the reality has proven vastly more complicated 
than first envisioned. As detailed above, although Smac mimet-
ics are safe and well tolerated, they have shown little single-agent  
activity in clinical trials. Intuitive, yet not extensively pre- 
clinically verified, combinations of IAP antagonists such as Smac 
mimetics with standard-of-care chemotherapeutics have likewise 
proven unfruitful to most degrees, although there have been some 
responses, as described above. Perhaps most encouraging have 
been pre-clinical studies showing that IAP antagonists are potent 
sensitizers to certain TNFR family agonists64,199,208,279–283. Addition-
ally, it has been shown that this can be effected not only by the natu-
ral ligands themselves but also by agonistic antibodies to TRAIL 
receptors developed by several pharmaceutical companies284–288. 
Targeting TRAIL receptors with simultaneous IAP inhibition 
not only is toxic to cancer cells but also leaves non-transformed  
cells untouched, a “holy grail” of anti-cancer therapy. Expand-
ing on these observations are studies by Beug et al., who show 
that concomitant induction of an immune response when IAPs 
are inhibited can produce a profound tumor regression in animal  
models289. Indeed, the use of Smac mimetics and attenuated onc-
olytic viruses as an anti-cancer strategy has shown promising  
results in some models290. As such, the notion of targeted activation 
of certain TNFRs in combination with IAP inhibition is a potential 
potent intervention point in many cancers. Already, clinical trials of 
just such a combination are underway (discussed above), and the 
results should further assist in our progress toward more targeted 
therapies using these phenomena.

In sum, whilst the clinical application of IAP antagonists has to 
date not produced the panacea desired, the ongoing development 
of next-generation agents and pertinent combinations bodes well 
for the future. “Inhibiting the inhibitors”291 may soon be a viable 
anti-cancer strategy.
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