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Abstract
Metacommunity theory has provided many insights into the general problem of
local versus regional control of species diversity and relative abundance. The
metacommunity framework has been extended from competitive interactions to
whole food webs that can be described as spatial networks of interaction
networks. Trophic metacommunity theory greatly contributed to resolving the
community complexity-stability debate by predicting its dependence on the
regional spatial context. The meta-ecosystem framework has since been
suggested as a useful simplification of complex ecosystems to apply this
spatial context to spatial flows of both individuals and matter. Reviewing the
recent literature on metacommunity and meta-ecosystem theories suggests the
importance of unifying theories of interaction strength into a meta-ecosystem
framework that captures how the strength of spatial, species, and ecosystem
fluxes are distributed across location and trophic levels. Such integration
predicts important feedback between local and regional processes that drive
the assembly of species, the stability of community, and the emergence of
ecosystem functions, from limited spatial fluxes of individuals and (in)organic
matter. These predictions are often mediated by the maintenance of
environmental or endogenous fluctuations from local to regional scales that
create important challenges and opportunities for the validation of
metacommunity and meta-ecosystem theories and their application to
conservation.
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Introduction
Natural ecosystems display patterns of variation in the diversity 
and abundance of species over a broad range of scales. One prag-
matic approach to understanding these patterns contrasts local 
mechanisms regulating the assembly and growth of species to  
regional processes of immigration and speciation1. Identifying and 
inferring the relative importance of local and regional processes for 
predicting the number and relative abundance of species, as well 
as productivity and stability of local communities, have become 
defining goals of community ecology. Extending the concept of 
metapopulations to metacommunities2, defined as a set of discrete 
communities partially connected through movement of individu-
als, has greatly contributed to the study of local versus regional  
control. It provided a spatially discrete framework to the broader 
problem of scale3. Metacommunity theory also allowed studying 
regional processes as the collective property of local communities 
rather than as an external control4,5. In that respect, it contributed 
to understanding reciprocal rather than strictly hierarchical effects 
linking local and regional patterns and processes6.

Theories of local versus regional control of spatially struc-
tured communities have been developed independently from the 
metacommunity framework7. However, metacommunity theory  
has contributed not only a rich set of models but also experiments 
predicting regional patterns of intra-guild diversity, of food-web 
structure, and of their relationship to community stability and  
productivity8. It is also through the metacommunity framework 
that theories of local and regional control have included impor-
tant progress in food-web theory, phylogenetics, and spatial  
dynamics, including spatially explicit, individual-based, and  
stochastic9,10 models. Finally, the metacommunity framework 
has inspired a similar spatially discrete approach to the study of 
cycling of matter and energy at local and regional scales. The  
relative importance of local cycling of matter and of regional  
subsidies has led to the development of meta-ecosystem theories, 
integrating spatial flows of individuals and of (in)organic matter 
over regional scales and integrating species interactions and the 
recycling of matter within local ecosystems.

By reviewing recent progress, I will emphasize the importance of 
temporal fluctuations, both environmental and endogenous, and 
whole-ecosystem dynamics. I will also argue that such integration 
would be most successful within the broader theoretical frame-
work of meta-ecosystems, where both individuals and (in)organic  
matter contribute to linking local and regional processes. Recent 
studies suggest that addressing these challenges is a key step toward 
resolving the reciprocal control of local and regional dynamics in 
natural ecosystems.

Competitive and trophic metacommunities
Communities result from the balance between sorting and 
movement
One of the main predictions of metacommunity theory is the 
regional distribution of species diversity based on both local 
competition and regional movement of species. In competitive  
metacommunity models, sorting, or environmental filtering, is the 
local process that operates through competitive exclusion, and  
sorting can lead to regional patterns of diversity through spatial 

heterogeneity in the environment. Movement among local com-
munities is the regional process that redistributes, and eventually 
homogenizes, local communities, working against local sort-
ing. Sorting is purely local in the absence of movement, whereas 
strong movement leads to regional sorting that favors the best  
competitor in the average habitat11. In spatially implicit models 
assuming a homogeneous (all-to-all) connectivity network, inter-
mediate movement reveals the reciprocal effects of local and  
regional processes: both regional and local diversity and relative 
species abundance then result from the balance between local 
sorting and immigration from the regional metacommunity. This 
balance can, for example, predict the contributions of both local 
species richness (alpha diversity) and regional species turnover 
(beta diversity) to community stability, through local compensatory 
effects, and to the maintenance of regional asynchrony in species 
composition12.

The balance between local and regional processes in heteroge-
neous metacommunities was used to propose four mechanisms  
controlling biodiversity in competitive metacommunities3 based 
on the relative importance of species movement and habitat het-
erogeneity as driving processes (species sorting, patch dynamics, 
mass effect, and neutral). The proposed mechanisms implicitly  
assumed demographic stochasticity, which stimulated the inte-
gration of a metacommunity framework to the neutral-versus- 
niche debate. Demographic stochasticity was treated explicitly as 
drift, affecting community dynamics along with competition, dis-
persal, and speciation13,14. Recent studies have provided a coher-
ent framework reconciling competition and metacommunity  
theories15, whereas others have refined statistical methods for 
the inference of neutral- and niche-based mechanisms of species  
diversity16. Another important integration has recently happened 
with theories of biodiversity-ecosystem functions, tying into a 
long-standing empirical debate about the role of species richness 
for productivity and stability17. Within that debate, the competi-
tive metacommunity framework can reconcile apparent contradic-
tions in observed biodiversity-ecosystem function relationships.  
Dispersal limitation can, for example, either prevent or satu-
rate local sorting processes and affect the strength of species  
complementarity underlying the stability and productivity of  
local communities8. Metacommunity dynamics can also resolve the 
combined and sometimes opposite effects of species diversity on 
multiple ecosystem functions18.

Spatially explicit metacommunities have blurred the distinction 
between local and regional scales because spatiotemporal hetero-
geneity in the distribution of species can emerge at multiple scales  
rather than being a priori-defined. Also, when the local 
scale approaches the individual level, local and regional 
(meta)communities become arbitrarily defined along a contin-
uum, based on assumptions about the relevant scales of processes  
at both ends of the continuum: competitive exclusion in local  
communities versus speciation and immigration over the  
metacommunity19. This is illustrated by the application of the  
metacommunity framework to neutral theory. In early neutral 
models, the metacommunity was independent from the local  
community, ignoring feedbacks from local to regional levels20,21. 
Later studies integrated both scales through spatially explicit  
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models where metacommunity processes emerge from the collec-
tive behavior of connected local communities22. More recently, this 
scale continuum has been used to improve the testability of neutral 
predictions using patterns of spatial autocorrelation23.

The competitive metacommunity framework emphasizes spatial 
heterogeneity among communities and as the regional mecha-
nism of coexistence. It has also integrated the role of temporal  
environmental variability as a mechanism of coexistence24,25.  
However, the emphasis on sorting through competitive interactions 
has limited the understanding of other traits and interactions, and 
of their complexity, as drivers of species diversity and function. 
The study of trophic interactions allowed researchers to extend 
this understanding beyond the effects of competitive exclusion to 
networks of species interactions that are more compatible with the 
complexity of natural systems.

Trophic metacommunities: networks of networks
The extension of competitive metacommunity theories to trophic 
metacommunities leads to a ‘spatial network of interaction  
networks’26. One major implication of trophic metacommunities is 
the generalization of species traits involved in the local and regional 
control of community structure and dynamics. This generaliza-
tion has recently led to a deeper contribution of metacommunities  
to the community complexity-stability relationship, involving the 
integration of evolutionary and non-equilibrium dynamics to the 
framework.

Trophic interactions have expanded the exploration of trait  
differentiation at both local and regional scales: body size27, 
trait-mediated and density-dependent movement28, or covari-
ance between trophic position and movement29–31. It has recently 
led researchers to revisit the hump-shaped relationship between  
dispersal and diversity in competitive metacommunities. When 
multiple trophic levels with heterogeneous dispersal rates are 
considered, this expected balance between immigration and sort-
ing can instead give rise to monotonic increase in diversity with  
dispersal30 (Figure 1A). The dependence of movement across 
trophic levels also provides a trophic context mediating local  
(risk-based movement) and regional (perceived habitat suitability) 
drivers of species diversity32. Similarly, density-dependent move-
ment in heterogeneous tri-trophic metacommunities was shown to 
best capture patterns of beta diversity and, more specifically, the 
decrease in similarity with distance observed in natural systems28.

Food-web metacommunities have explored the assembly of large 
networks of networks as steady-state structures33,34 that drive 
their own stability35 and productivity. This ‘network of networks’ 
approach provides a useful framework to integrate dispersal limi-
tation, habitat heterogeneity, and food-web topology26,36,37 to the 
complexity-stability debate initiated by May38. For example,  
May’s predicted limit to the complexity of stable food webs  
could be relaxed by increasing habitat heterogeneity across  
metacommunities characterized by intermediate dispersal26,37. 
Moreover, Pillai et al.36 showed how the interaction between  

dispersal and species interactions would predict the stabilizing 
effect of omnivorous and generalist species, which adds to predic-
tions from non-spatial food-web theories about the stabilizing role 
of generalist species with multiple weak interactions29.

Trophic interactions can display endogenous fluctuations and  
force us to reconsider the equilibrium nature of the local- 
regional control of food webs. In large-model food webs, Plitzko 
and Drossel35 found that intermediate dispersal among food 
webs limited the occurrence of equilibrium communities but  
maximized the persistence of species through oscillations and 
dynamic coexistence. Trophic metacommunities of small food- 
web modules have explored the local-regional implications of 
spatially explicit and of oscillatory dynamics, focusing on the 
maintenance of regional heterogeneity from the interplay between  
local oscillations and movement. This approach has a long  
history in both experimental39 and modelling6,7 studies. The use of  
synchrony across species and habitats has recently emerged 
as a powerful tool to understand and predict the dynamics and  
persistence of spatially extended simple food-web modules40,41. 
Gouhier et al.40 showed that dispersal and correlated environmen-
tal fluctuations interact to affect metacommunity stability through 
their impact on both interspecific (compensatory dynamics)  
and intra-specific (spatial) synchrony. Using a similar approach, 
Pedersen et al.31 considered heterogeneous dispersal across  
trophic levels and showed that tri-trophic food webs are stabilized 
by the formation of patterns in the presence of both weak and  
strong dispersal across trophic levels (Figure 1B). These results 
echo the importance of weak and strong trophic species interac-
tions for food-web stability42 and suggest the possibility for an  
integrated treatment of spatial and species interactions26.

Both competitive and trophic frameworks are readily applicable 
to evolutionary ecology where both sorting and selection interact  
with dispersal to drive the assembly of species traits in relation to 
their environment14,43 and where body size can be used as a proxy 
for trophic position19,44,45. Moreover, phylogenetic approaches to 
metacommunities can identify the contribution of biogeographi-
cal history to both local and regional distribution of species46,  
can more specifically predict increasing phylogenetic structure  
with community size and isolation47, and have improved the 
testability of metacommunity predictions of patterns of beta  
diversity48. Phylogenetic analysis of metacommunities also sug-
gested that non-equilibrium neutral dynamics of total abundance 
are more compatible with observed phylogenies than steady-state 
communities49. However, the ‘network of networks’ approach of 
trophic metacommunities assumes a completely open food-web 
network, where organic matter is lost from the metacommunity 
and where inorganic nutrients flow through each local habitat  
independently. Yet the cycling of (in)organic matter is key to  
understanding food-web stability50 and essential to extending  
local-regional theories to a broad range of ecosystem functions. 
This understanding is a long-standing goal of ecosystem ecology 
and more recently has been addressed through meta-ecosystem 
theory.
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Figure 1. Role of spatial interaction strength across trophic levels for dispersal-diversity relationships and for regional stability.  
(A) Diversity–dispersal relationships. (a) Consumer dispersal α varies while keeping resource dispersal β small. (b) Consumer dispersal  
α and resource dispersal β vary simultaneously. (c) Resource dispersal β varies while keeping consumer dispersal α small. Thick line: local 
diversity; thin line: regional diversity. Reprinted with permission from John Wiley & Sons, Inc.30. (B) Changes in qualitative dynamics in a  
two-patch tri-trophic meta-ecosystem from varying resource intra-specific interaction strength (β) and dispersal rates, holding all other 
parameters constant. At intermediate levels of β, making dispersal more non-hierarchical by decreasing middle-trophic-level dispersal  
rates (dH) leads to increased stability because of the emergence of stable asymmetric equilibria. Reprinted with permission from the  
University of Chicago Press Books31.

Meta-ecosystems: from the local cycling to regional 
fluxes of matter
When both spatial and interaction networks are partially closed 
to flows of matter, metacommunities are better described as  
meta-ecosystems (Figure 2). Partially closing the cycling of  
matter results in its limited spatial movement across habitats in 
addition to its transfer across food-web compartments, includ-
ing recycling. The concept of the meta-ecosystem has been intro-
duced as an extension of metacommunity theory51,52 and has been  
further developed in recent years.

Spatial ecosystem dynamics is not a new concept and has been 
studied as part of ecosystem ecology through flows of matter across 
macro-habitats and through large-scale quantitative ecosystem  
models53. However, the meta-ecosystem concept has emerged 
as a more specific integration of trophic metacommunities and  

landscape ecosystem ecology52. It is partly based on the extension 
of cross-habitat subsidies developed in landscape ecology54–56 to  
reciprocal subsidies57,58. As such, meta-ecosystem theory inte-
grates the cycling of matter across scales and can directly predict 
local versus regional control of community structure and ecosys-
tem functions through the interplay between local recycling and 
regional fluxes of matter and their implications for the emergence 
of both local and regional community stability and productiv-
ity. For instance, explicit ecosystem dynamics have profound  
impacts on colonization-extinction dynamics in metapopulation 
and metacommunity models. As mentioned above, metacommu-
nity theory predicts the local sorting of species in suitable habi-
tats and their transient occupancy of unsuitable habitats through 
migration. In meta-ecosystem models, spatial fluxes and cycling of  
matter can become the driver of habitat suitability and result 
in dynamic habitat properties that are affected by both species  
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Figure 2. From metacommunities to meta-ecosystems: cycling of matter across spatial networks of interaction networks. Conceptual 
diagram for a general meta-ecosystem model that can predict the role of interaction strength between species and between locations 
for the exchange of individuals and matter. Local ecosystems (circles) have internal dynamics based on trophic (solid arrows) and non- 
trophic (dashed arrows) interactions between ecosystem compartments, which in this case are a limiting nutrient (R), autotrophs (A) and 
herbivores (H). Local ecosystems form a meta-ecosystem through the movement of materials and organisms, which is determined by the 
connectivity matrix C and the movement matrix D. The connectivity matrix indicates how the ecosystems are connected to one another 
(rectangular boxes), whereas the movement matrix gives the movement rates of each ecosystem compartment (two-headed arrows). Without 
a connection specified by the connectivity matrix, materials and organisms cannot move between ecosystems (capital X). Reprinted with 
permission from Elsevier64.

interactions and ecosystem processes59,60. The dynamics of habi-
tats become coupled to that of species over both local and regional 
scales and can lead to the emergence of facilitative interac-
tions between competitors59. These facilitative interactions result  
from local cycling and regional fluxes and predict cascades of 
extinctions following habitat destruction60.

Recent studies have emphasized the importance of temporal vari-
ability in reciprocal subsidies of matter and the importance of 
the resulting non-equilibrium dynamics of meta-ecosystems. In 
simpler cases, this variability can be caused by external perturba-
tions resulting in the release of matter associated with mortality.  
Harvey et al.61 showed in experiments and in models that increas-
ing the frequency of such perturbations leads to a transient increase 
in subsidies but eventually to the collapse of recipient populations 
that are unable to recover fast enough. Feedbacks between  
trophic interactions and recycling also force us to reconsider the 
steady-state nature of ecosystem functions. Recent studies of 
non-equilibrium meta-ecosystems point to the importance of  
recycling and spatial flows of matter for the maintenance of 
endogenous spatiotemporal heterogeneity that predict both strong 
local fluctuations and regional stability. Meta-ecosystem models 
where only nutrients are flowing between local ecosystems lead 
to the destabilization of local consumer-resource dynamics62.  
Spatial fluxes of matter drive this destabilization, but recycling 
can facilitate the transition from equilibrium to cyclic dynam-
ics. In simple two-patch meta-ecosystems, phase-locked cycles  

emerge from the positive feedback between recycling and passive 
movement of nutrients: more movement into a local ecosystem 
is correlated with increasing growth of the primary producer, 
thus destabilizing primary production. This prediction can be 
generalized to larger (many patch) meta-ecosystems63 where the  
top-down control of biomass storage into inorganic form can  
stabilize a meta-ecosystem in the face of nutrient enrichment. 
For more complex finite and irregular topologies, the eigenvalues 
of the connectivity matrix, rather than more common topological  
metrics, predict the minimum movement of nutrients or of  
individuals that can destabilize the meta-ecosystem64. Applying  
the meta-ecosystem framework to non-equilibrium dynamics has 
further revealed the relevance of endogenous spatiotemporal pat-
terns of matter for the local versus regional control of ecosystem 
functions such as nutrient limitation: differences in movement 
rates between nutrients and other compartments lead to the emer-
gence of nutrient co-limitation in growth over regional scales 
despite the lack of local mechanisms of nutrient co-limitation65. 
These recent studies illustrate how novel metrics of landscape  
heterogeneity, combined with a knowledge of spatial and spe-
cies interaction strength, can lead to predictions that are tailored 
to specific empirical study systems. Finally, non-equilibrium  
meta-ecosystem theories are also relevant to conservation  
endeavors by predicting how the emergence of multiple scales of 
spatiotemporal patterns of abundance can inform decisions on the 
optimal size and spacing of local protected areas within regional 
reserve networks66,67.
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Conclusions
Metacommunity theory has broadened its range of predictions 
by integrating trophic interactions, spatially explicit movement,  
evolutionary processes, and phylogenetic history. By giving rise 
to meta-ecosystem theories through the integration of recycling 
and movement of matter, it has further emphasized the inter-
actions between local and regional scales for the regulation of  
community structure and ecosystem functions. Overall, recent 
metacommunity and meta-ecosystem theories have benefited 
from the simplified representation of ecosystems as ‘networks of  
networks’. This approach has stressed the importance of dif-
ferential movement rates across ecosystem compartments for 
predicting regional ecosystem stability. It more generally calls 
for the integration, both conceptually and methodologically, of 
spatial and trophic interaction strength. One fundamental chal-
lenge that materialized from these efforts is the potential for non- 
equilibrium dynamics and emerging spatiotemporal patterns that 
can drastically affect both local and regional community struc-
ture and ecosystem functions. Indeed, metacommunity and meta- 
ecosystem theories predict when local fluctuations, far from  
averaging out over regional scales, propagate and cause variability 

in these properties across spatial and temporal scales. This is a 
fundamental challenge for the development of meta-ecosystem  
theories and for testing their predictions using experimental  
metacommunity approaches that are based on steady states and  
that ignore the recycling and spatial fluxes of matter68. This  
challenge could constitute an important hurdle to reaching regional 
conservation goals.
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