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Abstract

IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure 

decoys or scavengers or trigger dampening of cytokine signaling have been described for 

cytokines and chemokines. Here we review the current understanding of the mode of action and 

significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor 

IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or 

atypical signaling have emerged as a general strategy conserved in evolution to tune the action of 

cytokines, chemokines and growth factors.

Introduction

Cytokines are the key mediators of the inflammatory response being responsible for the 

recruitment to the inflammatory site and immune cell activation. Cytokines are also 

orchestrating the correct development of the adaptive immune response determining immune 

response polarization, tolerance and memory [1].

Cytokine activity need to be tight regulated for the correct development of the immune 

response. Indeed the robust responses necessary to fight pathogens need to be controlled for 

the termination of immune responses to avoid inflammation-induced tissue damage and 

autoimmunity.

Several mechanisms of negative regulation of the cytokine system have been described 

acting both at transcriptional and post transcriptional levels. One of these latter mechanism 

of regulation is represented by cytokine receptors that have been called decoys. The concept 

of a “receptor” was originally formulated by Langley in the ‘20s. It includes ligand 

recognition with high specificity and signaling, or being part of a recognition and signaling 

concept. Decoy receptors are able to recognize certain inflammatory cytokines with high 

affinity and specificity, but are structurally incapable of signaling or they signal through 

pathways different to the canonical receptors with whom they share ligands. They are 

negative regulators because they act as molecular traps for the agonist and for signaling 
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receptor components or they function as scavenger receptor driving cytokines to intracellular 

degradative compartments [2].

The first decoy receptor identified was the interleukin-1 type II receptor (IL-1RII) [3] and 

subsequently decoy receptors have been identified in many cytokine receptor families such 

as the tumor necrosis factor receptor (TNFR), IL-1R, IL-10R and IL-6R families. Moreover, 

atypical receptors with scavenger function have been identified in the chemokine system. 

Therefore, the use of decoy and scavenger receptors is a general strategy of regulation of 

primary pro-inflammatory cytokines and chemokines to fine-tune and regulate innate and 

adaptive immunity [4] .

Decoy and scavenger receptors in the chemokine system

Chemokines are cytokines mainly involved in leukocyte chemoattraction acting through a 

distinct family of G protein coupled receptors (GPCR) [5]. Among chemokine receptors 

both functional and structural decoy receptors that negatively regulate chemokine function 

have been identified.

Under exposure to pro- and anti-inflammatory stimuli, inflammatory chemokine receptors 

(such as CCR2) can become functional decoy receptors meaning that they are unable to 

elicit migration while they are still able to sequester and scavenge inflammatory 

chemokines. These functional decoy receptors are uncoupled from G proteins while 

maintain the ability to internalize and degrade the ligand promoting the resolution of the 

inflammation [6]. The precise mechanism by which this uncoupling is happening was not 

fully investigated, but several negative regulators of G protein signaling have been found [7].

Soluble and seven-transmembrane domain chemokine decoy receptors have been found in 

virus and parasites and represent an important strategy to modulate leukocyte recruitment 

and subvert the immune response of the host [4].

In addition a subgroup of structural decoy chemokine receptors called atypical chemokine 

receptors (ACKRs) have been identified in vertebrate genomes [8]. They are supposed to be 

evolved from canonical chemokine receptors from which they differ especially in the 

aminoacid composition of intracellular motifs relevant for signal transduction [9].

ACKRs, upon ligand engagement, do not elicit migration or conventional signaling 

responses. Indeed they are unable to couple to G proteins while they are still able to activate 

other intracellular pathways such as β-arrestin dependent ones. ACKRs regulate 

inflammatory and immune reactions in several ways, including by acting as decoy receptors 

and scavenger receptors that modulate chemokine bioavailability by transporting 

chemokines to intracellular degradative compartments or, in the case of polarized cells, to 

the opposite side of the cell monolayer. ACKRs can also modulate the chemokine system by 

regulating the expression or signaling of other canonical chemokine receptors [10]. These 

receptors are now officially nomenclated and the ACKR subfamily includes: ACKR1, 

previously called Duffy Antigen Receptor for Chemokines (DARC); ACKR2, also known as 

D6 or CCBP2; ACKR3, also called CXC-chemokine receptor 7 (CXCR7) or RDC1; 

ACKR4, previously called CC-chemokine receptor-like 1 (CCRL1) and also known as 
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CCX-CKR. Two other molecules (CCRL2 and PITPNM3) could be included in the ACKR 

family with the names 'ACKR5' and 'ACKR6' [11].

In the last years we have focused our attention on one of these receptors, ACKR2, and we 

have contributed in the characterization of its function as a negative regulator of 

inflammation. Here we will describe in details ACKR2 structure and function.

ACKR2 (D6 or CCBP2)

ACKR2 was cloned in 1997 by two groups [12, 13]. ACKR2 is able to bind almost all 

inflammatory CC chemokines, ligands of the canonical chemokine receptors from CCR1 to 

CCR5 [14]. In humans the ACKR2 gene is located on chromosome 3p21.3, a region that 

includes a cluster of chemokine receptor genes. It shares high homology sequence with CC 

chemokine receptors but having selected mutations in the intracellular motifs important for 

signal trasduction [9]. In particular both murine and human D6 lacked the canonical 

DRYLAIV motif, which was found in all other cloned chemokine receptors and is important 

for G protein signaling and migration. We therefore to set out to test the hypothesis that 

ACKR2/D6 was a decoy receptor [15].

ACKR2 is a constituively internalizing receptor and in steady state most of the molecules are 

present in intracellular recycling compartment. After ligand binding ACKR2 does not induce 

leukocyte migration while it activates a β arrestin-dependent pathway that increases the 

number of receptors on the cell surface to optimize chemokine uptake and delivery to 

lysosomal compartments [16, 17] (Fig. 1). For this reason ACKR2 is not a pure decoy 

receptor because it is able to drive an intracellular signalling that is devoted to the 

optimization of its scavenger function. This property appear to be shared by the 4 ACKRs.

ACKR2 is expressed by lymphatic endothelial cell [18], by trophoblasts in the placenta [19] 

and by some leukocytes such as alveolar macrophages [20] and innate-like B cells [21].

ACKR2 KO mice have increased number of circulating inflammatory monocytes [22] and 

defects in lymphatic vessel density and function [23] compared to WT mice. When 

challenged with inflammatory stimuli ACKR2 KO exibith exacerbated inflammatory 

reactions in barrier tissues such as the skin, lung, gut and placenta that result in worse 

pathology [10]. ACKR2 KO have also defect in cardiac remodelling after myocardial 

infarction [24] and are not able to control infectious diseases such as Mycobacterium 

tubercolosis [25]. All these phenotypes found in ACKR2 KO mice are mainly reconducted 

to lack of chemokine clearance, increased infiltration of inflammatory cells and lack of 

inflammation resolution. In addition it was found that ACKR2 expressed by leukocytes 

restrict their inflammatory phenotype by inhibiting neutrophil migration [26] [27]and 

regulating macrophage cytokine production and efferocytosis [28].

Finally, in the cancer context ACKR2 acts as a tumor suppressor gene inhibiting 

inflammation that fuel cancer in mouse models of chemically induced skin tumors [29] and 

in colon cancer [30]. In Kaposi sarcoma ACKR2 is expressed by tumor spindle cells and is 

downregulated in more advanced states by the oncogenic pathway KRas/Braf/MEK/ERK 

[31].
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Unexpectedly it was found that ACKR2 deletion can be protective in several disease models 

that often involve adaptive immunity: ACKR2 KO mice are resistant to experimental 

autoimmune encephalomyelitis ([32]), have reduced graft versus host disease (GVHD) [22] 

and reduced renal inflammation in a model of diabetic nephropathy [33]. This protection to 

autoimmune or immune mediated diseases was explained by a defect in dendritic cell 

migration or increased myeloid derived suppressor cells. It has to be underlined that Hansell 

et al have recently reported that in four models of autoimmune diseases ACKR2 KO mice 

are not protected by disease development, not confirming previously published papers. They 

have also found that lack of ACKR2 is not affecting T cell priming while increased 

interleukin-17 (IL-17) production [27].

All these data indicate that considering ACKR2 only as an anti-inflammatory molecule can 

be overly simplistic. Indeed ACKR2 is able to scavenge CC chemokines such as CCL17 and 

CCL22 that are able to recruit Th2 and Treg cells and are important in the generation of 

chronic immune responses [14]. For this reason, ACKR2 deletion or inhibition could 

produce complex results depending on the pathological context.

Few data are available on the expression and regulation of ACKR2 in humans. In the 

preeclampatic placentas ACKR2 expression is lower than in normal placentas [34]. Elevated 

ACKR2 expression was found in skin of psoriatic patients around psoriatic plaques and in 

patients’ peripheral blood leukocytes [35]. ACKR2 was also expressed by human vascular 

tumors and in Kaposi sarcoma were a negative correlation was found with disease 

progression rate [31]. Finally ACKR2 is expressed by human colon carcinomas and its 

downregulation correlates to more invasive tumors [36].

Decoy receptors of the IL-1 system

The IL-1 system is involved in protective host responses in infections and inflammation, as 

well as in the activation of innate and adaptive lymphoid cells [37, 38]. The deregulated or 

excessive activation of these receptors is the potential cause of dangerous and detrimental 

local or systemic inflammatory reactions, as well as autoimmune or allergic responses. The 

system consists in receptors (collectively called ILR) and accessory proteins (AcP) and their 

ligands (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β and IL-36γ), as well as negative 

regulators, which include antagonists (IL-1Ra, IL-36Ra), decoy receptors (e.g. IL-1R2), 

scavengers (e.g IL-1R2 and IL-18BP), dominant negative molecules (IL-1R2), miRNAs and 

other mechanisms, acting extracellularly or intracellularly. Here, we will focus on the decoy 

receptor IL-1R2, the first decoy receptor identified that served to define the decoy paradigm, 

and on IL-1R8, a novel negative regulator of inflammatory and adaptive responses.

1 The decoy receptor IL-1R2

IL-1R2 was identified in the '90s as a highly conserved receptor localized in the cluster of 

IL-1R family members [39, 40] and acting as an IL-1 decoy receptor [3, 41] (Fig. 2). IL-1R2 

shares 28% aminoacid homology with the extracellular portion of IL-1R1, but differs for the 

absence of a TIR domain and for the presence of only a short 29 amino acid-long 

cytoplasmic tail. The protein is glycosylated and consists of a 386 amino acid-long protein 

with a molecular mass of 68 kD. It also exists as a soluble form, generated by enzymatic 
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cleavage, in particular by the metalloproteinase ADAM17 [42–44], or by alternative splicing 

[45].

IL-1R2 binds IL-1α and IL-1β without inducing signalling, thus acting as a molecular trap 

for the agonists of the signalling IL-1R1 [3, 46]. IL-1R2 also forms a complex with IL-1 and 

IL-1RAcP, exerting a dominant-negative effect by sequestering IL-1RAcP [47–49]. In 

addition, soluble IL-1R2, normally present in the circulation at high concentrations, binds 

pro-IL-1β and blocks its processing by caspase-1 [50], as well as IL-1α and IL-1β [46, 51]. 

Finally, soluble IL-1R2 localizes in the cytosol of IL-1R2 expressing cells [52] where it 

interacts with pro-IL-1α, preventing its cleavage, and tuning IL-1α-dependent sterile-

inflammation during necrosis [53] (Fig. 2).

The anti-inflammatory role of IL-1R2 was demonstrated in in vivo studies, including chronic 

skin inflammation [54], arthritis [55–57], endometriosis [58], and heart transplantation [59] 

or autoimmune myocarditis by Th17 cells [60]. Recently, IL-1R2-deficient mice have been 

generated and the actual in vivo role of IL-1R2 was demonstrated in a model of collagen-

induced arthritis [61]. In mice, IL-1R2 was highly expressed in neutrophils, but no effects of 

IL-1R2-deficiency were observed in this cell type. In contrast, even if low expression was 

observed in monocytes and macrophages, the expression of inflammatory mediators in 

response to IL-1 was greatly enhanced in IL-1R2-deficient macrophages [61].

In humans, IL-1R2 is expressed at very high levels by a limited set of cell types, including 

monocytes, macrophages (in particular IL-4 or IL-13 activated M2 macrophages), 

neutrophils and B cells [3, 46, 62, 63]. Several anti-inflammatory mediators induce IL-1R2 

expression, such as glucocorticoid hormones, prostaglandins, aspirin, Th2 cytokines (IL-4 

and IL-13), IL-10 and IL-27 [3, 62, 64–69], suggesting that induction of IL-1R2 contributes 

to the anti-inflammatory effect of these mediators. Recently, fasting has been shown to 

induce IL-1R2 expression and IL-1 resistance in mice [70]. In contrast, pro-inflammatory 

and chemotactic molecules inhibit IL-1R2 expression while increasing the expression of the 

signalling complex. Among these are bacterial lipopolysaccharide (LPS) [71], interferon γ 
(IFNγ) [67], chemoattractants, reactive oxygen intermediates, TNFα and phorbol myristate 

acetate [42, 72, 73].

In the mouse, expression of IL-1R2 has been described in DC [74], CD4+ T cells [75], T 

regulatory cells [76, 77], monocytes [78], neutrophils [79]. IL-1R2 was described in 

different macrophagic cells, including atherosclerosis-associated macrophages [80], 

microglial cells [81, 82], and osteoclasts [83].

Increased blood concentrations or local expression of IL-1R2 have been detected in a wide 

range of human disorders, and it has been proposed that this increase may reflect the 

activation of endogenous pathways of negative regulation of inflammation. For instance, 

circulating levels of soluble IL-1R2 increase in critically ill patients with infectious 

conditions such as sepsis, acute meningococcal infection, experimental endotoxemia, 

operative trauma, necrotizing enterocolitis in preterm infants, and acute respiratory distress 

syndrome [84], often correlating with the severity of the disease [69, 85, 86]. IL-1R2 is 

expressed by basal epithelial cells of the skin in normal conditions and is upregulated in 
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psoriasis [87]. IL-1R2 is upregulated in some tumors, including pancreatic ductal 

adenocarcinoma [88], prostatic cancer, benign prostatic hyperplasia [89] and ovarian cancer 

[90]. IL-1R2 increased levels were detected in sera of multiple sclerosis patients [91], in the 

synovial fluid and plasma of rheumatoid arthritis patients, negatively correlating with the 

severity of disease [92, 93], or in the cerebrospinal fluid of patients with Alzheimer’s 

disease, reflecting disease progression [94].

Genome-wide association studies identified several candidate genes potentially involved in 

inflammatory bowel disease pathogenesis, including IL-1R2 [95]. In addition, IL-1R2 was 

upregulated in remission compared with active Ulcerative colitis and controls and was 

proposed to act as a homeostatic regulator during remission of ulcerative colitis [96].

2 IL-1R8

IL-1R8, also known as TIR8 or SIGIRR, is a negative regulator of ILRs and TLRs [38] (Fig. 

3). The human IL-1R8 gene is located on chromosome 11, band p15.5 and comprises 10 

exons spanning about 11.7 kb [97]. The coded protein is 410 amino acids long with peculiar 

features compared to the other IL-1R family members: IL-1R8 consists in a single 

extracellular Ig domain, whereas the other ILRs have three, a transmembrane domain, a 

cytoplasmic TIR domain and a 95aa C terminal tail, longer than all the other C terminal tails 

of ILRs. Moreover, in the IL-1R8 TIR domain two conserved residues, Ser447 and Tyr536, 

are replaced by Cys222 and Leu305, suggesting unconventional signaling transduction 

activity of the molecule [97, 98]. Murine IL-1R8 is localized on chromosome 7, band F4 and 

comprises 9 exons spanning about 4 kb. The murine protein is 409 amino acids long and 

structural characteristics similar to the human one. Both human and murine IL-1R8 present 

complex N- and O- glycosylations in the extracellular domain, that play a crucial role for the 

biological function of the molecule [99]. IL-1R8 nucleotide and protein sequences as well as 

the pattern of expression are conserved among vertebrates, from chicken to humans [100]. 

This receptor is expressed by epithelial cells in kidney, digestive tract, liver, and lung, in 

endothelial cells and in leukocytes, in particular monocytes, B and T-lymphocytes, dendritic 

cells and NK cells [97, 101]. Inflammatory conditions, such as colitis, bacterial infections 

and stimulation with TLR ligands, down-modulate IL-1R8 mRNA and protein expression, 

but the mechanisms of regulation are still unclear [102–104]. It has been shown that LPS-

dependent p38 activation reduced the binding to the IL-1R8 promoter of SP1, a transcription 

factor involved in IL-1R8 transcription [102, 105]. Other molecules affecting IL-1R8 

expression include the vasoactive intestinal peptide that upregulated IL-1R8 in Pseudomonas 
aeruginosa infected cornea in mice [106], and Lactobacillus jensenii, a probiotic 

microorganism, that upregulated IL-1R8 expression via TLR2 in porcine Payer’s antigen 

presenting cells [107]. Finally, amyloid β decreased the expression of IL-1R8 in microglia 

through a mechanism possibly involving the PI3 kinase/Akt axes and the transcription factor 

peroxisome proliferator-activated receptor (PPAR)γ [108].

The mechanism through which IL-1R8 carries out the inhibition of ILR and TLR signaling 

is still not completely elucidated. IL-1R8 dampens the activation of IL-1R1, IL-1R5/

IL-18Ra, IL-1R4/ST2, TLR4, TLR7, TLR9, TLR3 and TLR1/2 [98, 109–112]. IL-1R8 

inhibits the dimerization of IL-1R1 and IL-1RAcP induced by IL-1 stimulation (or the 
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dimerization of IL-1R4/ST2 and IL-33R induced by IL-33 stimulation) with its extracellular 

domain, whereas its intracellular TIR domain binds the TIR domains of adapter molecules 

such as MyD88, IRAK and TRAF6 [109, 110, 112]. On the contrary, in order to inhibit the 

TLR4 or TLR7 signaling, the intracellular TIR domain of IL-1R8 is sufficient [110, 112]. In 

this case, IL-1R8 binds the TLRs through the BB-loop, present in all TIR domain-containing 

molecules, and blocks their dimerization as well as MyD88 dimerization [113, 114]. 

Different studies show that IL-1R8 can prevent the dimerization of other TIR containing 

adapter molecules such as Mal, TRAM and TRIF, but not through the BB-loop [114, 115]. 

Moreover, IL-1R8 interacts with c-jun and mTOR transcription factors in Th17 cells and 

intestinal epithelial cells [116, 117].

Very recently it was demonstrated that IL-1R8 binds IL-37, an anti-inflammatory cytokine 

induced by TLRs and cytokines in blood mononuclear cells, macrophages and epithelial 

cells. The binding produces the formation of the tripartite complex IL-37/IL-18Rα/IL-1R8 

[118]. Therefore IL-1R8 is now considered a co-receptor of IL-1R5/IL-18Rα for IL-37, 

necessary for the activation of an anti-inflammatory signaling pathway. This interaction 

triggers multiple intracellular mechanisms leading to modulation of inflammation, which 

include the inhibition of MAPKs and NF-κB, the pseudo-starvational effects on the mTOR 

pathway, inhibition of TAK1 and Fyn, and the activation of STAT3, Mer, PTEN and p62 

[118, 119] (Fig. 3).

Thus, the negative regulatory activity of IL-1R8 is mediated through different modes of 

action: IL-1R8 interferes with the TIR domain signalosome formation (with its intracellular 

domain) and prevents the dimerization between receptors and accessory proteins (by both its 

extracellular and intracellular domains), thus blocking the signal transduction, or it acts as 

co-receptor for IL-37 activating an anti-inflammatory program in the cell.

The relevance of IL-1R8 in negatively regulating inflammation has been demonstrated in 

different pathological conditions, ranging from infections to sterile inflammation and cancer.

In different models of infection (Mycobacterium tuberculosis, Pseudomonas aeruginosa, 
Candida albican, Aspergillus fumigatus), IL-1R8 deficient mice developed an exaggerated 

systemic inflammatory response characterized by increased levels of cytokines (mainly 

IL-1) and leukocyte infiltration in tissues resulting in increased susceptibility to the infection 

and tissue damage [104, 120, 121]. In agreement with mouse models, a case-population 

study demonstrated that the presence of three SNPs in IL-1R8 gene correlated with an 

increased susceptibility to tuberculosis [122]. In contrast, in two different models of 

infection (urinary tract infection induced by Escherichia coli and pneumonia induced by 

Streptococcus pneumoniae), IL-1R8 deficient mice showed decreased bacterial load and 

damage. Thus, in these cases, an increased and fast inflammatory response protected the 

host [123, 124]. Finally, in the model of Citrobacter rodentium infection IL-1R8 deficient 

mice were more susceptible compared to wild type mice, because the strong and early 

inflammatory response rapidly induced the depletion of the commensal microflora in the 

gut, thus favoring the colonization by the pathogen [125]. These studies underline that 

IL-1R8 is crucial for the maintenance of the equilibrium between protection against 

infections and dangerous tissue damaging inflammation.
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IL-1R8 is also involved in the development of autoimmunity. For instance, IL-1R8 controls 

Th17 differentiation, expansion and effector functions, by modulating IL-1 signaling in these 

cells. IL-1R8 deficient mice were more susceptible to experimental autoimmune 

encephalomyelitis due to an exaggerated Th17 response in the CNS [116]. IL-1R8 

deficiency was also associated to an increased susceptibility to psoriasis due to 

hyperactivation of γδT cell response [126]. Interestingly, downregulation of IL-1R8 gene 

expression was observed in patients with psoriasis. IL-1R8 protects mice in different models 

of rheumatoid arthritis, by suppressing the IL-1 and TLR2 mediated tissue damage [115]. 

Moreover, different in vivo studies showed the involvement of IL-1R8 in the pathogenesis of 

systemic lupus erythematosus. IL-1R8 regulates B cell proliferation and DC activation after 

auto antigens exposure, that stimulates TLR7 and TLR9 [127, 128]. These data are 

supported by the observation that patients affected by SLE had a reduced frequency of 

IL-1R8+ CD4+ T cells and in a Chinese population the presence of a genetic variant of the 

molecule correlated with the susceptibility to SLE [129, 130]. Finally, IL-1R8 was shown to 

inhibit the Th2 response by blocking IL-1R5/ST2 activation thus controlling allergic 

inflammatory response. In a model of allergic pulmonary inflammation induced by OVA, 

IL-1R8-deficiency was associated with increased leukocyte infiltration in lungs and 

increased levels of IL-5, IL-4 and IgE, suggesting an exacerbated Th2 response [109].

In a model of sterile inflammation of the kidney (ischemia and reperfusion injury), in which 

DAMPs activate TLR4 and TLR2 in neutrophils and macrophages, in IL-1R8-deficient mice 

the renal injury was more severe than in wild type mice due to an excessive myeloid cell 

activation, leukocyte recruitment and cytokine release in the organ [131]. In the brain 

IL-1R8 protects mice against β-amyloid peptide-induced TLR2 signaling, resulting as a 

potential therapeutic candidate for Alzheimer’s disease related pathology [108].

Since inflammation has clearly emerged as a novel hallmark of cancer, IL-1R8 function was 

investigated in tumor development. In particular, in a model of colitis-associated colon 

cancer, IL-1R8 played a protective role in mice by regulating intestinal permeability, in situ 

release of chemokines and cytokines and preventing an exceeding cell survival and 

proliferation mediated by NF-kB activation [120, 132]. In a genetic model of intestinal 

cancer, in which Apcmin/+ mice spontaneously develop adenomatous polyposis syndrome, 

IL-1R8-deficiency worsened polyposis by increasing the activation of the Akt-mTOR axis, 

known to be crucial in tumor initiation [117]. The relevance of these data has recently been 

shown in humans, where colorectal cancer lesions were shown to express lower levels of 

IL-1R8 compared to healthy tissues, as a consequence of the expression of a dominant 

negative isoform lacking exon 8 [99]. This isoform showed an aberrant TIR domain, an 

increased cytoplasmic retention, a reduced glycosylation and the capability to directly 

antagonize the full length IL-1R8, resulting in the suppression of the receptor regulatory 

activity [99]. Finally, IL-1R8 was demonstrated to slow down the initiation and progression 

of chronic lymphocytic leukemia (CLL) in TCL1 mice through still poorly defined 

molecular mechanisms [133].

Bonecchi et al. Page 8

Cytokine. Author manuscript; available in PMC 2017 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Concluding remarks

Atypical receptors with decoy or decoy and scavenger function have been identified in 

different classes of cytokines, chemokines and growth factors, as illustrated here using 

IL-1R2, ACKR2 and IL-1R8 as prototypic examples. Decoy receptors have therefore 

emerged as a general strategy to regulate the action of cytokines, chemokines and growth 

factors, conserved in evolution from drosophila to man. In addition to regulating 

inflammation, there is evidence that the atypical receptor ACKR2 plays a role under 

homeostatic conditions, for instance in shaping chemokine gradients during lymphatic vessel 

development. A key aspect of inflammation is the regulation of resolution. Evidence 

suggests that the molecules discussed here play a key role in promoting resolution of 

inflammation. Indeed, non-resolving smouldering inflammation is an essential component of 

the tumor microenvironment [134]. A better understanding of the role of atypical decoy and 

scavenger receptors may pave the way to innovative strategies to control inflammation and 

cancer-related inflammation.
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Figure 1. Ligand recognition and atypical signalling by the chemokine decoy and scavenger 
receptor ACKR2.
ACKR2 binds with high affinity inflammatory CC chemokines; it signals through β-arrestin 

and the small GTPase Rac1 activating cytoskeleton rearrangement in order to optimize the 

chemokine scavenging activity. It is not known if the interaction of ACKR2 with β-arrestin 

could have an inhibitory function on other signalling pathways.
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Figure 2. Mechanisms of negative regulation mediated by IL-1R2
In membrane-bound or soluble form IL-1R2 captures IL-1β and IL-1α with high affinity, 

but not IL-1Ra; it interacts with IL-1RAcp inhibiting the formation of a signalling receptor 

complex, and with soluble IL-1RAcP, which increases the affinity for IL-1α and IL-1β. In 

cytosol soluble form, IL-1R2 interacts with pro-IL1α preventing its pro-inflammatory 

activity during necrosis. In infectious conditions, caspase-1 cleaves IL-1R2 and allows the 

secretion of IL-1α.
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Figure 3. Mechanisms of negative regulation mediated by IL-1R8
IL-1R8 inhibits IL-1R1, IL-18 and IL-33 signaling by competing with MyD88 and IRAK 

recruitment at the TIR domain, thus dampening the signaling pathway leading to NF-kB 

activation. In addition, in T and epithelial cells, IL-1R8 inhibits IL-1-dependent activation of 

the mTOR pathway and of MAPK, thus controlling cell proliferation and survival. IL-1R8 is 

also a co-receptor of IL-18Rα for IL-37, necessary for the activation of an anti-

inflammatory signaling pathway that involves inhibition of MAPKs, NF-κB and TAK1, the 

pseudo-starvational effects on the mTOR pathway, and the activation of STAT3, Mer, PTEN 

and p62. IL-1R8 also inhibits the activation of TLR-dependent signaling pathways leading to 

MAPK and NF-kB activation.
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