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Abstract

Differential diagnosis and therapy of heterogeneous breast tumors poses a major clinical 

challenge. To address the need for a comprehensive, non-invasive strategy to define the molecular 

and functional profiles of tumors in vivo, we investigated a novel combination of metabolic 

positron emission tomography (PET) and diffusion-weighted (DW) magnetic resonance imaging 

(MRI) in the polyoma virus middle T transgenic mouse model of breast cancer. The 

implementation of a voxelwise analysis for the clustering of intra- and intertumoral heterogeneity 

in this model resulted in a multiparametric profile based on [18F]FDG-PET and DW-MRI which 

identified 3 distinct tumor phenotypes in vivo, including solid acinar and solid nodular 

malignancies as well as cystic hyperplasia. To evaluate the feasibility of this approach for clinical 

use, we examined estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) 
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breast tumors from 5 patient cases using DW-MRI and [18F]FDG-PET in a simultaneous 

PET/MRI system. The post-surgical in vivo PET/MRI data was correlated to whole-slide histology 

using the latter traditional diagnostic standard to define phenotype. By this approach, we showed 

how molecular, structural (microscopic, anatomic) and functional information could be 

simultaneously obtained non-invasively to identify precancerous and malignant subtypes within 

heterogeneous tumors. Combined with an automatized analysis, our results suggest that 

multiparametric molecular and functional imaging may be capable of providing comprehensive 

tumor profiling for non-invasive cancer diagnostics.
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Introduction

Beyond individual variances between different tumors (intertumoral heterogeneity), 

intratumoral heterogeneity has become a major focus in oncology (1–4). Defined by the 

appearance of different histological, genetic and molecular subpopulations within single 

tumors, intratumoral heterogeneity creates a new challenge in cancer classification and 

drives neoplastic progression and therapeutic resistance (5–7). To date, 50–80 % of 

malignant breast cancers do not display sufficient characteristics of any special histological 

type, but sometimes show high grades of intratumoral heterogeneity (1,2) and are 

subsequently classified as “invasive breast carcinoma of no special type” (IBC-NST, 

Supplemental Table I contains a list of abbreviations) (8).

Pathologists therefore analyze tissue sections from different regions of the tumor, reporting 

the highest observed grade (9). However, tumor classification and subsequent diagnosis in 

the clinic remain mostly based on small tissue samples that represent a single point of 

information rather than the status of the whole lesion.

Molecular imaging modalities, such as positron emission tomography (PET) and magnetic 

resonance imaging (MRI), have the potential to provide whole-lesion information non-

invasively. PET shows great benefits in staging and therapy response evaluation of lung 

cancer and lymphoma (10–12) but has not been transferred into routine clinical practice for 

breast cancer patients.

Routinely performed PET imaging analyses of tumors are based on mean or hot spot values 

of tracer uptake, such as maximal standardized uptake value (SUVmax) or “metabolic active 

tumor region” evaluation (13,14). Wahl et al. described the beneficial value of the “PET 

response criteria in solid tumors” (PERCIST) and discussed the great advantages of hot spot 

analysis procedures over the mean value analysis (15). However, all of these procedures 

neglect a substantial part of the information, as only a small fraction of the tumor is 

considered. More sophisticated approaches such as radiomics, extracting large numbers of 

quantitative imaging features for tissue characterization (16,17) or other types of voxelwise 
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analyses generating parametric maps of functional parameters (18,19) are rarely used in 

clinical routine PET.

We hypothesized, that hybrid PET/MRI can provide a clinically relevant tumor profiling and 

phenotyping approach of breast cancer. Thus, in this study, clinically applied PET and MRI 

methods using [18F]Fluorodeoxyglucose ([18F]FDG)-PET and diffusion-weighted (DW)-

MRI were combined with a unique approach of voxelwise analysis, which identified 

different phenotypes within single tumors. To mimic the heterogeneous nature of breast 

cancer, polyoma virus middle T transgenic (tg(PyV-mT)) mice, that develop malignant 

tumors, passing through distinct stages of tumor progression, from atypical hyperplasia to 

mammary intraepithelial neoplasia and invasive carcinoma (IC) (20,21), were investigated. 

Furthermore the clinical potential of the method was proven, including a small cohort of 5 

IBC-NST patients. Our clustering approach provides a measure for the number of clusters 

and corresponding thresholds for the subsequent identification of tumor phenotypes and 

allows an easy translation to other oncological entities.

Materials & Methods

Mice

All experiments were performed with female tg(PyV-mT) mice on a C57BL/6 background. 

All animals were housed under standardized environmental conditions with free access to 

food and water. The tg(PyV-mT) mice developed an average of 5 palpable tumors, composed 

of a mixture of glandular and cystic dysplasias and ICs (21,22).

Preclinical in vivo imaging

Preclinical in vivo studies were performed in a sequential PET/MRI setup using a dedicated 

7 T small-animal scanner (ClinScan (7T-MRI), Bruker BioSpin GmbH, Ettlingen, Germany) 

and a small-animal PET scanner (Inveon dedicated PET (DPET), Siemens Healthcare, 

Knoxville, TN, USA). Five anesthetized animals (1–2% isoflurane evaporated in breathing 

air) at the age of 19 – 22 weeks, bearing together 26 tumors were measured on temperature-

controlled animal beds. Apparent diffusion coefficient (ADC) MRI measurements using a 

half fourier-acquired single shot turbo spin echo sequence (HASTE, repetition time (TR) 

5000 ms, echo time (TE) 112 ms, pixel size 0.21 × 0.21 mm2 in plane, 1 mm slice thickness, 

b-values 150, 600, 1000 s/mm2) and sequential [18F]FDG-PET/MRI (intravenously injection 

of 10±2 MBq of [18F]FDG; 50 min sleeping uptake, 10 min emission scan, 13 min 

transmission scan) were performed on two consecutive days. PET data was reconstructed 

using the ordered-subsets expectation maximization algorithm with 3D post-reconstruction 

(OSEM3D; Inveon Acquisition Workplace, Siemens Healthcare). The anatomical MRI was 

measured directly before the PET scans or the ADC measurements with a 3D T2-weighted 

turbo spin echo sequence (TSE; TR 2500 ms, TE 202 ms, voxel size 0.27 × 0.27 × 0.27 

mm3).

Although not included into this report, 4 further PET/MRI measurements, investigating the 

PET tracers [68Ga]NODAGA-RGD, [11C]methionine, [11C]choline and [18F]FMISO were 

performed with the same animals previously within one week.

Schmitz et al. Page 3

Cancer Res. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An additional group of 4 tg(PyV-mT) mice at the age of 20 weeks was measured in a 

sequential PET/MRI setup including anatomical and DW-MRI and [18F]FDG-PET. The 

mice were injected intravenously with 10±2 MBq of [18F]FDG. During the uptake time of 

60 min, MRI measurements were performed, directly followed by the PET scans.

All experiments were approved by the Regierungspraesidium Tuebingen.

Preclinical ex vivo methods

Following the last in vivo measurement, the mice were sacrificed, and tumors were excised 

and prepared for H&E histology and/or autoradiography following standard procedures 

(Supplemental Material and Methods).

Clinical imaging

Five patients at the age of 66±10 years with biopsy-proven breast cancer lesions (estrogen 

receptor- and progesterone receptor-positive (ER+/PR+) IBC-NST, G2-G3) of ≥1.5 cm in 

size were examined using a 3T-PET/MR scanner (Biograph mMR, Siemens Healthcare). 

After 60 min of [18F]FDG uptake the simultaneous PET/MRI acquisition was performed 

(258±4 MBq, 20 min PET acquisition, 4.3 mm maximal achievable resolution (23)). The 

PET data was reconstructed using an OSEM3D algorithm, applying an MR-based 

attenuation map from segmented MR images provided by the vendor. For the MRI 

measurements, a dedicated 4-channel breast MRI coil (Siemens Healthcare), that was 

installed during all PET and MRI measurements, was used to acquire the following MRI 

sequences within 20 min: short time inversion recovery (STIR), DW echo planar imaging 

(EPI, TR 11000 ms, TE 76 ms, pixel size 1.8 × 1.8 mm2 in plane, 4 mm slice thickness, b-

values 50, 800 s/mm2), contrast agent (Gadovist®, Bayer Vital GmbH, Leverkusen, 

Germany) enhanced (CE) dynamic imaging (T1 fast low-angle shot (FLASH) 3D) and post 

contrast agent T1 FLASH 3D fat saturated (TR 8.75 ms, TE 4.21 ms, voxel size 0.9 × 0.9 × 

0.9 mm3). ADC maps were calculated from the DW EPI.

All patients gave written informed consent for the purpose of anonymized evaluation and 

publication of their data. All reported investigations were conducted in accordance with the 

Helsinki Declaration and with national regulations.

Clinical ex vivo methods

Post-surgery, whole slide histology of the tumors was performed and correlated to the 

imaging data. The excised tissues were cut in 0.5 cm slices for macroscopic analysis and 

fixed in formalin and embedded in paraffin. Tissue samples were taken for routine 

microscopic evaluation in 4 × 4 cm2 sections. Subsequently, 3 μm-H&E sections were 

prepared and digitized (Axioscope, Leica Microsystems, Wetzlar, Germany).

Data Analysis

Inveon Research Workplace (IRW, Siemens Healthcare) was used for in vivo image analysis. 

The corresponding preclinical PET and MR images were fused and coregistered employing 

capillaries filled with the tracer, that were placed on the animal beds as markers for the PET 

and MRI data fusion. The simultaneously acquired clinical data was coregistered by the 
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scanner software. Volumes of interest (VOIs) covering the entire regions (whole breasts or 

lesions, respectively) were drawn on the basis of the MRI data (T2-weighted TSE for 

preclinical data; post contrast agent T1 FLASH for the clinical data).

Beyond the tumor-to-muscle ratios (TMR, preclinical data) and standardized uptake values 

(SUV, clinical data) a new voxel-based approach was developed for [18F]FDG-PET and 

DW-MRI using a Gaussian mixture model (GMM) in MATLAB (MathWorks, Natick, MA, 

USA), fitting multiple Gaussian distributions to the collective voxel data (24). For every set 

of data several different mixture models with up to 7 Gaussian distributions were fitted and 

compared using the Akaike information criterion (AIC) and Bayesian information criterion 

(BIC) as implemented in the MATLAB package. The intersections formed by the 

descending part of one Gaussian distribution and the ascending part of the following 

distribution were used as thresholds to separate the subpopulations. Every Gaussian 

distribution within the thresholds defined a distinct biomarker population. To illustrate the 

results, histograms of the voxel values were calculated and overlaid with the GMM fitting 

results.

For ADC and PET data, parametric maps were computed where each identified population 

was assigned to a specific color. Subsequently, for the sequentially acquired cohort 

multiparametric [18F]FDG/ADC maps were computed for the entire tumors.

Autoradiography correlation

To confirm the preclinical in vivo [18F]FDG results, the GMM approach was transferred to 

the autoradiography data of 8 tumors. Following a background correction, TMR maps were 

computed and pixel values were extracted. The collective data set of all tumor pixels within 

the 8 tumors was fitted. Using the determined thresholds, parametric autoradiography maps 

were computed.

Results

Conventional image analysis hampers heterogeneous tumor characterization

First results from the tg(PyV-mT) studies revealed that entire lesions (n = 26 tumors, 53 to 

769 mm3 in size) could only be detected on the basis of anatomical MRI, as intratumoral 

[18F]FDG uptake as well as the ADC were very heterogeneous. Due to the extensive 

intratumoral heterogeneity, phenotypic identification of whole lesions in terms of 

intertumoral comparison using single value analysis, such as mean and maximal value 

analyses was not feasible, as both methods omitted important information (Supplemental 

Figure I).

Identification of intratumoral uptake populations using GMM for a voxel-based analysis in 
tg(PyV-mT) mice

a) Distinct [18F]FDG uptake populations correlated with phenotypic outcome
—To decode the heterogeneous tumor uptake pattern that is shown for the [18F]FDG uptake 

of 4 representative tumors (Figure 1A), a voxel-based analysis approach for the 

multiparametric imaging procedure was developed. Three mice at the age of 22 weeks 
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bearing 18 tumors were analyzed by a voxelwise calculation of the TMR for every tumor, 

representing the training data set which was collectively fitted using the GMM.

Evaluating the AIC and BIC, a mixture of 4 uptake populations was determined as the best 

fit for the [18F]FDG data (Figure 1B). The intersections of the 4 distributions at TMR = 2.3, 

TMR = 5.1 and TMR = 9.6 represented the thresholds between the uptake populations 

(Figure 1C). Parametric color maps of the tumors were created by applying these thresholds 

on the image data (Figure 1E). Comparing to histology, these maps showed a correlation of 

the two populations with low [18F]FDG (blue, TMR < 5.1) uptake with cystic tumor regions, 

whereas solid tumor regions correlated very well with the population with the highest uptake 

(red, TMR > 9.6) (Figure 1D, E). However, not every Gaussian distribution directly 

correlated to a specific histological pattern. Due to the limited spatial resolution of the PET 

scanner (1.6 mm maximal achievable resolution (25)), the population with intermediate 

uptake, representing TMR values between 5.1 and 9.6, indicated mixed regions in which 

more than 1 phenotype was present within single voxels.

In order to confirm this phenotypic correlation, the identified thresholds from the training 

data set were applied to a test data set of 8 tumors (2 mice at the age of 19 weeks) without 

employing the GMM analysis again and correlated with ex vivo autoradiography results 

(Figure 2). Therefore the TMR maps of the autoradiography data of these 8 tumors were 

calculated and analyzed using the GMM algorithm. A total of 5 Gaussian distributions were 

determined as the best model ex vivo (Figure 2A). The thresholds were calculated as TMR = 

3.2, 7.7, 16.2 and 41.6 and applied to the autoradiography data to compute parametric color 

maps. The numerical difference in the TMR thresholds between the in vivo and 

autoradiography measurements may be attributed to different shrinking behaviors of the 

tissues during the autoradiography process, including the initial freezing and subsequent 

drying during the exposure time as well as partial volume effects (PVE) in PET. The 41.6 

threshold was not considered to be a real threshold as the 2 populations with the highest 

uptake values overlapped significantly and were grouped together, as a secured assignment 

of individual voxels to either population was not possible. As the first two blue populations 

(TMR < 3.2 and TMR 3.2 – 7.7) mainly corresponded to the background and spillover at the 

edges of the tumors, the number of dedicated tumor populations was reduced to 2 (TMR 7.7 

– 16.2 and 16.2 < TMR). This result was expected due to the better spatial resolution of the 

autoradiography plate (0.05 mm pixel diameter) compared with the PET data, which led to a 

reduction of the mixed population that was observed in vivo, when more than 1 phenotype 

was present in a single voxel. The correlation of the in vivo histograms of single tumors 

(Figure 2B) and the ex vivo histograms, as well as single slices of the autoradiography 

(Figure 2C) with the PET data (Figure 2D), revealed a similar uptake pattern as shown for a 

representative tumor. The mixed areas in the PET data were mainly correlated with the 

population showing positive uptake by autoradiography, indicating a high amount of solid 

tissue in the mixed areas of the in vivo data that was verified by the corresponding H&E 

histology. The lower values of these regions in the in vivo data could be explained by an 

underestimation of the uptake due to PVE.

b) ADC complements the [18F]FDG pattern for population analysis—The GMM 

approach was also applied to the ADC data. All tumor voxels within the training data set 
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were fitted (Figure 3A). According to the defined fitting criteria, 5 ADC populations were 

identified as the best model (Figure 3B). As the first and second population represented 

background populations (data not shown) these 2 populations could be neglected. The 

thresholds of the 3 remaining populations were determined as ADC = 0.6 * 10−3 mm2/s and 

ADC = 1.0 * 10−3 mm2/s. Mapping these populations to 3D parametric color maps and 

correlating these maps with the H&E histology showed a correlation of the high ADC values 

(ADC > 1.0 * 10−3 mm2/s) with the cystic hyperplastic regions within the lesions, while the 

low ADC population (ADC < 0.6 * 10−3 mm2/s) correlated with the solid regions. Similar to 

the [18F]FDG populations, a mixed ADC population was observed (ADC: 0.6 – 1.0 * 10−3 

mm2/s), where more than 1 phenotype was present within single voxels.

To compare the parameters of [18F]FDG and ADC, both classifications were applied to each 

tumor voxel within the training data set, to investigate the tumors’ composition according to 

both parameters (Figure 3C). Whereas the population with high [18F]FDG uptake (TMR > 

9.6) correlated with solid regions showing high metabolic activity, ADC maps clearly 

revealed hyperplastic cystic regions (ADC > 1.0 *10−3 mm2/s), that could not be identified 

by the [18F]FDG uptake due to the low uptake values < 5.1 TMR. The combination of both 

methods, [18F]FDG and ADC PET/MRI, provided the opportunity to identify solid as well 

as cystic regions and thus, characterized the whole tumor burden within the mice without the 

need for tissue sections.

Multiparametric PET/MRI decodes intratumoral phenotypic heterogeneity in vivo

On the basis of these results, a multiparametric study was designed that enabled the direct 

correlation of the voxel data of both modalities for in vivo phenotypic clustering. Due to the 

sequential imaging setup, the ADC and [18F]FDG data of 4 mice at the age of 20 weeks 

could be directly fused for analysis. The thresholds of the training data set were directly 

transferred to this test data set without employing the GMM fitting again.

Furthermore, the sequential setup allowed the automatized clustering of the tumors into 

phenotypic regions based on the coregistered ADC and [18F]FDG values in every voxel, 

providing phenotypic maps of the tumors (Figure 4A).

As expected, fusion of [18F]FDG and ADC in the same tumors enabled the identification of 

solid and cystic regions within the tumors (Figure 4A). Furthermore, beyond this 

classification, the solid regions could be differentiated into 2 distinct phenotypic patterns, 

solid acinar and very rare solid nodular regions. Solid acinar regions were characterized by 

[18F]FDG uptake values higher than 9.1 TMR; as shown previously, cystic and solid nodular 

regions showed low [18F]FDG uptake. Whereas the cystic areas showed high ADC values 

(ADC > 1.0 *10−3 mm2/s), solid regions were characterized by low ADC values. Thus, the 

solid nodular regions were characterized by a double-negative signature (low ADC and low 

[18F]FDG uptake), enabling the further differentiation of the 3 phenotypes, cystic 

hyperplasia, solid acinar and solid nodular malignancy, by the ADC-[18F]FDG combination 

(Figure 4B, Supplemental Table II).

The identification of the solid nodular phenotype was an important finding and an example 

of the benefits of combined PET/MRI, as this nodular malignancy was not identifiable with 
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single-modality imaging. In the MRI it was distinguished from the background and 

identified as a solid region, but could not be differentiated from the acinar region, while 

[18F]FDG could not detect the lesion at all. Thus, if a comparable masked phenotype is 

present in human disease, the differentiation of this phenotype from metabolic active solid 

phenotypes could only be provided by the combined imaging procedure of PET/MRI.

Clinical translation: PET/MRI decodes intratumoral heterogeneity in human breast cancer

a) [18F]FDG-PET is a feasible tumor marker—To confirm the translational potential 

of the described approach we investigated 5 patients with biopsy-proven IBC-NST, 

employing simultaneous PET/MRI 7 ± 3 days before surgery. After surgical excision, 

pathological analysis of the whole lesions was performed.

The first approach was the metabolic identification of tumor tissue within the breasts of the 

patients, to verify the potential of the method to identify malignant breast tissue, as 

described for the preclinical model. For this purpose, VOIs covering both the entire healthy 

and the entire diseased breasts were drawn on the basis of the CE-MRI. The clustering 

approach for [18F]FDG was applied separately on the sum of all voxels within the healthy 

(Figure 5A) and within the diseased breasts (Figure 5B). The best fit for the healthy breasts 

was identified for a sum of 4 Gaussian distributions, whereas the diseased breasts were best 

fitted by a number of 5 Gaussian distributions. The highest uptake population within the 

diseased breasts, including SUV > 1.1, was completely absent in the healthy breasts (Figure 

5A,B).

Applying this threshold of SUV > 1.1 to the whole breasts, the tumors within the breasts of 

all 5 patients were identified and confirmed as malignant tumors by histological analysis 

(Figure 5E, first row). The dimensions of the tumors given by this approach (maximal 

diameter, exemplary tumor: 16 × 15 × 15 mm3, Figure 5E) showed a good correlation of the 

identified tumors as compared to the dimensions described by post-surgical pathological 

analyses (maximal diameter, exemplary tumor: 16 × 13 × 10 mm3, Figure 5E, Supplemental 

Table III). This first approach could provide a user independent method to non-invasively 

identify malignant tumors.

b) Combined [18F]FDG-ADC-PET/MRI is able to cluster heterogeneous 
structures—As the main purpose of the study was the intratumoral classification of the 

lesions, we isolated all voxels within the morphologically identified tumor regions, to 

employ the intratumoral clustering on the sum of all tumor voxels within the 5 primary 

tumors. For [18F]FDG, the clustering approach identified 5 Gaussian distributions, separated 

by the following thresholds: SUV = 0.5, 0.9, 1.6 and 2.6 (Figure 5C). The ADC data was 

clustered by only 2 Gaussian distributions as the best fit, separated by the threshold of 1.1 

*10−3 mm2/s, distinguishing a low diffusion population from a high diffusion population 

(Figure 5D). However, in this case the populations were not clearly separated, yielding a 

high amount of a mixed population within the blue range with low ADC values.

The thresholds were plotted back into the MRI data to illustrate the clustered populations 

spatially within the VOIs (Figure 5E, third row). In accordance to the preclinical data, the 

clinical data showed the complementary pattern of [18F]FDG uptake and ADC. Whereas the 
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[18F]FDG uptake was higher in solid tumor regions, the ADC values were low in the solid 

tumor regions. However, higher ADC values were observed in the healthy gland structure of 

the breast and in single tumor regions, which were therefore suggested to be less solid.

As the previous approach already showed that [18F]FDG uptake values up to SUV of 1.1 

represent the background uptake of healthy breast tissue, the first two populations (SUV < 

0.5 and SUV 0.5 – 0.9) could not be distinguished from the background of the healthy 

tissue. As these populations were only present in the periphery of the tumors, surrounding 

the actual tumor areas, detected by the CE-MRI, they could be neglected as background 

populations (Figure 5E, third row).

The remaining 3 uptake populations, especially the two highest populations, were 

considered as real tumor populations and were spatially correlated to the histological 

findings (Figure 6).

Comparing different regions of aggressiveness within the tumors scored by their 

proliferative activity and invasive growth pattern by histology, highly aggressive IC regions 

with high mitotic activity showed the highest [18F]FDG accumulation represented by the 

highest uptake population which was marked in red in the figures (SUV > 2.6).

Here, we present the tumors of 3 representative patients. Figure 6A shows a tumor 

consisting homogeneously of an IC, according to histology, which is mainly represented by 

the highest red [18F]FDG population in the PET data. On the other hand less aggressive 

regions with lower mitotic activity showed lower [18F]FDG accumulation, represented by 

the green (SUV 1.6–2.6) or blue (SUV 0.9–1.6) uptake populations. The tumor in Figure 6B 

contained large areas of sclerosis with less tumor cells and less mitotic activity that 

correlated with the green uptake population. In contrast sporadic small IC regions of high 

proliferation and aggressiveness within this tumor were represented by small spots of the red 

[18F]FDG population in the imaging data (Figure 6B). Focusing only on the CE-MRI scans, 

both tumors in Figure 6A and B had very similar morphology. The inter- and intratumoral 

biological and histological differences of these 2 tumors could only be distinguished by the 

metabolic PET clustering.

Moreover, combining [18F]FDG-PET, CE- and DW-MRI, several regions in a tumor with a 

very heterogeneous morphological and histological pattern, composed of multiple foci of IC 

as well as a fibroadenoma component, were distinguished (Figure 7). While the extent of the 

tumor tissue was delineated by the CE-MRI, the aggressive spots of the IC were identified as 

described above by the high [18F]FDG uptake population in red (SUV > 2.6), that also 

correlated with low ADC values (Figure 7, Slice 1). In contrast, the fibroadenoma could be 

distinguished from the rest of the tumor by a lower [18F]FDG accumulation (blue 

population, SUV 0.9–1.6) combined with the high ADC population (ADC > 1.1 *10−3 

mm2/s; Figure 7, Slice 2).

This clinical data demonstrated that a comprehensive tumor profiling was possible 

employing combined PET/MRI in the clinical setting. Thus, the method showed great 

potential for the clinical translation in larger scale studies.
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Discussion

Current trends in patient care aim for individualized medicine, making diagnostics and 

treatment strategies more complex. An important prerequisite for individualized therapies is 

a sophisticated diagnostic strategy that reveals even small alterations in the disease profile.

The standard diagnostic procedure in breast cancer involves mammography, sonography as 

well as histological validation. However, there are limitations to these techniques, for 

example in young patients with dense breast tissue (26). The value of PET and MRI for 

breast cancer diagnosis remains controversial. As recommended by the national 

comprehensive cancer network (NCCN) in high risk patients, MRI has clear advantages (27–

30), but an improvement of patient outcome was not yet confirmed (28,31). While not 

considered in the NCCN guideline to date there is growing evidence for the value of PET 

and positron emission mammography (PEM) (32–36). Avril et al. correlated [18F]FDG 

uptake with several prognostic markers such as histological tumor type (ductal vs. lobular), 

microscopic tumor pattern (nodular vs. diffuse) and tumor proliferation (37). Yet, standard 

[18F]FDG-PET appears insufficient as single-information for breast cancer diagnosis (38). 

Other promising tracers, e.g. addressing hormone-receptor status or gastrin-releasing peptide 

receptor are currently under clinical investigation (32,39–41). Major restrictions in most 

clinical studies compared with this study are the exclusive use of single modality imaging 

and conventional image analysis. For example when mammography is difficult, as in high 

risk patients with mammographic dense breast tissue (42), the excellent soft tissue contrast 

of the MRI and the high sensitivity of the PET and functional MRI can provide essential 

information in the diagnostic process (26,37,43). Here, we showed that in combination with 

advanced analysis approaches, molecular and functional imaging can provide a more 

detailed characterization of the tumors inter- and intratumorally.

The assessment of tumor heterogeneity represents an emerging challenge in cancer 

diagnostics and treatment as e.g. polygenic drug resistance is a major issue in cancer patient 

care to date (44). Potts et al. summarized outstanding work identifying breast cancer 

heterogeneity and predicting therapy response and resistance on the basis of 

immunohistochemistry (4). To overcome the snapshot character of these biopsy-based 

diagnoses, in vivo diagnostic tools like MRI, CT and PET, combined with advanced analysis 

approaches, such as multispectral analysis or texture analysis which are described as a 

powerful prognostic feature to improve diagnostics, tumor staging as well as therapy 

response assessment in many types of cancer (45–47) must be correlated to histology. 

Especially MRI, including functional and spectroscopic techniques showed great potential in 

imaging intratumoral heterogeneity and identifying biological subpopulations within single 

tumors, distinguishing for example viable tumor from necrosis and adipose healthy tissues 

(48), or classifying the tumor microenvironment in terms of vascular heterogeneity, hypoxia 

and acidity (49,50).

In our preclinical study, only combined PET/MRI and advanced image analysis enabled the 

detection and discrimination between 2 malignant tumor phenotypes (solid nodular and 

acinar) from premalignant cystic hyperplasia. Especially the identified solid nodular tumor 
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regions with very low [18F]FDG uptake would be misinterpreted as non-malignant using a 

single PET approach, if detected at all.

In the translational study with 5 IBC-NST tumor patients the simultaneous PET/MRI 

approach including the GMM analysis led to the differentiation of highly aggressive and 

mitotic active tumor regions to less aggressive and sclerotic regions as well as to benign 

lesions such as a fibroadenoma. These results pointed out the opportunities of in vivo 
classification of tumors in the diagnostic workflow.

Using this analysis, phenotypic identification is based on data-derived thresholds, yielding a 

biology-driven distinction rather than user-dependent classification, showing prospective 

potential, where stable thresholds derived from the training data set were successfully 

transferred to other tumors of the same origin in the preclinical setting. Once defined, 

identified and verified, the thresholds may be applied to other tumors within the same 

disease without the need of the complete image analysis procedure for every individual 

dataset. Its applicability and diagnostic value in other preclinical models as well as a larger 

scale validation in the clinical setting, however, was beyond the scope of this work. This 

analysis describes that the co-existence of different phenotypes within the same tumor can 

be visualized by multiparametric [18F]FDG PET/MR imaging, in both in animals as well as 

in patients suffering from breast cancer. This new approach has to be tested in further 

prospective studies; we distinguished a clinical significance to our approach.

Because treatment stratification is based on tumor biology received by minimal invasive 

biopsy, an accurate tissue sampling, especially in multifocal and multicentric breast tumors, 

is highly desirable. Therefore, our non-invasive tumor classification might enable a precise 

target selection and biopsy guidance in breast cancer, by revealing the presence of tumor 

heterogeneity and detecting the most aggressive part of the tumor, and thus would reduce the 

risk of under-grading and under-treatment.

Another application of this multiparametric imaging might be the early response evaluation 

after one to two cycles of neo-adjuvant chemotherapy (NACT), in order to adapt cancer 

treatment regimen or to spare ineffective and toxicity related therapy. Because a complete 

remission after NACT is related with longer survival, an accurate prediction of a pathologic 

complete response after NACT and prior to surgery is highly desirable and might have a 

significant impact on further treatment stratification e.g. mastectomy vs breast conserving 

therapy especially in multifocal/multicentric breast cancer. Finally, in cases of larger 

resection volumes our approach might facilitate the final histopathological assessment and 

enhance the diagnostic accuracy, by defining point of interest with suspicious vital/avital 

tumor areas that would be processed separately after the surgical procedure.

Similar combined [18F]FDG/ADC approaches showed high diagnostic value, for example, in 

lung and breast cancer patients (51,52) but could not provide prognostic thresholds due to 

the exclusive use of single value analysis in the breast cancer study and high grades of 

heterogeneity in the investigated lung disease, although analyzed by a GMM approach.

Current trends in cancer research showed that radiomics produce promising prognostic 

markers when applied on large patient cohorts (16,17,53). Our work further demonstrates 
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that combined PET/MRI may complement these approaches by adding another biology-

derived feature into the workflow, potentially moving one step further towards personalized 

medicine and individualized therapy planning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Voxelwise analysis approach for [18F]FDG-PET: [18F]FDG-PET/MRI serial slides of 4 

tumors (A). Voxel data of 18 tumors was examined. A 4 Gaussian distribution was the best 

fit according to AIC and BIC (B) and was applied to the summed histogram with the 

thresholds TMR = 2.3, 5.1 and 9.6 (C). H&E histology (D) compared to a parametric color 

map of the in vivo data (E).
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Figure 2. 
Ex vivo correlation of the [18F]FDG data with autoradiography: the pixel values (TMR) of 8 

tumors (A), and a GMM fit was applied with a result of 5 Gaussian distribution with the 

thresholds TMR = 3.2, 7.7,.16.2 and 41.6. The in vivo histogram of a single tumor (B) and 

the in vivo parametric map, revealed good correlation to the ex vivo [18F]FDG and the 

H&E-stained section (C) with the in vivo PET map and MRI (D). The mixed population of 

the in vivo data was mainly covered by the high uptake population in the ex vivo data (white 

arrow).
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Figure 3. 
Voxelwise analysis approach for ADC-maps: the voxel data of 18 tumors was examined (A). 

A 5 Gaussian distribution was determined as the best fit according to AIC and BIC (B). 3D 

color maps of the [18F]FDG and ADC of a representative tumor correlated with the 

corresponding histology slide (C).
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Figure 4. 
Multiparametric imaging approach: [18F]FDG and ADC parametric maps were calculated, 

and combined to phenotypic maps (A). The combination of both criteria identified 3 distinct 

phenotypes (A, B): solid acinar tumor regions ([18F]FDG TMR > 9.6), cystic hyperplastic 

regions (blue) (ADC values > 1.0 * 10−3 mm2/s) and solid nodular regions with a double-

negative pattern (green; ADC < 0.6 * 10−3 mm2/s and [18F]FDG TMR < 5.1) (B). The solid 

nodular cluster (green) was mixed with the background population (A, B).
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Figure 5. 
Voxelwise analysis approach for clinical [18F]FDG-PET and DW-MRI: voxel data of the 

healthy (A) and diseased (B) breast were analyzed by the GMM approach for [18F]FDG. 

The best fits were identified for a sum of 4 (A) and 5 (B) Gaussian distributions, 

respectively. For intratumoral clustering, voxels within all tumors were fitted for [18F]FDG 

with a best fit of 5 Gaussian distributions (C) and ADC with a best fit of 2 Gaussian 

distributions (D). A representative tumor (E): CE-MRI as well as the parametric color maps 

produced for the whole breast approach for [18F]FDG, applying the threshold of 1.1 in SUV 

(first row); ADC and PET data (second row) and the parametric maps for the intratumoral 

clustering for [18F]FDG and ADC (third row).
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Figure 6. 
[18F]FDG uptake populations revealed histological differences in heterogeneous tumors in 

the clinical setting: in a representative tumor the highest [18F]FDG accumulation represented 

(red, SUV > 2.6) correlated with highly aggressive IC regions in H&E histology (400 × 

magnification) (A). Another tumor showed large areas of lower [18F]FDG uptake 

populations (green, SUV 1.6–2.6 or blue, SUV 0.9 – 1.6) correlating to areas of sclerosis in 

the histological overview and in the green histology box (400 × magnification); smaller IC 

regions within this tumor in the red histology box (400 × magnification) correlated to small 

spots of the red population in the imaging data (B).
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Figure 7. 
Combined [18F]FDG-PET and DW-MRI could distinguish several regions within 

heterogeneous disease: a representative tumor, composed of multiple foci of IC and a 

fibroadenoma component. In slice 1 the aggressive spots of the IC was identified by the high 

[18F]FDG population (red, SUV > 2.6). The fibroadenoma in slice 2 could be distinguished 

from the rest of the tumor by a low [18F]FDG accumulation (blue, SUV 0.9 – 1.6) combined 

with high ADC values (ADC > 1.1 *10−3 mm2/s); histological slices are shown in 100 × 

magnification, the insert in 400 × magnification.
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