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ABSTRACT
The immune system plays a pivotal role in the development and progression of colorectal cancer (CRC).
Tumor immune rejection has been previously linked to the activation of the interferon-stimulated genes
(ISG) STAT1, IRF-5 and IRF-1. Specific immunoregulatory microRNAs (miRNAs) may impact the expression
of these ISG in the tumor microenvironment. In this translational study, we develop a digital image
analysis protocol to identify the ISG-gene expression signature and investigate miRNA expression in the
immediate environment of invading cancer cells. Digital immunophenotyping was performed using next
generation tissue microarrays from 241 well-characterized CRC patients and analyzed with
clinicopathological and molecular information. Active ISG signaling in the tumor stroma differentiated an
immune-activated (n D 178) and a quiescent (n D 43) phenotype. The activated phenotype was
associated with high counts of intratumoral CD8C cytotoxic T-lymphocytes (CTL; p D 0.007) and
expression of the immune effector molecules granzyme B (p < 0.001) and perforin (p D 0.020). Immune-
activated tumors also showed an elevated expression of the intercellular adhesion molecule-1 (ICAM-1,
p D 0.006) which may facilitate CTL infiltration. Patients with immune-activated CRC had a considerably
reduced risk of developing distant metastases (p D 0.001, OR D 0.034, 95%CI D 0.006–0.183). High
expression of the immunoregulatory miR-34a and miR-93 corresponded to a 2–2.5-fold decrease of STAT1
(p D 0.006) and IRF-1 (p D 0.058), a feature more commonly seen in a quiescent microenvironment.
Analysis of a combined ISG marker profile by digital pathology stratifies CRC patients into diametrically
opposed immune phenotypes. Targeted inhibition of miRNAs within the tumor microenvironment may
form a new strategy to stimulate the anti-tumoral immune response.
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Introduction

Tumor–host interaction greatly impacts disease progression
and clinical outcome in CRC. Recent studies have identified a
stage-independent survival advantage of CRC patients with
abundant CD8C cytotoxic T-lymphocytes (CTL) in the tumor
microenvironment.1-4 Disinhibition of the anti-tumoral T-cell
response by immune checkpoint blockade of the programmed
death 1 (PD-1) pathway has shown remarkable therapeutic
promise for patients with mismatch repair (MMR) deficient
tumors that are characterized by a high frequency of somatic
mutations.5 An interdependence of the tumor mutational land-
scape and the anti-tumoral immune response is also
highlighted by recent large scale cancer genomic projects that
have identified a correlation between the expression of immu-
nomodulatory molecules, CTL infiltration and increased muta-
tional load.6 While previous studies have focused on somatic
tumor mutations and tumor immunogenicity, little is known
about the impact of epigenetic gene regulation mechanisms on

the expression of pro-inflammatory genes in the microenviron-
ment of CRC.7

Intratumoral T-cell infiltration is driven by an inflamed
tumor microenvironment characterized by ISG transcription,
expression of immunostimulatory cytokines and T-cell attrac-
tants.8 Interferon production by antigen-presenting cells in the
tumor stroma is induced by the release of exogenous and
endogenous damage signals during malignant transformation.9

Cellular responses to interferon are mediated by activation of
the Janus kinase-signal transducer and activator of transcrip-
tion (JAK-STAT) pathway.10 STAT proteins are the principle
signaling proteins for inflammatory cytokines and are of central
importance for immune cell differentiation and function.11 In
particular, induction of STAT1 gene expression by interferon is
required for differentiation of antitumor CTLs in vivo.12 Acti-
vated CTLs promote tumor immune rejection through expres-
sion of cytolytic molecules such as perforin and granzyme B.8,13

Interferon signaling also stimulates interferon response factors
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(IRFs). IRFs induce anti-proliferative and pro-apoptotic tran-
scriptional programs in human cancer cells and regulate innate
and adaptive anti-tumoral immune effector functions.14,15 Spe-
cifically, the interferon-induced upregulation of intercellular
adhesion molecule-1 (ICAM-1) may have a critical role in the
regulation of CTL infiltration into human tumors.16,17

Activation of the ISGs is therefore considered a central con-
stituent of the immunologic signature of rejection in human
cancers.8 Importantly, STAT1, IRF-1 and IRF-5 have been
experimentally confirmed as the target of miR-34a-5p, miR-
93–5p and miR-146a-5p.18-22 miRNAs are highly conserved
short, non-coding RNA oligonucleotides that regulate the
expression of over 60% of protein-coding genes.23-25 Due to
their high abundance in CRC, miR-34a-5p, miR-93–5p and
miR-146a-5p could impact the immune phenotype and prog-
nosis of CRC patients through epigenetic control of interferon
signaling.26-28 However, the regulation of ISG transcription in
the tumor microenvironment has not been comprehensively
studied. This may partially be due to the difficulty of separating
tumor and stromal contributions to the CRC transcriptome in
high-throughput sequencing analyses.29

The aim of this translational study was therefore (1) to
develop a digital pathology image analysis protocol to stratify
immunophenotypes of CRC, (2) to analyze miRNA expression
in the immediate environment of invading cancer cells and (3)
to evaluate the impact of interferon signaling on clinicopatho-
logical features and disease progression in a well characterized
CRC patient cohort.

Results

Detection of stromal STAT1, IRF-1 and IRF-5 expression
patterns in normal colonic tissue and CRC by
immunohistochemistry and digital image analysis

Digital image analysis identified a mixed cytoplasmic and
nuclear staining of STAT1 and IRF-1 in the tumor stroma.
Average IRF-1 and STAT1 expression was increased in tumor-
associated stroma compared with normal tissue (p < 0.0001).
IRF-5 predominantly showed a mixed nuclear and cytoplasmic
staining pattern. In contrast to IRF-1, average IRF-5 expression
was decreased in tumor stroma (p < 0.0001). Examples of all
IHC detection reactions are shown in (Fig. 1).

Association of stromal STAT1, IRF-1 and IRF-5 expression
with clinicopathological features

Increased STAT1, IRF-1 and IRF-5 expression in the tumor
stroma of CRC was correlated with a decreased likelihood of
distant metastasis (STAT1: p D 0.006, OR: 0.951, 95%CI:
0.918–0.985; IRF-1: p D 0.014, OR: 0.967, 95%CI: 0.942–0.993;
IRF-5: p D 0.009, OR: 0.964, 95%CI: 0.937–0.991). STAT1 and
IRF-5 expression were negatively less frequent in tumors of the
sigmoid colon and rectum. (STAT1: p D 0.013, OR: 0.980,
95%CI: 0.964–0.996; IRF-5: p D 0.027, OR: 0.981, 95%CI:
0.965–0.998). IRF-1 positively correlated with increased patient
age (p D 0.013, OR: 1.03, 95%CI: 1.01–1.05). Patients with high
STAT1 expression were more likely to have a MSI-H status (p
D 0.039, OR: 1.02, 95%CI: 1.001–1.042). The associations of

STAT1, IRF-1 and IRF-5 with clinicopathological features and
markers of immune activation are shown in (Table 1).

miRNA expression in the tumor stroma of CRC and miRNA
mediated control of interferon stimulated genes

Using miRTarBase,19 a database of experimentally validated
miR-target interactions, we identified three miRNAs that were
shown to target STAT1, IRF-1 and IRF-5 (miR-34a and
STAT1, miR-93 and IRF-1, miR-146a and IRF-5, miR-146a
and STAT1). Two of these miRNAs, miR-34a and miR-93,
were detectable by ISH in formalin-fixed paraffin-embedded
(FFPE) CRC tissue. As the ISH staining pattern precluded stan-
dard tissue classification by available digital analysis algorithms,
we constructed a classifier mask on each of the protein slides,
and transferred it onto the corresponding sequential miRNA
slide. This guaranteed correct identification of the epithelium
and stroma on the miRNA slides and ensured that the miRNA
signal intensity could be directly compared with its correspond-
ing protein target. Examples of miRNA detection and correla-
tion with protein expression are shown in (Fig. 2).

Figure 1. Expression of protein markers in the CRC microenvironment of normal
and neoplastic tissue defined as having an activated or a quiescent immune phe-
notype. The classification is based on a combined expression score of STAT1, IRF-1
and IRF-5 (rows 1–3). Two cases are shown throughout. The normal colonic tissue
control of the case with an activated immune phenotype is shown. Immunoactive
cases are characterized by a significantly increased infiltration of activated CD8C

CTL (row 4) showing expression of perforin and granzyme B effector molecules
(rows 5–6).
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Digital image analysis identified a strong overexpression of
miR-34a in the tumor stroma as compared with normal and
tumor epithelial cells, as well as lymphocytes (p D 0.002). miR-
34a expression in the tumor stroma is negatively correlated
with STAT1 expression in (p D 0.006, OR: 0.395, 95%CI:
0.20–0.77). miR-93 is detectable at low levels by ISH and
showed a negative correlation with IRF-1 expression in the
CRC stroma. These results did not, however, reach statistical
significance (p D 0.58, OR: 0.489, 95%CI: 0.23–1.02).

The immune-activated versus the quiescent phenotype:
molecular and clinicopathological characteristics

STAT1, IRF-1 and IRF-5 were combined into a single score to
classify the immune phenotype of CRC patients. The score was
based on dichotomized values of all three protein signals as

detected by digital image analysis and stratified the patients
into two categories. An immune-activated phenotype was iden-
tified in 178 patients who expressed at least one of the three
proteins. Forty-three patients did not express any of the
markers and were assigned to the immune-quiescent
phenotype.

Patients with an immune-activated phenotype were more
likely to be female (p D 0.037, OR: 1.80, 95%CI: 1.04–3.11) and
have right-sided tumors (p D 0.014, OR: 2.10, 95%CI:
1.16–3.80) with microsatellite instability (p D 0.015, OR: 3.46,
95%CI: 1.274–9.375). An immune-activated stroma was associ-
ated with elevated peri- and intra-tumoral CD8C T-cell counts
(p < 0.001, OR: 3.42, 95%CI: 1.83–6.39; p D 0.039, OR: 2.554,
95%CI: 1.18–5.54, respectively), intratumoral CD3C T-cell
counts (p D 0.002, OR: 3.43, 95%CI: 1.58–7.5), but not CD4C

or CD45RO memory T-lymphocyte infiltration (Table 2).

Figure 2. Workflow of sequential digital image analysis of STAT1 and IRF-1 protein immunohistochemistry and miR-34a and miR-93 in situ hybridization. Four example
cases with different expression levels are shown (columns). STAT1 and IRF-1 expression was visualized by immunohistochemistry (top row). Cells were quantified and IHC
staining intensity was analyzed using HALOTM (Indica Labs) digital image analysis software (second row). Image guided tissue segmentation was performed to specifically
analyze protein expression patterns in tumor stroma (third row). Strict serial sections were analyzed for miR-34a and miR-93 expression by miRNA ISH (fourth row). miRNA
expression patterns in the tumor stroma were quantified using the protein tissue classification mask (bottom row).

e1288330-4 V. H. KOELZER ET AL.



To confirm CTL activation, we measured the level of the
cytolytic effector molecules perforin and granzyme B in
T-cells by digital image analysis. In patients with the
immune-activated phenotype, there was a marked increase
in granzyme B (p < 0.0001, OR: 3.22, 95%CI: 1.71–6.08)
and perforin (p D 0.020, OR: 1.90, 95%CI: 1.11–3.26). Fur-
ther, primary CRC with an immune-activated phenotype
showed markedly increased ICAM-1 expression (p D 0.006,
OR: 2.17, 95%CI: 1.26–3.77), rendering these tumors more
permissible for T-cell infiltration. Remarkably, patients with
an immune-activated phenotype had a considerably
decreased risk of developing distant metastases (p D 0.002,
OR: 0.135, 95%CI: 0.039–0.471).

Discussion

Two distinct immune phenotypes of human cancer have been
recently proposed.30 The first group is characterized by a T-cell
inflamed tumor microenvironment, type I interferon produc-
tion and innate immune activation. In CRC, this subgroup
encompasses hypermutated and MMR-deficient tumors that
may counter immune attack through an upregulation of immu-
noinhibitory molecules.6 The second group is characterized by
a quiescent immune phenotype with lack of T-cell activation
and interferon-signaling. This group includes non-hypermu-
tated CRC which may evade the host immunosurveillance
through enrichment of immunosuppressive cells and downre-
gulation of antigen-presentation pathways.6 The development
of an immune-activated or quiescent phenotype may be signifi-
cantly affected by epigenetic mechanisms which regulate the
gene expression of pro-inflammatory factors.7 Here we propose
an ISG expression signature to define immune activation in
CRC and investigate the correlation of ISG expression with
miR-34a-5p and miR-93–5p using digital pathology in a well-
characterized patient cohort.

First, we specifically analyze the expression of the STAT1,
IRF-5 and IRF-1 transcription factors in normal and neoplastic
colon tissue. Previous studies have addressed STAT1 expres-
sion in CRC cells only.13 Importantly, non-neoplastic cell pop-
ulations such as activated T-cells, antigen-presenting cells and
stromal fibroblasts represent a major source of inflammatory
cytokines in the tumor microenvironment.30 The present study
provides translational evidence of a stromal contribution to the
type I interferon signature in immune-activated CRC.

Second, we identify a strong association of STAT1, IRF-1
and IRF-5 expression in the tumor stroma with a decreased
likelihood of distant metastatic spread of CRC. This data con-
firms and extends previous analyses of STAT1 expression as a
favorable prognostic biomarker for CRC patients.13,31 In partic-
ular, STAT1 was frequently overexpressed in the microenviron-
ment of tumors with microsatellite instability and a right-sided
tumor location. While IRF-1 has been identified as a marker of
immune-mediated tumor destruction in malignant melanoma
32 and breast cancer,33 little is known on the prognostic impact
of IRF-1 and IRF-5 expression in the microenvironment of
CRC. Here we show a strong correlation of the stromal IRF-1
and IRF-5 biomarker profile with a lack of distant metastatic
disease. This finding has potential clinical importance as meta-
static relapse is the major cause of death for CRC patients and
critically limits therapeutic options. The development of pre-
dictive biomarkers for metastatic disease is therefore of utmost
importance for risk-adapted treatment and follow-up of CRC
patients in clinical practice.34

Third, we test the combined expression of the ISGs STAT1,
IRF-1 and IRF-5 in the tumor stroma as a signature of immune
activation in CRC. Using digital image analysis, we identify
strong positive correlations between this signature and abun-
dant intra- and peri-tumoral infiltration by CD3¡ and CD8C

T-lymphocytes, previously identified as a significant and inde-
pendent predictor of CRC patient survival.1-4 Whether the
assessment of the ISG-score may further improve patient strati-
fication would be an interesting point for further study. In the
microenvironment, a strong upregulation of perforin and gran-
zyme B likewise correlated with the joint upregulation of ISG
protein factors. These cytolytic effector molecules are impor-
tant mediators of both CTL-mediated and natural-killer cell
mediated lysis of neoplastic cells.35-37 On the tumor level,
ICAM-1 expression was positively correlated with an immune-
activated stromal signature. Upregulation of ICAM-1 increases
the susceptibility of tumor cells to antigen-specific lysis by
CTLs.16,38 Taken together, we provide comprehensive evidence
that the stromal ISG signature identifies immune-activated
CRC with high fidelity. Of note, we observed a similar, albeit
weaker pattern of ISG expression in the tumor epithelium (data
not shown), suggesting reciprocal tumor-stromal interactions
in the activation of immune-related genes. Further studies are
necessary to decode this functional interference.

Last, we address the possibility to detect and directly corre-
late the contribution of miRNA expression to the type I inter-
feron gene expression signature in the tumor
microenvironment using digital image analysis algorithms. As
miRNAs are not significantly degraded in FFPE tissue, they can
be visualized by in situ hybridization and represent an ideal
molecule for high throughput arrays.39 In previous studies,

Table 2. Association of the immune active phenotype with immune cell infiltrates
and effector molecule expression.

Immune-active phenotype

Feature # p value OR 95%CI

Granzyme B 0 67 1.00
1 153 <0.0001 3.22 1.708–6.083

Perforin 0 108 1.00
1 112 0.020 1.90 1.107–3.261

ICAM-1 0 98 1.00
1 132 0.006 2.17 1.255–3.765

Intratumoral CD8C 0 74 1.00
1 76 0.039 2.19 1.039–4.599

Peritumoral CD8C 0 65 1.00
1 65 0.018 2.55 1.178–5.538

Intratumoral CD3 0 75 1.00
1 75 0.002 3.43 1.575–7.462

Peritumoral CD3 0 64 1.00
1 67 0.013 2.68 1.234–5.813

Intratumoral CD4C 0 79 1.00
1 45 0.803 1.00 0.994–1.008

Peritumoral CD4C 0 70 1.00
1 37 0.687 1.00 0.993–1.011

Intratumoral CD45RO 0 78 1.00
1 59 0.087 1.01 1.00–1.01

Peritumoral CD45RO 0 73 1.00
1 54 0.223 1.00 1.00–1.01
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miRNAs have been largely detected by qPCR and sequencing
approaches of total RNA from tumor material, ignoring the
inherent heterogeneity of these samples. As the same miRNA
and mRNA molecules can be present in multiple cell types in
the tumor microenvironment, inaccurate conclusions were
drawn from these studies as to the change of miRNAs in
tumorigenesis, and the cell-type specific expression of these
miRNAs.40

In the present study, we specifically focus on miR-34a, miR-
93 and miR-146a expression in the tumor stroma. These miR-
NAs have previously been shown to regulate the expression of
STAT1, IRF-1 and IRF-5.18-22 We use a thorough approach,
combining sequential detection of miRNAs and their target
proteins with digital image analysis for comprehensive bio-
marker profiling. Even though expression of miR-146a has
been described previously in CRC cells ,41 this miRNA was not
detectable by ISH in the present cohort. This discrepancy may
be due to suboptimal binding of the available ISH probe or a
low abundance of miR-146a in the cohort under study. Inter-
estingly, miR-34a expression strongly correlated with the
downregulation of STAT1 in the tumor microenvironment. A
similar pattern was identified for miR-93 and IRF-1 although
correlations did not reach statistical significance. These results
will allow us to proceed with functional and mechanistic assays
in the future, focusing on the possible dysregulation of miRNAs
in the tumor microenvironment of CRC.

This investigation has several strengths: Analyses are based
on a very well characterized cohort of 241 CRC patients with
full clinicopathological data and therapy information. This
study is designed in a hypothesis driven approach and utilizes
state-of-the art digital image processing techniques for objec-
tive examination of protein and miRNA expression. Multi-
punch ngTMAs are used to control for heterogeneity of marker
expression. Weaknesses include a relatively small number of
patients included in the analysis of the immune-active pheno-
type with clinicopathological features. As a multi-marker phe-
notype was used for stratification of prognostic groups, this
introduced a multiple-testing problem precluding statistically
powerful survival analyses. We therefore recommend further

investigation of the prognostic impact of the immune pheno-
types as defined by miRNA and ISG protein expression in inde-
pendent patient cohorts.

Taken together, we provide comprehensive translational evi-
dence for the use of an ISG biomarker signature to identify
immune-activated CRC. In our working model (Fig. 3), the ISG
signature strongly associates with markers of immune activation
including abundant T-cell infiltrates, expression of cytolytic mol-
ecules and tumor expression of ICAM-1. Further, we provide ini-
tial evidence of miRNA-mediated immunosuppression through
the inhibition of STAT1 and IRF-1 expression in the tumor
microenvironment of CRC. Eventually, chemically modified anti-
miR oligonucleotides termed antagomirs may allow highly spe-
cific targeting of miRNA transcripts in cancer patients.42 The
reversal of immunosuppression by epigenetic modulation before
or in conjunction with immune-checkpoint inhibition may there-
fore be a promising future therapeutic strategy.

Conclusions

Our results confirm an important role of stromal interferon-
signaling in driving the anti-tumoral immune response in
CRC. A combined score of STAT1, IRF-1 and IRF-5 expression
by digital image analysis identified patients with an immune-
activated phenotype characterized by tumor expression of
ICAM-1, increased CTL infiltration, expression of cytolytic
immune effector molecules and a 10-fold lower frequency of
distant metastasis. Expression of miR-34a and miR-93 inversely
correlated with expression of interferon-signaling genes in the
tumor microenvironment. Targeting miRNAs in the regulatory
network of interferon-responsive genes may therefore represent
a novel strategy to activate the anti-tumoral immune response.

Materials and methods

Patient cohort and study design

Three hundred and 35 unselected, non-consecutive CRC
patients treated by surgery between 2002 and 2011 at the

Figure 3. Working model. (A) The immune-activated phenotype of CRC is characterized by low expression of miR-34a and miR-93, activation of interferon signaling and
expression of STAT1, IRF-1 and IRF-5 in the tumor microenvironment. Tumors of this phenotype are strongly infiltrated by CTLs releasing cytotoxic effector molecules, fre-
quently have a microsatellite instable genotype and show upregulation of ICAM-1 on tumor cells. Patients with a high ISG-score have a significantly reduced risk of pre-
senting with a distant metastasis. (B) The immune-quiescent phenotype of CRC is characterized by silencing of ISG through miR-34a and miR-93 in the tumor
microenvironment and reduced of T-cell activation. Expression of cytotoxic effector molecules in CTL is infrequent. Lack of ICAM-1 may make tumors of this phenotype
less amenable to CTL-infiltration and resistant to immune-mediated tumor destruction. Tumors of this phenotype frequently have a microsatellite stable genotype.
Patients with a low ISG-score have a significantly increased risk of presenting with distant metastasis.
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University Clinic for Visceral Surgery and Medicine at the
Inselspital, Bern were included in this study. Tumor resection
specimens were grossed according to the guidelines of the
guidelines of the Quality guidelines of the Swiss Society of
Pathology, fixed in 4% formalin and paraffin embedded. Full
histopathological information of primary tumor (pT), regional
lymph node metastasis (pN), distant metastasis (pM), lym-
phatic (L), venous (V) and perineural (Pn) invasion, R, tumor
grade (G), histological subtype, tumor budding and tumor bor-
der configuration was obtained from patient records. Molecular
data includes MSS/MSI status based on the analysis of three
microsatellite loci (Bat25, Bat26, D2S123).43 All cases and slides
were re-reviewed by AL, VK and HD according to the seventh
edition of the tumor node metastasis (TNM) classification of
malignant tumors.44 Other data collected included patient age
at diagnosis, gender, tumor size, tumor location and informa-
tion on pre- and post-surgical therapy. Ninety-four patients
were excluded based on pre-surgical treatment (n D 51) or
insufficient material (n D 43) remaining on the tissue block.
Clinicopathological features of the final cohort (n D 241) are
provided in (Table S1). The study design is shown in (Fig. S1).
The use of patient data was approved by the local ethics com-
mittee (Kantonale Ethikkommission Bern; application number
KEK-200/14). This study was designed to comply with the
REMARK guidelines for tumor marker prognostic studies.45

Next-generation tissue microarray (ngTMA)

ngTMAs were specifically designed to address marker
expression in the tumor microenvironment using a digital
pathology approach.46 To this end, two 0.6 mm tissue cores
each from the tumor center, tumor front, peritumoral
stroma and normal colorectal mucosa were selected on high
resolution digital scans of hematoxylin and eosin stained
slides. Standardized staining controls were included in each
block.

Immunohistochemistry (IHC)

The ngTMA blocks were sectioned at 4 mm and stained with
antibodies on an automated immunohistochemistry platform
(Leica Bond-III, Leica Biosystems, Muttenz, Switzerland)
according to standard protocols. The antibodies and protocol
modifications used were: STAT1 (Abcam, #ab2415, 1:75, pre-
treatment citrate 300, 100�C), IRF-1 (Abcam, #ab191032, 1:800,
pre-treatment citrate 300, 100�C), IRF-5 (Abcam, #ab33478,
1:400, pre-treatment tris-EDTA 300, 95�C), perforin (Abcam,
#ab75573, undiluted, pre-treatment tris-EDTA 300, 95�C),
granzyme B (Abcam, #ab4059, 1:75, pre-treatment citrate 300,
100�C), ICAM-1 (Abcam, #ab53013, 1:100, pre-treatment cit-
rate 300, 100�C) and double stained for pan-cytokeratin and
CD8C (sequential pan-cytokeratin, Dako M351501–2; 1:200,
pre-treatment citrate 200, 100�C, CD8C, Dako, M7103, 1:100,
pre-treatment tris-EDTA 200 95�C).

In situ hybridization (ISH)

The ISH assay and miRNA ISH detection probes for miR-34a,
miR-93 and miR-146a were purchased from Exiqon (Exiqon,

Vedbaek, Denmark). miRNA detection was performed manu-
ally on ngTMA sections sequential to their target protein (miR-
34a and STAT1, miR-93 and IRF-1, miR-146a and IRF-5,
miR-146a and STAT1). U6 and scrambled probes were used as
positive and negative controls, respectively. Detection was per-
formed according to the manufacturer’s recommendations,
with the following optimizations: tissue digestion was per-
formed with 5 mM Proteinase K for 100. miR-34a was optimally
detected using a probe concentration of 30 nM, miR-93 by
using 80 nM. miR-146a was not detectable by this method and
a probe concentration of up to 240 nM despite its concentra-
tion being reported at levels higher than the levels of miR-34a.41

Digital evaluation of immunohistochemistry and in situ
hybridization

IHC and ISH slides were scanned using the Aperio CS
ScanScope (Leica Biosystems, Muttenz, Switzerland) at
high resolution and 400x magnification. Image analysis
was performed by using the HALOTM image analysis soft-
ware (Indica Labs, Corrales, NM 87048, USA). Briefly,
each TMA spot was first segmented according to tissue
type into epithelial and stromal compartments. Visual con-
trol of tissue segmentation was performed. Following seg-
mentation, staining intensity for each marker and
percentage of positively stained cells was recorded by using
a Cytonuclear v1.4 algorithm. For ICAM-1 detection, the
Membrane v1.1 algorithm was used. The percentage of
positive cells in the stroma was used for further statistical
analysis. Algorithm adjustment parameters for each pro-
tein and RNA marker are listed in (Table S2). For miRNA
level determination, the tissue class definition from each
punch of the sequential protein slide was applied onto the
corresponding ISH punch. miRNA expression was calcu-
lated as the average signal intensity in the observed region
using the area quantification module.

Statistical analysis

Since each patient had multiple tumor punches taken from dif-
ferent regions within the tumor, the percentage of positive cells
was averaged across all cases that contained at least four
punches with at least 20 cells of the desired tissue class (tumor,
stroma). Stroma within the normal tissue served as an internal
control, and its score was calculated as the average percentage
of positive cells in two replicate punches. Protein/protein and
protein/miRNA marker associations as well as correlations
with clinicopathological features were analyzed by logistic
regression. The p values, odds ratios (OR) and 95% confidence
intervals (CI) were obtained for each analysis. Binary logistic
regression was used for correlation assessment of continuous
scores. The selection of clinically important cut-off scores for
dichotomization of the data was based on receiver operating
curve (ROC) analysis. For each percentage/intensity score, the
sensitivity and specificity for each outcome was plotted to gen-
erate a ROC curve. The score closest to the point of maximum
specificity and sensitivity was selected as the cut-off. Analyses
were performed using IBM SPSS Version 23 (IBM Schweiz AG,
Z€urich, Switzerland).
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