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Physiologically based pharmacokinetic (PBPK) modeling can
be used to predict drug pharmacokinetics in virtual populations
using models that integrate understanding of physiological
systems. PBPK models have been widely utilized for predicting
pharmacokinetics in clinically untested scenarios during drug
applications and regulatory reviews in recent years. Here, we
provide a comprehensive review of the application of PBPK in
new drug application (NDA) review documents from the US
Food and Drug Administration (FDA) in the past 4 years.

A physiologically based pharmacokinetic (PBPK) model is a
mathematical model that simulates pharmacokinetics of xenobi-
otics in the human or animal body by reflecting the current phys-
iological understanding related to absorption, distribution,
metabolism, and elimination. One salient feature is that PBPK
models allow for the mechanistic and prospective prediction of a
drug’s pharmacokinetic profiles and aids in new drug develop-
ment and regulatory decision-making process.1–5 We surveyed
the utilization of PBPK in the US Food and Drug Administra-
tion (FDA) approval, specifically focusing on their application
and impact on labeling recommendations.

Overview of physiologically based pharmacokinetic
appearance in the FDA new drug application review
Our survey covered all small molecule new molecular entity
(NME) drugs that are intended for systemic use and were
approved by the FDA between January 2013 and August 2016.
The new drug application (NDA) review documents
(Drugs@FDA, http://www.fda.gov/drugsatfda) and product
labels were examined for PBPK-related information for the 85
products that met the above criteria. There were a total of 18
products for which PBPK models were considered in the NDA

review documents (Tables 1–4). In the majority of cases, PBPK
models were used for the prediction of the effect of metabolic
enzyme mediated drug-drug interactions (DDIs; Figure 1a;
Tables 1–4). Importantly, the frequency of model use is consis-
tent with the perceived level of reliability.1,3,5

A key caveat of our survey was that it was limited to publicly
available information. The utilization of PBPK models for spon-
sor’s internal decision-making and earlier stage and postapproval
regulatory interactions, such as postmarketing requirement
(PMR) or supplementary NDA, were not captured. PBPK mod-
els have great potential to influence decision-making at different
stages of drug development, such as initial dosing recommenda-
tions for pediatric clinical trials, design of DDI studies, etc.5 The
current evaluation should be interpreted in the context of PBPK
use during the final phase in the development of a new drug,
because PBPK modeling strategies and the level of model valida-
tion can vary at different stages of drug development. This survey
also did not capture the potential value of cost and speed savings
by using PBPK vs. conducting clinical studies.

Utilization in the field of oncology
Interestingly, we observed wider acceptance of PBPK models in
the field of oncology compared with other therapeutic areas
(Figure 1b). One possible explanation is the difficulty of con-
ducting clinical DDI studies in oncology, due to (1) shortage of
appropriate patient populations or (2) ethical and safety con-
cerns over exposing healthy volunteers to oncology medications.
The first point is supported by the observation that three of
eight NMEs with PBPK in the nononcology field were for rare
diseases (such as eliglustat, macitentan, and obeticholic acid).
Another possible explanation is that the higher levels of toxicity
and narrower therapeutic windows for oncology drugs compared
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with drugs in other therapeutic areas warrant precise optimization
of drug exposure. It is also noteworthy that 7 of 10 anticancer
agents were given regulatory incentives to accelerate drug develop-
ment, either with breakthrough therapy designation or accelerated
approval, which may have contributed to a greater reliance on
PBPK simulations.

New drug as a victim of drug-drug interactions or genetic
variations
PBPK models have been most extensively used for the prediction
of the effect of DDI or pharmacogenetic effect on the pharmaco-
kinetics of NME as a victim (Figure 1a). In particular, the
extrapolation of the effect of strong inhibitors or inducers to less

Table 1 PBPK models in product labels or FDA review documents: New drug as a victim of DDIs or genetic variations

ID NME
Year of

approval
Detail of predicted

scenarios Simulation results
Impact /
outcome

Dataset or strategy for
model development/

validation Referencesa

1 Aripiprazole lauroxil 2015 Combination of CYP3A/
2D6 inhibitor and
CYP2D6
pharmacogenetics

Clinically meaningful
effects predicted

Predicted exposure
change informed label-
ing recommendation
(dose adjustments,
avoid concomitant use,
or no warnings)

DDI with ketoconazole
and quinidine (aripipra-
zole) and CYP2D6 phar-
macogenetics
(aripiprazole and
aripiprazole lauroxil)

2 Ceritinib 2014 CYP3A moderate inhibi-
tor and inducer, inhibitor
effect on lower ceritinib
dose

DDI with ketoconazole
and rifampin

3 Cobimetinib 2015 CYP3A moderate inhibi-
tor, CYP3A strong and
moderate inducer

DDI with itraconazole 27225997

4 Eliglustat 2014 Combination of CYP3A/
2D6 inhibitor and
CYP2D6
pharmacogenetics

DDI with ketoconazole,
paroxetine, metoprolol,
or rifampin and CYP2D6
pharmacogenetics

5 Ibrutinib 2013 CYP3A moderate and
weak inhibitor, CYP3A
moderate inducer

DDI with ketoconazole
and rifampin

27367453

6 Macitentan 2013 DDI with ritonavir, inhibi-
tor effect on multiple
dose macitentan

DDI with ketoconazole
(single-dose
macitentan)

26385839

7 Naloxegol 2014 CYP3A moderate
inducer

DDI with ketoconazole,
diltiazem, quinidine,
and rifampin

27299937

8 Olaparib 2014 CYP3A moderate inhibi-
tor & inducer

DDI with ketoconazole
and rifampin

9 Panobinostat 2015 CYP3A strong inducer DDI with ketoconazole

10 Simeprevir 2013 CYP3A strong and weak
inhibitor, rifampin
(single dose)

DDI with ritonavir,
darunavir/ritonavir,
efavirenz, erythromycin,
cyclosporine A, and
rifampin (multiple dose)

27896690

11 Sonidegib 2015 CYP3A moderate inhibi-
tor and inducer

DDI with erythromycin
and rifampin

12 Belinostat 2014 UGT1A1 pharmacoge-
netics (*28 genotype)

(See text for details) No clinical DDI/
pharmacogenetic study
available for validation

13 Osimertinib 2015 CYP3A inhibitor and
inducer

Results not available No impact on labeling
recommendation, PMR/
PMC to conduct DDI
studies

No clinical DDI study
available for validation

CYP, cytochrome; DDI, drug-drug interaction; ID, identification; NME, new molecular entity; PBPK, physiologically based pharmacokinetic; PMC, postmarketing commit-
ment; PMR, postmarketing requirement; UGT1A1, UDP-glucuronosyltransferase 1A1.
aThe numbers in the Reference column represent PubMed ID (if physiologically based pharmacokinetic models were published in scientific journals). New drug application
review documents can be found at Drugs@FDA (http://www.fda.gov/drugsatfda). If not specified, Simcyp was used for PBPK simulations.

DISCOVERY

598 VOLUME 101 NUMBER 5 | MAY 2017 | www.cpt-journal.com

http://www.fda.gov/drugsatfda
http://www.cpt-journal.com


Table 2 PBPK models in product labels or FDA review documents: New drug as a perpetrator of drug-drug interactions

ID NME
Year of

approval
Detail of predicted

scenarios Simulation results Impact / outcome

Dataset or strategy for
model development/

validation Referencesa

14 Alectinib 2015 CYP2C8 inhibition Clinically meaningful
effect unlikely

Label states no clinically significant
effect expected or label does not
contain description on interaction
potency

No effect on midazolam
exposure in a clinical DDI
study, sensitivity analysis
of Ki,CYP2C8

15 Canagliflozin 2013 CYP2B6 inhibition No effect on simvastatin
and warfarin exposure in
clinical DDI studies

27862160

16 Lenvatinib 2015 CYP2C8 and
CYP3A inhibition

No external validation
performed

17 Panobinostat 2015 CYP3A inhibition Sensitivity analysis of
CYP3A inactivation con-
stant (kinact)

18 Brivaracetam 2016 CYP2C19 and OCT2/
MATEs inhibition

Result not available PBPK model not reviewed since
basic DDI prediction model was
sufficient

–

19 Ceritinib 2014 CYP3A modulation Clinically meaningful
effect predicted

No impact on labeling recommenda-
tion, PMR/PMC to conduct DDI
studies

No DDI data (as perpetra-
tor) for validation

20 Osimertinib 2015 CYP3A modulation Result not available No DDI data for validation

CYP, cytochrome; DDI, drug-drug interaction; ID, identification; MATE, multidrug and toxin extrusion transporter; NME, new molecular entity; OCT2, organic cation transport-
er 2; PBPK, physiologically based pharmacokinetic; PMC, postmarketing commitment; PMR, postmarketing requirement.
aThe numbers in the Reference column represent PubMed ID (if physiologically based pharmacokinetic models were published in scientific journals). NDA review docu-
ments can be found at Drugs@FDA (http://www.fda.gov/drugsatfda). If not specified, Simcyp was used for PBPK simulations.

Table 3 PBPK models in product labels or FDA review documents: Drug absorption

ID NME Year of approval
Detail of predicted

scenarios Simulation results Impact / outcome Referencesa

21 Alectinib 2015 Timing of food on
alectinib exposureb

Less than 20%
change predicted

PBPK model not reviewed because
no obvious exposure-response
relationship identified

27450228

22 Ceritinib 2014 Food effect Cmax change matched observa-
tion but AUC did not

No direct labeling impact, FDA
exploratory simulations

Effect of gastric pH change Cmax and AUC decrease by 10%

P-gp contribution to intesti-
nal absorption

Appeared to be minimal

23 Ibrutinib 2013 Food effect to explain dif-
ferent exposure between
healthy and oncology
subject

Pharmacokinetic differences
ascribed to type and timing of
food on hepatic/intestinal blood
flow rate

No direct labeling impact

Intestinal exposure
prediction

Dose staggering could lower the
risk of P-gp-mediated DDI

24 Naloxegol 2014 P-gp contribution to intesti-
nal absorption

Appeared to be minimal No direct labeling impact 27299937

25 Panobinostat 2015 Effect of gastric pH
changec

Minimal effect predicted (no
change in the fraction of a drugs
absorbed up to the gastric pH of
8.0)

Label states no ARA effect
observed in simulation

26 Sonidegib 2015 Food effect Significant underestimation
compared to clinical data

No direct labeling impact, FDA
exploratory simulations

ARA, acid reducing agents; AUC, area under the curve; Cmax, peak plasma concentration; FDA, US Food and Drug Administration; ID, identification; NME, new molecular
entity; PBPK, physiologically based pharmacokinetic; P-gp, P-glycoprotein.
aThe numbers in the Reference column represent PubMed ID (if PBPK models were published in scientific journals). New drug application review documents can be found
at Drugs@FDA (http://www.fda.gov/drugsatfda). bGastroPlus was used for PBPK simulation. cGastroPlus and Simcyp was used for PBPK simulation. If not specified, Sim-
cyp was used for PBPK simulations.
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potent perpetrators constituted the majority of the applications
(11 among 13 NMEs; Table 1, IDs 1–11), and all applications
resulted in labeling recommendations (Table 1). In these cases,
existing clinical data with strong perpetrator(s) were used to
“anchor” the PBPK model performance, namely by accurately
providing fraction metabolized by a particular enzyme, which
provides a higher level of confidence in DDI prediction.1,5 For
example, a fourfold dose reduction of ibrutinib was

recommended for patients taking moderate cytochrome P450
(CYP)3A inhibitors based on the PBPK model validated with
clinical DDI data using strong perpetrators.
The elimination pathways for all the 11 NMEs involve

CYP3A-mediated metabolism, whereas two are metabolized by
CYP2D6 in addition to CYP3A. This observation is not surpris-
ing, considering that CYP3A and CYP2D6 are involved in
metabolism of a large proportion of marketed drugs, and well-

Table 4 PBPK models in product labels or FDA review documents: Other areas of PBPK applications

ID NME Year of approval
Detail of predicted

scenarios Simulation results Impact / outcome Referencesa

27 Ceritinib 2014 HI Minimal effect predicted No impact on labeling recom-
mendation, PMR to determine HI
effect

28 Ibrutinib 2013 HI Significant overestimation com-
pared to interim clinical data

No impact on labeling recom-
mendation, PMR to complete HI
study

29 Obeticholic acid 2016 HIb Simulated plasma exposure
matched observed parent and
metabolite pharmacokinetic profile;
predicted significantly smaller HI
effect on hepatic exposures than
plasma exposures

Helped regulatory recommenda-
tions of possible up-titration for
HI patients

30 Simeprevir 2013 HI Significant overestimation com-
pared to interim clinical data

No impact on labeling recom-
mendation, PMR to complete HI
study

27896690

Mechanism of non-
linear
pharmacokinetics

Saturation of OATP1B and CYP3A
explained observed nonlinearity in
exposure

No direct labeling impact, con-
tributed to model development
to inform DDI simulation

Ethnic differences in
exposure between
whites and Asian

Observed plasma exposure differ-
ence reproduced with simulation;
hepatic drug exposure simulated in
different populations

No direct labeling impact

CYP, cytochrome; DDI, drug-drug interaction; HI, hepatic impairment; ID, identification; NME, new molecular entity; OATP, organic anion-transporting polypeptide; PBPK,
physiologically based pharmacokinetic; PMR, postmarketing requirement.
aThe numbers in the Reference column represent PubMed ID (if physiologically based pharmacokinetic [PBPK] models were published in scientific journals). NDA review
documents can be found at Drugs@FDA (http://www.fda.gov/drugsatfda). bIn-house custom model built on Phoenix nonlinear mixed effects was used for PBPK simulation.
If not specified, Simcyp was used for PBPK simulations.
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Figure 1 Overview of physiologically based pharmacokinetic (PBPK) information in product labels or US Food and Drug Administration (FDA) review docu-
ments for drugs approved by the FDA between January 2013 and August 2016. (a) Number of new molecular entities (NMEs) with information of PBPK for
respective areas of applications. (b) Proportion of product labels/reviews containing PBPK information for drugs in all NMEs, anticancer agents, and
NMEs with breakthrough therapy designation and/or accelerated approval status at the time of approval. The numbers on the bars represent the number
of products in each category. Three of eight NMEs with PBPK in nononcology field were for rare diseases. Seven of eight NMEs with PBPK and
breakthrough/accelerated approval status were anticancer agents. DDI, drug-drug interaction; PGx, pharmacogenomics.
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established probe perpetrators are available for these two
enzymes. For two CYP3A and CYP2D6 dual substrates, aripipra-
zole lauroxil and eliglustat, complex interactions involving the
inhibitors of these enzymes and CYP2D6 genotype have been
predicted and utilized for dosing recommendations. Anchoring
of model prediction with both a strong inhibitor and an inducer
has been conducted in most cases, but there were two cases in
which model validation with inhibitors was used for the predic-
tion of inducer effect (cobimetinib, panobinostat), both of which
resulted in a conservative labeling language of avoiding concomi-
tant use with the strong inducers. This may suggest that the
required level of PBPK model qualification depends on the con-
text of PBPK application.
Because modification of recommended dose in the product label

is considered a “high-impact” application of PBPK,2 the use of a cer-
tain amount of clinical pharmacokinetic data as an external valida-
tion dataset has generally been required for including dosing
recommendations in the product label. The case of belinostat is
intriguing-although there were no external data, the simulation per-
formed by the FDA during the NDA review resulted in label lan-
guage recommending a 25% reduction in the starting dose for
homozygous carriers of a genetic polymorphism of its major meta-
bolic enzyme, UDP-glucuronosyltransferase 1A1. This is likely, in
part, because the recommended starting dose is equal to the maxi-
mum tolerated dose. PMR to definitively examine the effect of phar-
macogenetic alteration on belinostat pharmacokinetics and safety
was included in the NDA approval. Therefore, even when the
PBPK approach could not obviate the conduct of a dedicated clini-
cal study, the model can inform the optimal use of medications.

New drug as a perpetrator of drug-drug interactions
The second most frequent use of PBPK modeling is to predict
the DDI potency of an NME as a perpetrator (inhibitor/inducer;
Table 2). Four NMEs (IDs 14–17) have successfully utilized a
PBPK modeling approach to demonstrate the lack of a clinically
significant effect on the metabolic pathways of interest for the
particular drug. Interestingly, strategies of model validation were
different for these four NMEs. One method was to use a negative
clinical DDI result with other CYP enzymes as an external vali-
dation (alectinib, panobinostat), whereas another was to use a
sensitivity analysis on inhibition parameters (alectinib, canagliflo-
zin). In the case of lenvatinib, an external model validation was
seemingly not performed, presumably supported by general per-
ception that PBPK-based prediction of mechanism-based inhibi-
tion leads to overestimation of DDIs.5 These observations based
on limited cases suggest that required levels of model validation
could be flexible, and that we may expect wider application of
PBPK in this category.
There were two NMEs with PBPK models for which addition-

al dedicated clinical DDI studies with CYP3A substrates were
requested as PMR. For ceritinib, PBPK prediction resulted in a 5
to 10-fold increase of midazolam exposure. In addition, neither
of these two NMEs had supporting clinical data to verify model
performance. Further examples will be needed to evaluate the
ability of the PBPK approach to quantitatively predict positive
DDI effects.1

Drug absorption and other areas of application
Most of the PBPK applications on absorption-related pharmaco-
kinetic changes were exploratory and did not impact the labeling
recommendation (Table 3). One exception was panobinostat,
for which the product label states “altered panobinostat absorp-
tion was not observed” with drugs that elevate the gastric pH in
PBPK simulation.
Other PBPK applications observed in the NDA review docu-

ments include prediction of the effect of hepatic impairment
(HI; Table 4), but PMRs were issued for three of four NMEs to
conduct or complete dedicated clinical studies, presumably
because of the low level of reliability.1 In the case of obeticholic
acid, the effect of HI on hepatic exposure was explored with
PBPK simulations, and this helped to inform the dosing recom-
mendation in patients with HI.

Potential expansion of physiologically based pharmacokinetic
model applications
The regulatory impacts of PBPK-based predictions have been lim-
ited in areas other than metabolism-based DDIs and pharmacoge-
netics, such as in transporter-mediated DDIs or effect of acid
reducing agents. This is largely attributable to lack of prediction
performance verifications. Accumulated experience of PBPK appli-
cation in these areas will help to establish the level of confidence
necessary to inform regulatory decisions. Also, some degree of mod-
el validation with clinical data using the NME has generally been
required for high-impact regulatory decisions.2 Currently, valida-
tion of system components, such as hepatic metabolic activity in
patients with renal impairment, based on other molecules that
share same elimination pathways has not been considered suffi-
cient. Such limitations have impeded the application of PBPK
models to replace clinical studies for evaluating so-called “intrinsic
factors,” such as in pediatric populations, to evaluate ethnic differ-
ences in pharmacokinetics, or in patient populations with organ
impairment. The authors believe that future verification efforts of
PBPK-based prediction performance with cross learning from oth-
er molecules, including both xenobiotics and endogenous bio-
markers, will greatly expand the use of PBPK beyond DDI and
pharmacogenetic applications and will contribute to acceleration
of new drug development.
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