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Associative learning (AL) is one of the key mechanisms displayed by living

organisms in order to adapt to their changing environments. It was recognized

early as a general trait of complex multicellular organisms but is also found in

‘simpler’ ones. It has also been explored within synthetic biology using mol-

ecular circuits that are directly inspired in neural network models of

conditioning. These designs involve complex wiring diagrams to be

implemented within one single cell, and the presence of diverse molecular

wires become a challenge that might be very difficult to overcome. Here we

present three alternative circuit designs based on two-cell microbial consortia

able to properly display AL responses to two classes of stimuli and displaying

long- and short-term memory (i.e. the association can be lost with time). These

designs might be a helpful approach for engineering the human gut micro-

biome or even synthetic organoids, defining a new class of decision-making

biological circuits capable of memory and adaptation to changing conditions.

The potential implications and extensions are outlined.
1. Introduction
A specially important component of adaptation in nature is based on the capacity

of some living beings to respond to external signals by a combination of repeated

exposure to stimuli and the potential for storing memories. One classical example

is provided by early experiments on conditioning, also known as associative

learning (AL), and is one particularly important example of a general class of pro-

cesses involving associative memory [1,2]. In these experiments, a given animal is

known to respond automatically to an unconditioned stimulus (US) such as air

puff in the eye that leads to eyelid closure. Instead, another stimulus such as a

weak noise is unlikely to elicit a response. This would be an example of a con-

ditioned stimulus (CS). In a nutshell, AL occurs when both stimuli are

simultaneously presented, in such a way that a repeated exposure to both stimuli

creates a cognitive link. At some point the exposure to only CS leads to the

response that was originally limited to US: the weak noise triggers eyelid closure.

Conditional learning is part of the enormous potential exhibited by organisms

having neuronal systems and might have been a crucial innovation in the evol-

utionary history of multicellularity [3]. Many forms of adaptation are grounded

in neuronal circuits capable of creating correlations between different events, pro-

viding a plastic and reliable way of predicting future changes [4,5]. Most of these

examples involve the presence of a neural circuitry, but the phenomenon also

seems to be at work in non-neural agents. For example, microorganisms are

capable of dealing with environmental correlates and can perform decision-

making tasks [6–10]. This includes, in particular, molecular mechanisms respon-

sible for information processing [11,12]. A relevant question here is how could we

synthetically enhance the cognitive complexity of microorganisms and how can

this give insight into the origins and evolution of microbial intelligence [13]?

The potential for designing living systems has been rapidly improved in

the last decade. Among the most promising areas where such engineering of

microbial intelligence can be crucial is the engineering of the human microbiome
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Table 1. Transition table for the simplified Boolean circuit implementing
the two-cell circuit shown in figure 1c. The different input pair values
given in the two left columns provide the sequence of states (X and Y for
the conditional and unconditional inputs) introduced to test the presence of
AL, assuming that G1 ¼ 0 and G2 ¼ 1 at the beginning.

X
(uncond)

Y
(cond)

state
G1

state
G2 output

0 0 0 1 0

0 1 0 1 0

1 0 0 1 1

1 1 1 0 1

0 0 1 0 0

0 1 1 0 1

1 0 1 0 1

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170158

2
[14–16]. Treatments and recovery from disturbance have been

shown to be transitions among alternative states [17,18].

Mounting evidence reveals that this complex ecosystem is

relevant in many pathological states and that engineered

microbes could be designed to detect and cure microbiome-

related disorders [19]. Because we often deal with complex

diseases, such as inflammatory processes, these engineered

microbes need to be ‘smart’, capable of delivering drugs

under the required conditions but also able shut off once the

inflammation is eliminated. This is more obvious if we take

into account the enormous crosstalk that has been identified

between microbial and human cells [20] particularly in relation

to the gut microbiome and the nervous and immune systems

[21]. Engineering such microbial circuits is a major challenge

that requires moving beyond the sense-and-deploy framework.

Building complex decision-making circuits within a single

cell is a challenging task, but several candidates have been

suggested [22–27]. These studies propose different ways of

approaching the problem of building synthetic systems capable

of diverse levels of bacterial information processing. One

example is the AL circuit presented by Fernando et al. that

could be implemented in Escherichia coli as a model organism

[23]. It was inspired by previous theoretical studies that used

model neural networks to explain the process under a minimal

set of assumptions. In this case, the problem with the proposed

design (as well as many others) is that it requires several inter-

actions to be engineered to tune the connectivity matrix of

the molecular network, with all the problems derived from

crosstalk [28].

In this paper, we aim to provide a simple short cut to this

problem, by using consortia of cells that are used as basic

modules, each one containing a small amount of engineering.

This approximation has been successful in different contexts

[29–34]. In the next section, we describe the logic behind

our system design in order to illustrate its simplicity. Next,

a potential implementation using a computational model

for E. coli will be described.
2. The logic of multicellular learning
A synthetic circuit capable of AL requires modulation of the

internal states through the learning process. Because the circuit

responds to one signal (US) but not the other (CS) unless they

have been previously presented together, this indicates that the

internal states of the underlying molecular circuit must have

changed (see table 1). In figure 1a, we show an example of a

genetic implementation of AL introduced by Sorek et al. [25].

This work proposed a design inspired in neural networks.

Here X can activate the response R whereas Y will do it

(when X ¼ 0) only if an intermediate module M (that needs

to be previously activated by X þ Y) has the right expression

level. This kind of design and others of similar inspiration

[23] require sophisticated wiring if implemented inside

one cell.

One of the most fundamental requirements for AL is

memory, and designing synthetic memory circuits has been

an active area [35–41]. A well-known, successful example of a

memory circuit is provided by the toggle switch [35,42,43].

This module has been extensively studied and characterized

and is one of the best known components in cellular engineer-

ing. Because a molecular switch is capable of storing two

alternative states, we use it here as a key piece of our proposed
multicellular circuit. This introduces a restriction within the

design of the system in relation to previous models. In order

to illustrate how we perform our implementation, we represent

a basic wiring diagram in figure 1b where two inputs are indi-

cated as X and Y, corresponding to the unconditioned and

conditioned signals, respectively.

The diagram in figure 1b presents some similarities

with the one in figure 1a. We will assume here that the

switch has an internal, initial state, with G1 ¼ 0 and G2 . 0.

If X . 0 and Y ¼ 0, a response will be observed because

the response unit receives direct and positive stimulation

from X. Instead, since G2 inhibits the potential activation

from Y, a signal coming only from Y will not trigger a

response. However, if both X and Y activate G1, it can

toggle the switch, inactivating (or under-expressing) G2.

Once this simultaneous activation occurs, the system is

ready to react to Y only. This defines the basic logic of our

implementation, but we have split the circuit in two parts

(figure 1c) corresponding to a producer cell, C1, carrying

the toggle switch and a learning cell C2, that is wired to C1

through a molecular wire A. As can be seen, we maintain

the same scheme, but use cells as modules that reduce the

complexity of the engineering. In the next section, we make

an explicit case for a microbial consortium capable of AL.

Because of the large number of equations involved, math-

ematical developments can be performed and the solutions

will be numerical. However, it is possible to see how the

model works (and predict the key outcomes) by using a

simple Boolean circuit as the one indicated in figure 1c.

Here we use a discrete dynamical system based on a

threshold network where all states are either 0 or

1. A reporter signal (OUT) with two possible states provides

the result of the computation. In the middle of the circuit, we

have located a module involving cross-repression of two

elements (G1 and G2) one of which can also modulate

(through an inhibitory interaction) the effect of Y on the

output. We can actually represent these interactions in

terms of a Boolean dynamical system, where the state of

each element Si(t) [ fX, Y, G1, G2, OUTg at a given step t
(assuming time is discretized) follows a discrete threshold

dynamics: Si(t þ 1) ¼ F[WjiSj(t) 2 ui]. Here the connections

among different pairs are indicated as Wji and can be positive
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or negative, indicating activation or inhibition, respectively

[4]. The thresholds ui provide a condition for the total input

in order to trigger a response. This is defined by the threshold

function Q(x) which gives Q(x) ¼ 1 if x � 0 and 0 otherwise.

This ideal function is a discrete, all-or-none version of the

standard cooperative functions used in models of genetic

networks (see §3).

For the circuit described in figure 1, our (discrete)

equations are written as follows:

G1ðtþ 1Þ ¼ F½�G2ðtÞ þ u�, ð2:1Þ

G2ðtþ 1Þ ¼ F½XðtÞ � YðtÞð1� G1ðtÞÞ � u� ð2:2Þ

and OUTðtþ 1Þ ¼ F½XðtÞ þ YðtÞ�: ð2:3Þ

It is possible to show, following the discrete steps of this

Boolean model, that an AL dynamic is being satisfied. The

sequence of states associate with the consortium displayed

in figure 1c is shown in table 1, where the set of possible

input pairs (X, Y) and the (G1, G2) the states of the elements

defining the memory switch (see table 1).
3. Associative learning in a synthetic microbial
consortium

In order to avoid undesirable effects derived from complex

constructs, cellular consortia, where different parts of the

computation are split into different engineered cells, can be

used as an alternative to single-cell designs. An example of

such a synthetic consortium is displayed in figure 2a. It com-

bines both constitutive and regulated gene expression and

splits the circuit complexity in two separated cells. As sum-

marized in figure 1b–e, the required behaviour is split into

two basic modules, each one using different engineering.

Although we will assume that the two cell types belong to

the same species, this is not a necessary condition. Each cell

in the consortia acts as a separated chassis for a subset of

the required circuit. In our proposed implementation, we

will use available information concerning well-established

constructs and parameters gathered from the available litera-

ture and take E. coli as our model organism. Several potential

candidates could be used as inputs, such as anhydro-

tetracycline (aTc) as our non-conditional stimulus (X ) and

acyl-homoserine lactone (AHL) (produced the gene luxI
from the Vibrio fischeri quorum sensing system) as a CS (Y).

In the presence of this stimulus, there is no response unless
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the system has established the association between X and Y.

In a nutshell, whereas X alone always induces a system’s

response, Y does not.

We have chosen a fluorescent protein as the candidate

for the cell’s output, although this could be a gene that trig-

gers the delivery of a given therapeutic molecule. LuxR is a

transcriptional activator from the V. fischeri quorum sensing

system that binds to its cognate promoter Plux activating

the expression of genes under its control. The wild-type

LuxR is inactive when produced. AHL, produced by another

gene, luxI, is an auto-inducer that binds LuxR and increases

its activity.

The mathematical model associated with the cellular con-

sortium displayed in figure 2 is decomposed into two sets of

equations. Both cells have X and Y as inputs, but the nature of

their responses is markedly different.

3.1. Producer cell equations
For the producer cell, we have five coupled differential

equations, describing the basic interactions indicated in

figure 1d. These equations are standard in the modelling of

gene regulation networks [44]. Here we have a feed-forward

set of interactions described by

d½LasR�
dt

¼ gLasR � dLas½LasR�, ð3:1Þ

which is a constitutive gene (here Pc will indicate a constitu-

tive promoter) with a constant production rate gLasR. The

dynamical equations for the rest of components in our

cellular circuit read

d½LuxR�
dt

¼ gLuxG2ð½LasR�, ½A�Þ � dLuxR ½LuxR�, ð3:2Þ

d½cI�
dt
¼ gcIG1ð½LuxR�, ½Y�Þ � dcI½cI� ð3:3Þ

and
d½TetR�

dt
¼ gTetR

1þ ð½cI�=bcIÞ2
� dTetR½TetR�: ð3:4Þ

The equation for the response dynamics, described by the

concentration of our reporter, is defined by

d½GFP�
dt

¼ gGFPG3ð½TetR�, ½X�Þ � dGFP ½GFP�: ð3:5Þ

The molecules are produced with g rate and their own

decay rate associated with the dilution and the loss of

function (d). The non-constant promoters have associated

the following Hill functions used here are described by

the functions G1([LuxR],[Y]) and G2([LasR],[A]) involving

thresholded activation

G1ð½LuxR�, ½Y�Þ ¼ ð½LuxR�½Y�Þ2

uLux þ ð½LuxR�½Y�Þ2
ð3:6Þ

and

G2ð½LasR�, ½A�Þ ¼ ð½LasR�½A�Þ2

uLas þ ð½LasR�½A�Þ2
, ð3:7Þ

where u is the threshold of activation for each molecule.

And the following Hill inhibition function:

G3ð½TetR�, ½X�Þ ¼ 1

1þ ð½TetR�=bTetð1þ ½X�=mÞÞ2
: ð3:8Þ

In particular, we can see that the reporter will be active if no

repression from TetR is at work. Either by inactivation of

TetR or by the presence of X, the response will be observed.
In this function, b and m are the parameters associated with

the binding strength of the TetR and X molecules.

3.2. Learning cell equations
For the learning cell (figure 1e), we consider a different set of

equations. Here two genes are expressed constitutively thus

involving linear equations

d½LuxR�
dt

¼ gLuxR � dLuxR½LuxR� ð3:9Þ

and

d½TetR�
dt

¼ gTetR � dTetR½TetR�, ð3:10Þ

which provide the gene products that will interact with X and

Y within this cell under the nonlinear equations

d½LacI�
dt

¼ gLacIG3G1 þ
gl

1þ ð½cI�=bcIÞ2
� dLacI ½LacI�: ð3:11Þ

We have also the well-known equations for the toggle switch

defined by the pair

d½cI�
dt
¼ gcI

1þ ð½LacI�=bLacÞ2
� dcI½cI� ð3:12Þ

and

d½LasI�
dt

¼ gl

1þ ð½cI�=bcIÞ2
� dLasI ½LasI�, ð3:13Þ

which have two alternative states. Finally, the linear equation

for the production of the molecule A, used in our first model

as the communication signal among the two cells

d½A�
dt
¼ gA LasI� dA½A�: ð3:14Þ
3.3. Cell – cell communication wire
A final component needs also to be taken into account: the

diffusion of the wiring molecule A responsible for the inter-

cellular connection. The last equation above only considers

the production within C2, but it is shared with cell C1 by dif-

fusion and is also present in the extracellular medium (Ae).

Thus we need to write three equations that account for

the dynamics of A in each compartment (see figure 1). The

complete equations read

d½A2�
dt
¼ gA2

LasI� dA½A2� þDAð½Ae� � ½A2�Þ ð3:15Þ

d½A1�
dt
¼ DAð½Ae� � ½A1�Þ � dA½A1� ð3:16Þ

and
d½Ae�

dt
¼ DAð½A1� þ ½A2� � 2½Ae�Þ � dA½Ae� ð3:17Þ

corresponding to the two cells and the extracellular medium,

respectively.

3.4. Associative learning dynamics
The previous equations start from an initial condition where

the toggle switch is displaced towards cI. This defines the

memory state of our system at time 0. Each input is intro-

duced in the system in a pulse-like way. The independent

responses of each cell under the presence of the two classes

of inputs are shown in the electronic supplementary

materials, figures S1 and S2. In figure 2, we show a typical
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example of the numerical experiment consistent with an AL

process. The left diagram (figure 2a) provides a schematic

representation of all the interactions, and figure 2b shows

the time series obtained from the model. We first start by

introducing X but not Y . This leads to a response as shown

by the pulse in GFP, which disappears as X is also removed

from the system. The positive response is easy to understand,

because the only pathway being affected leading to GFP

is indicated in figure 2c, where X blocks the inhibition
of the reporter from TetR. Afterwards, we do the same exper-

iment with Y, but in this case no active reporter is seen.

The repressor of GFP acts with no inhibition (figure 2d ),

and the paths affected by Y do not propagate. The crucial

change occurs when the two inputs are simultaneously corre-

lated. Here the reporter is again activated (top of diagram e)

as it happened in the first X-only pulse. However, the

effect of the simultaneous input on the toggle switch is that

the state of the cI–LacI pair switches to the opposite state,
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where LacI is now expressed and cI repressed. This is the

internal state that has changed as a consequence of the corre-

lated stimulus and will remain in this state once we remove

both inputs.

Once the previous pulse has been applied and both

inputs removed again, we can see the effect of these corre-

lated input when the conditioned Y signal is introduced in

the absence of the unconditioned one. Here the stored

memory state in the toggle switch has a very different

impact. In this case, this state is not changed but allows the

propagation of the effects of Y to the producer cell, where

cI is produced, repressing TetR and thus allowing GFP to

be expressed. The consortium has created an association

(thanks to the toggle) that essentially modifies the system’s

response to the conditioned state.

The model presented above has been analysed using a

given parameter combination. What is the effect of other par-

ameter values on the dynamical response of the consortium

to other parameter combinations? Two parameters in particu-

lar are relevant to our exploration of the response of the

system. These are the production rates gLac and gl. By explor-

ing the (gLac,gl) parameter space (figure 3a) using a wide

range of parameter values, i.e. 1024�gLac,gl�100. Four dyna-

mical phases are found, which are associated with four

different types of responses to the incoming stimuli.

As in previous sections, the synthetic consortium receives

a sequence of inputs where the unconditioned stimulus X is

used first, followed by the conditional one Y and then

both together. Afterwards, pulses of Y are introduced and

the type of output response is used to classify the circuit’s

behaviour. The right panel in figure 3 shows examples of the

output response for each phase as the sequence of stimuli is

introduced. The four classes are captured by the time series
associated with each one (A–D) in figure 3 (upper panel).

No learning occurs within one phase where there is an uncon-

ditional response only. In a second phase (damped learning, B,

see figure 3 (lower panel)), a small response is observed

suggesting association, but it is rapidly lost after one weak

response to the CS. The yellow domain indicates the AL par-

ameter space whereas the domain of learned systems is

associated with responses by both stimuli, regardless of how

they are presented. The plot has been created on a log–log

scale, and thus we can see that a broad range of parameters

are consistent with this behaviour.
3.5. Suppressing associative learning
Once the association has been established in our circuit, as it

occurs with conditioned learning in animals, the switch is

locked in a given state that allows the association to be stable

over time. However, if this is a circuit that has been designed

to respond to unconditional stimuli once the inputs of both

kinds are presented simultaneously, it can be interesting to

return to the initial state where the consortium has not yet

learned to associate the two stimuli.

The LacI protein has one well-known inhibitor, the IPTG

molecule, which

d½cI�
dt
¼ gcI

1þ ð½LacI�=bLacð1þ jÞÞ2
� dcI ½cI�, ð3:18Þ

where j ¼ IPTG / bIPTG. A pulse of IPTG produces inhibition

of the LacI function. Then, the cI promoter is active again

leading to an inversion of the toggle switch LacI–cI. After

this process, the conditioning has been lost, as shown

in figure 4.
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4. Discussion
One of the challenges of synthetic biology is to make possible

the reprogramming of cellular behaviour by means of a pre-

dictable, engineered manipulation of the available molecular

toolkit. The potential of such engineered molecular networks

is great, and cover a wide range of areas, from standard bio-

sensors to complex decision-making circuits able to gather a

range of external stimuli from the environment and respond

according to a predefined set of rules. An important goal is

to provide these engineered systems with the appropriate

adaptation potential, which necessarily requires the use of

learning and memory. In this context, the potential for recapi-

tulating the evolutionary innovations by building synthetic

circuits provides a unique opportunity for the study of major

transitions [13].

Several possible variations of our multicellular design

can be described showing different potential learning beha-

viours. In figure 5, we suggest two such alternatives. The first

(figure 5a) provides the consortium with the capacity to exhibit

AL for a wide range of parameter values (as shown in the
phase diagram) although it cannot be silenced. Specifically, it

can be shown that, once the learning cell is activated by the sim-

ultaneous presence of X and Y, the communication molecule

(A) will remain auto-activated and always produced in the

learning phase (C). An additional example (figure 5b) is pro-

vided by another learning circuit. The difference is that in

this case, the cell eventually loses its memory after a short

time (and thus exhibits damped learning, phase B). These

two circuits show that the learning process can be engineered

using alternative systems depending on the requirements of

the problem.

The proposed synthetic systems presented here show that

the use of cell consortia can help when designing complex

decision-making biological circuits capable of coping with

external signals and their changes. The human microbiome

provides an ideal testbed for these kinds of synthetic designs.

If the metaphor of this as a ‘second brain’ becomes valid,

then what we are suggesting is to introduce pieces of compu-

tational complexity to play an active role within the network

of microbial interactions. Our example also combines the

internal machinery that responds to external signals (which
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could be drugs) with a flexible design capable of exploiting the

history of previous events. This basic scheme can be general-

ized to more complex designs. Future work should test the

experimental feasibility of our approach as well its scalability.

We should also consider the conditions under which the

whole consortium will operate properly: we implicitly

assume that the external context will act as a proper selection

filter, thus maintaining the consortium as a cohesive entity.

The circuits proposed above assume that the two-cell con-

sortium is obtained by engineering the same class of model

organism, but this is not required for our purposes. Mixed

consortia involving both microbial and human cells could

be constructed, and other possibilities are also available,

including the design of symbiotic consortia between soil

microorganisms and plant cells (or nitrogen-fixing micro-

organisms living within plant nodules) as potential

strategies of ecosystem repair [19,26]. Regarding diseases

associated with a malfunctioning microbiome, our results

suggest that both permanent and transient modifications of

some engineered strains could help to dynamically control

some key processes requiring memory and learning. This is

an interesting possibility given the feedback existing between

both the immune system and the brain as connected with the

microbiome [45,46]. Because both immune and brain net-

works are capable of displaying learning and memory,

microbial consortia such as the ones presented here could

act as extensions of neural-like decision circuits.
Finally, another interesting possibility concerns the design

of synthetic learning circuits (along with other computatio-

nal structures) that could be incorporated within organoids

[47]. This picture was proposed by Jamie Davies, who introdu-

ced the concept of synthetic morphology as a hybrid discipline

aimed towards the programming of tissues and artificial

multicellular assemblies [48]. A closely related view, named

morphogenetic engineering, a synthetic biology path, was

suggested as a form of shape engineering exploiting

both programmed circuits and self-organization [49]. Extra

computational complexity can be achieved by introducing

synthetic circuits as part of complex multicellular structures.

Such enhanced cognitive complexity might be a desirable

trait of future designed organoids and allow a move away

from natural design principles [50].
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31. Solé RV, Macia J. 2013 Expanding the landscape of
biological computation with synthetic multicellular
consortia. Natural Computing 12, 485 – 497. (doi:10.
1007/s11047-013-9380-y)
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