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There has recently been growing evidence that atrial fibrillation (AF), the most

common cardiac arrhythmia, is independently associated with the risk of

dementia. This represents a very recent frontier with high social impact for

the number of individuals involved and for the expected increase in AF inci-

dence in the next 40 years. Although a number of potential haemodynamic

processes, such as microembolisms, altered cerebral blood flow, hypoperfusion

and microbleeds, arise as connecting links between the two pathologies, the

causal mechanisms are far from clear. An in silico approach is proposed that

combines in sequence two lumped-parameter schemes, for the cardiovascular

system and the cerebral circulation. The systemic arterial pressure is obtained

from the cardiovascular system and used as the input for the cerebral circula-

tion, with the aim of studying the role of AF on the cerebral haemodynamics

with respect to normal sinus rhythm (NSR), over a 5000 beat recording. In par-

ticular, the alteration of the haemodynamic (pressure and flow rate) patterns in

the microcirculation during AF is analysed by means of different statistical

tools, from correlation coefficients to autocorrelation functions, crossing

times, extreme values analysis and multivariate linear regression models.

A remarkable signal alteration, such as a reduction in signal correlation

(NSR, about 3 s; AF, less than 1 s) and increased probability (up to three to

four times higher in AF than in NSR) of extreme value events, emerges for

the peripheral brain circulation. The described scenario offers a number of

plausible cause–effect mechanisms that might explain the occurrence of critical

events and the haemodynamic links relating to AF and dementia.
1. Introduction
Atrial fibrillation (AF), leading to an irregular and faster heart rate, is the most

common tachyarrhythmia with an estimated number of 33.5 million individuals

affected worldwide in 2010 [1], and its incidence is expected to double within the

next 40 years [2]. Besides thromboembolic transient ischaemic attack (TIA) and

stroke—whose risk is increased fivefold in patients with AF [3] and is associated

with both cerebral impairment and dementia [4]—it has been recently observed

that AF is independently associated with cognitive decline through a range of

different potential haemodynamic mechanisms, such as silent cerebral infarctions

(SCIs) as a result of microembolization [5,6], altered cerebral blood flow [7], hypo-

perfusion [8] and microbleeds, whose repetition increases the risk of intracerebral

haemorrhagic events and dementia by five times [9].

Although representing a currently debated topic [10], there is growing

evidence that AF—independently of clinically relevant events—enhances the

risk of dementia and cognitive deficit [8,9,11]. Several different kinds of observa-

tional works—such as meta-analyses [12–14], reviews [15,16], and cross-sectional

[17–19], cohort and longitudinal [20–25] studies—confirm an independent

association between AF and cognitive decline at differing grades of severity.
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Only a few studies with critical limiting aspects and potential

sources of bias, such as small population [26], very high rate

of loss during follow-up [27] and very elderly subjects (aged

85 and older) [28], found no significant relationship between

AF and cognitive impairment.

However, most of the above observational studies can only

show an association between AF and cognitive impairment

and not a causal relation based on haemodynamics for any

of the known potential mechanisms. Recently, the role of

SCIs in cognitive function during AF has been assessed

through magnetic resonance imaging [6]. Although some of

the haemodynamic consequences of AF, such as lower diastolic

cerebral perfusion and decreased blood flow in the intracranial

arteries, have been reported ([8,9,15] and references therein),

the linking mechanisms with cognitive impairment remain

theoretical or mainly undetermined.

To the best of our knowledge, the specific impact of the

altered AF heart rate on the cerebral haemodynamics is still

in great part unexplored. In fact, currently adopted clinical

techniques in the field of cerebral haemodynamics—such as

transcranial Doppler ultrasonography—lack the resolving

power to give any insights on the microvasculature, in terms

of flow and pressure signals. In particular, little is known

about the consequences of AF treatment on the evolution of

cognitive decline. So far, only a few studies have examined

the potential benefits from AF treatment in reducing cognitive

impairment. Increased cognitive dysfunction was found to

relate to less effective oral anticoagulation treatment [29],

while AF patients who underwent catheter ablation had a

lower risk of dementia than those who did not [30]. These

studies, though not prospective and with biased information,

give insights that specific treatments for AF could modify the

risk of dementia. The intriguing recent hints offered by the lit-

erature encourage a deeper comprehension of the AF effects on

hypoperfusion and irregular cerebral blood flow, which is still

lacking [31].

The efficiency of a mathematical modelling approach to

describe the cerebral circulation has been widely recognized,

and in silico haemodynamics is currently a rising field of

research (e.g. [32,33]). In a previous work, we obtained the

first exploratory results by adopting two lumped-parameter

models for the cardiovascular and cerebral circuits, which

highlighted the onset of critical events—such as hypoperfu-

sions and hypertensive events—at the arteriolar and

capillary levels during AF [34]. The aim of the present work

is to understand and analyse—through a systematic and

extensive signal analysis—possible haemodynamic-based

causal relations underlying the occurrence of such critical

events, for which AF may imply cognitive dysfunction. The

statistical tools exploited here are borrowed from classical

time-series analysis and include cross-correlation functions

between the input pressure/flow rate signals and the corre-

sponding downstream signals, autocorrelation functions in

different cerebral regions, distribution of consecutive time

lapses spent above/below the mean value of the pressure

and flow rate temporal signals, detection of minimum and

maximum haemodynamic values per beat, quadrant analysis

and multivariate linear regression models for the haemo-

dynamic variables (averaged by beat). A model-based

estimation of these critical events can offer useful hints for

the assessment of some of the AF treatments, in particular

rate and rhythm control strategies, as it can suggest the

priority treatment to minimize neurodegenerative changes.
To isolate single cause–effect relations and ascertain

which AF-driven variation mostly affects the cerebral circula-

tion and should therefore be taken under strict control, a

comparative signal analysis (in terms of pressure and flow

rate time series) is proposed between normal sinus rhythm

(NSR) and AF signals over a 5000 beat recording. The

paper is organized as follows. In the Material and methods

section, the stochastic modelling, consisting of the cardiovas-

cular and cerebral systems, is introduced. The following

section (Pressure and flow rate signal analysis) proposes a

collection of different statistical tools to carry out a systematic

study of the signal variation. In the Discussion, a summar-

izing framework explaining the reasons for AF-induced

changes in the microcirculation is given. The Conclusion sec-

tion remarks that the emergence of critical events in AF turns

out to be caused by the signal alteration—especially in terms

of correlation, memory and complexity—induced by AF in

the microvascular haemodynamics.
2. Material and methods
2.1. Computational modelling and beating features
The stochastic modelling of the AF-induced cerebral haemody-

namics has been recently proposed [34] and consists of three

sequential steps. Figure 1 describes the modelling process

adopted (figure 1a–c) and shows a representative pressure

time series obtained as outputs (figure 1d ). The proposed sto-

chastic algorithm combines two different lumped models in

sequence: the cardiovascular model is exploited to obtain the sys-

temic arterial pressure, Pa, which is then used as the forcing input

for the next cerebral model.

— Building the RR intervals. We recall that RR (s) is the temporal

interval between two consecutive heart beats, while the heart

rate, HR, is the number of heart beats per minute. Normal

sinus and fibrillated beating are modelled via artificially built

RR intervals based on NSR and AF beating features (see the

details in [35]). Normal RR heart beats are extracted from a cor-

related pink Gaussian distribution (mean m ¼ 0.8 s, standard

deviations ¼ 0.06 s), which is the typical distribution observed

during sinus rhythm for RR [35]. AF beatings are instead

extracted from an exponentially Gaussian modified (EGM) dis-

tribution (mean m ¼ 0.8 s, standard deviation s ¼ 0.19 s, rate

parameter g ¼ 7.24 Hz), which is unimodal and represents

the most common AF distribution (60–65% of the cases)

[36,37]. The exponential contribution is responsible for

the uncorrelated nature of the AF beating. Comparison

between NSR and AF is proposed at the same mean heart

rate (75 beats per minute (b.p.m.)) to facilitate analysis of the

results. A total of 5000 beats are extracted and then simulated

for both configurations in order to achieve the statistical statio-

narity for the main statistics of the outcomes (the 5000 RR beats

extracted in NSR and AF conditions are reported in figure 1a).

— Cardiovascular model. Once the RR extraction is complete, a

lumped cardiovascular model is used to obtain the systemic

arterial pressure (Pa). The model was first proposed [38] to

describe, through a Windkessel approach, the complete

cardiovascular system. It includes the systemic and venous

circuits together with the four cardiac chambers which are

actively modelled. By means of a network of compliances,

resistances and inductances, the cardiovascular dynamics is

expressed in terms of pressures, flow rates, volumes and

valve opening angles. After being validated during resting

conditions over more than 30 clinical datasets [35,39], the

model has been exploited to study left valvular diseases
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Figure 1. Scheme of the in silico approach (the figure should be read clockwise starting from the left bottom). (a) Cardiovascular model: 5000 extracted RR records
in NSR (blue) and AF (red), and examples of Pa time series obtained through the cardiovascular model. (b) Cerebral circulation: sketch of the cerebral vasculature
forced by the Pa input, which is obtained from the cardiovascular model described in (a). (c) Cerebral mathematical model: R, resistance; C, compliance; Q, flow rate;
P, pressure. The left ICA – MCA pathway is highlighted in red and is composed of Pa, QICA,left, PMCA,left, QMCA,left, Pdm,left, Qdm,left, Pc and Qpv. (d ) Examples of pressure
time series. Representative resulting time series for the pressure along the ICA-MCA pathway, in NSR (blue) and AF (red) conditions, obtained from the cerebral
model described in (c). In (b – d ), the coloured boxes refer to different cerebral regions: large arteries (light blue), distal arteries (green) and capillary/venous
circulation (yellow).
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[40] during AF and the effect of increased heart rate in resting

conditions [41] and under exercise [42]. To account for AF

conditions, both atria are considered as passive (while in

NSR, they actively contract). We point out that the cardiovas-

cular and cerebral models are combined in sequence: once the

systemic arterial pressures, Pa, are obtained from the cardio-

vascular scheme in NSR and AF conditions, they are then

used as forcing inputs for the cerebral model. Examples of

Pa time series are reported in figure 1a.

— Cerebral model. Zero-dimensional modelling for the cerebrovas-

cular dynamics has been proposed [43] to study the whole

(arterial and venous) cerebral circulation (figure 1b,c). Similar

to the cardiovascular model, a framework of resistances (R
(mmHg s ml21)) and compliances (C (ml mmHg21)) accounts

for the dissipation effects and the elastic properties of vessels,

respectively. The cerebral circulation is expressed in terms of

pressure (P (mmHg)), volume (V (ml)) and flow rate (Q (ml

s21)) and can be divided into three principal regions: large

arteries, distal arterial circulation and capillary–venous circula-

tion. The first section is composed of the afferent arteries and

the circle of Willis, while the six main cerebral arteries link this

region to the downstream distal circuit. The distal arterial

circulation includes the pial circulation and the intracerebral

arteries–arterioles, and is split into six regional districts, inde-

pendently controlled by autoregulation and CO2 reactivity.
The cerebrovascular control mechanisms are individually

described by means of first-order low-pass dynamics, acting to

directly maintain the physiological flow rate level. The conse-

quent autoregulation mechanisms of vasodilatation and

vasoconstriction are ruled by a temporal variation of the distal

compliances, C, and resistances, R. A unique pressure down-

stream from the distal region represents the capillary pressure.

The cerebral venous circulation is defined by two-element Wind-

kessel modelling, while the cerebrospinal fluid circulation is

formed at the level of the cerebral capillaries. In the following,

a single pathway (internal carotid artery (ICA)–middle cerebral

artery (MCA)) highlighted in figure 1c is studied as a representa-

tive of the blood flow and pressure distributions from large

arteries to the capillary–venous circulation: left internal carotid

artery (Pa and QICA,left), middle cerebral artery (PMCA,left and

QMCA,left), middle distal region (Pdm,left and Qdm,left) and capil-

lary–venous circulation (Pc and Qpv). Examples of the pressure

time series of the ICA–MCA pathway are shown in figure 1.

More details on the cerebral model are offered elsewhere [34].

3. Pressure and flow rate signal analysis
The analysis, involving a record of 5000 beats (for both NSR

and AF), focuses on the pressure and flow rate time series



Table 1. Linear correlation coefficient, r, for NSR and AF conditions.
Signals are normalized with respect to their mean and standard deviation
values, as follows: xn ¼ (x 2 mx)/sx. For mean and standard deviation
values, refer to [34].
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along the ICA–MCA pathway and can be divided into two

main parts: (i) analyses of the continuous time series and

(ii) beat-by-beat analyses. In the first set, the signal is continu-

ous and defined by all the temporal instants of the time series.

In the second set, the signal is discretized and one-per-beat

data are obtained. Therefore, discretized time series are com-

posed of 5000 elements, corresponding to the 5000 beats

simulated. The ith element may contain the average values

( �Q and �P), as well as the maximum (Qmax and Pmax) and mini-

mum (Qmin and Pmin) values of the related haemodynamic

variables computed over the ith beat.
(QICA,left, QMCA,left) 0.99 0.98

(QICA,left, Qdm,left) 0.87 0.72

(QICA,left, Qpv) 0.88 0.80
3.1. Complete time-series analysis
3.1.1. Linear correlation coefficient and autocorrelation function.
The linear correlation coefficient is calculated between the

signal entering into the brain (Pa) and the signals downstream

up to the capillary region (PMCA,left, Pdm,left, Pc). Analogous

computation is performed for flow rates, that is, QICA,left with

respect to QMCA,left, Qdm,left and Qpv. In table 1, the linear cor-

relation coefficient, r, between couples of haemodynamic

signals is reported in NSR (column 2) and AF (column 3)

conditions. In both NSR and AF conditions, the correlation—

which remains very high in the middle cerebral artery

section—is damped towards the distal circulation. However,

the damping is by far more relevant in the fibrillated condition.

At the capillary–venous level, the correlation in AF is

decreased by up to 21% with respect to NSR for the pressure,

while in the distal region it is decreased by up to 17% for the

flow rate. The key aspect emerging here is that AF haemo-

dynamic signals in the deep cerebral circulation are more

prone than the corresponding NSR signals to lose their tem-

poral interdependence with respect to the large artery

circulation. Peripheral signals differ much more from the

corresponding input signals during AF than during NSR.
Figure 2 shows the autocorrelation functions, R(t), together

with the corresponding envelopes, Renv(t), of pressures and

flow rates at the large arteries level (figure 2a,b) and in the

capillary–venous region (figure 2c,d) for both NSR (blue)

and AF (red) (for details, see appendix A). NSR autocorrela-

tions in all cerebral regions display quasi-repetitive patterns

(with a period of about 0.8 s), and a decay in amplitude over

the delay axis. The coherence times reported in appendix A

provide evidence that NSR signals maintain long-term

memory (around about four beats) through the whole ICA–

MCA pathway (temporal coherence even increases a bit towards

the distal/capillary circulation). The picture is substantially

different in AF. For the input signals, R(t) still shows a remain-

ing quasi-periodicity although the decay rate is very high. In the

capillary region, the decrease in R(t) resembles the behaviour of

random signals. The coherence times, tc, in the AF regime con-

firm a loss of memory, with values varying between 1.11 and

0.87 s. Towards the deep cerebral circulation, the signal

memory deteriorates even more so that capillary/venous
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haemodynamic signals during AF reveal short-time memory

features (tc , 1 s). Therefore, the haemodynamic signals exhibit

much more complexity and random-like features approaching

the deep circulation in AF than in NSR.
180
3.1.2. Crossing time analysis
Quantification of the consecutive time lapses spent by each

variable above or below a certain threshold is introduced

here through the crossing time, Tcr: it represents the temporal

interval spent by the haemodynamic variable above or below

the threshold indicated by the mean value in NSR.

Figure 3a,b displays representative examples of Tcr intervals

for Pdm,left, during NSR and AF. The Tcr intervals are found

throughout the whole temporal series to evaluate how AF

influences the duration of excursions from the reference

mean value in NSR.

As the crossing times, Tcr, are computed over the whole

temporal series, we can then evaluate their probability density

functions (PDFs) in NSR and AF (figure 4). During NSR in the

large artery region (blue curves, figure 4a–d), Tcr values are

narrowly centred around the mean value, which is half of the

average beat, i.e. 0.4 s, thereby showing a stable oscillation of

the signals around their mean values. Going towards the

distal/capillary region (blue curves, figure 4e–h), the mean

values do not substantially vary, but the variability around

them increases, revealing wider PDFs. In AF conditions, in

the large artery region (red curves, figure 4a–d ), the mean

values are comparable to those observed during AF, while

the standard deviation values are increased by three to four

times. In the deep circulation (red curves, figure 4e–h), the

Tcr mean values increase with respect to NSR and the standard

deviation values increase by up to three to four times with

respect to the AF large artery region. The PDFs display much

more pronounced right tails and lose the symmetry shown

during NSR. As displayed in the example of figure 3, the

increased importance of the right tails implies that the AF sig-

nals lose their periodicity around the mean value and spend

long times (up to 2–3 s) consecutively well above or below

the physiological threshold, without crossing it.

Complementary information is related to the percentile

analysis. To highlight the AF-induced changes at the cerebral

level, during NSR we computed the percentiles, from the 5th

to the 95th (separated by 5ths), of the different quantities ana-

lysed, conferring on these percentiles the role of reference

NSR thresholds. In AF, we then evaluated to which percentile

each of the 19 NSR thresholds corresponds, thus quantifying

how AF modifies the probability of reaching extreme values.
An example is reported in figure 4a: the Tcr value indicated

by the 5th percentile in NSR corresponds to the 37th percen-

tile in AF. This means that a value that is extremely low and

rarely reached in NSR becomes common and frequently

attained in AF.

The inserts in figure 4 report the percentile analysis per-

formed on the Tcr values and represent to which AF

percentile (red) each NSR percentile (blue) corresponds. It

can be noted that in the large artery region low NSR percen-

tiles (5–20%) correspond to quite high AF percentiles (35–

50%), especially for the pressure. This means that shorter Tcr

values are more likely to occur in AF than in NSR. This picture

does not apply to the distal/capillary circulation, where, in

addition, high NSR percentiles (95–80%) relate to much

lower AF percentiles (70–50%). Thus, in the deep circulation,

Tcr values are statistically longer in AF than in NSR. This scen-

ario is similarly observed for both pressure and flow rate

and demonstrates in AF an increased probability of having

long temporal ranges where excursions from the baseline

haemodynamic value can develop.

The combined analysis of PDFs and percentile variation

of the crossing time Tcr reveals in the distal cerebral region

a higher probability of extreme value events, such as hypo-

perfusions or hypertensive peaks, as the pressure and flow

rate signals remain above or below their reference values

for much longer (and consecutively). With the following

beat-by-beat analysis, we will be able to specify which kind

of critical events may emerge, whether below (hypo) or

above (hyper) the NSR haemodynamic thresholds.
3.2. Beat-by-beat analysis
3.2.1. Minimum and maximum values analysis
Minimum (Qmin and Pmin) and maximum (Qmax and Pmax)

values over a cardiac beat are considered here, recalling

that these are instantaneous haemodynamic values. In appen-

dix B, the mean and standard deviation values of the 5000

minimum and maximum values are reported for the

haemodynamic variables. Figure 5 presents the PDFs of the

minimum and maximum values for pressures and flow rates

at the large arteries level (figure 5a,b) and in the capillary–

venous region (figure 5c,d) in NSR (blue) and AF (red). In

NSR, the maximum and minimum PDFs are narrowly centred

around the relative mean values and the coefficients of variation

(cv ¼ s/m) are well below 0.1, with values which do not signifi-

cantly vary along the ICA–MCA pathway. In AF, the mean

values do not essentially vary with respect to NSR (apart
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from Pa), while standard deviation values are significantly

larger, leading to cv values often above 0.1.

The inserts in figure 5 exhibit percentile variations in AF

with respect to NSR, by focusing on the maximum values for

pressures (figure 5a,c) and the minimum values for flow rates

(figure 5b,d). Although the input pressure is more likely to pre-

sent hypotensive events, partially due to an averagely lower Pa

in AF [35], on the contrary the probability of hypertensive

events increases along the ICA–MCA pathway, with a maxi-

mum at the capillary level (95% in NSR corresponds to less

than 70% in AF). For flow rates, we concentrate on the
percentile variations of the minima, as possible quantification

of hypoperfusive events. No significant differences emerge

when moving from large arteries towards the deep cerebral cir-

culation (figure 5b,d,f,h). Contrary to hypertensive events,

which are mainly linked to the instantaneous maximum

pressure values reached, hypoperfusions are more related to

the temporal persistence of the flow rate below the physiologi-

cal thresholds [34]. Therefore, pressure maxima are indicators

of increased hypertensive events, while flow rate minima—

being markers of low instantaneous flow rate—are not analo-

gously symptomatic of hypoperfusions. An improved
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interpretation can be gained through the analysis of mean

values per beat, which is offered in the following sections.

3.2.2. Analysis of mean values per beat
The mean values per beat are computed for pressure (�Pi) and

flow rate ( �Qi) over the 5000 cardiac periods (i ¼ 1, . . . ,5000).

These 5000 values are referred to the mean values, �P and �Q, of

the complete temporal signals: P�i ¼ �Pi � �P and Q�i ¼ �Qi � �Q.

In figure 6, flow rate–pressure scatter plots are reported in

NSR and AF conditions for the internal carotid artery (figure

6a), middle cerebral artery (figure 6b), middle distal region

(figure 6c) and the capillary–venous region (figure 6d), together

with a linear regression data fitting for each condition with the

corresponding coefficient of determination, R2. Data dispersion

is high at the large arteries level (R2 , 0.1), while it decreases

towards the microcirculation, reaching R2 values around 0.97,

with a strict direct proportionality between Q*pv and P*c. This

implies that, at the capillary–venous level, hypertensive

events are strictly concomitant with hyperperfusions, while

hypotensive episodes occur during hypoperfusions. The pre-

sent behaviour is observed in both NSR and AF; however, the

range of AF data is much wider, reaching extreme values.

The inserts in figure 6a–d represent the PDFs of the mean

flow rates, Q*i, confirming the enhanced variability going to

the peripheral regions, which is three times higher than that

in the large arteries. Moreover, standard deviation values, s,

are about four times higher in AF than in NSR at each region.

This combined increase in variability leads to extremely high

data dispersion in the microcirculation during AF and underlies

the mechanisms promoting the presence of hypoperfusions.

3.2.3. Multivariate and univariate linear regression models
Multivariate linear regression models are shown here for

the mean values �Pi and �Qi in the four regions, having as
regressors the preceding beats. The current mean value is

indicated as �P0 and �Q0, while with RR2i we refer to the ith
preceding beat. The models are formalized as follows:

�P0 ¼ aþ
XN

i¼1

aiRR�i ð3:1Þ

and

�Q0 ¼ bþ
XN

i¼1

biRR�i, ð3:2Þ

where a and b are the intercept values, ai and bi represent the

coefficients of the linear multivariate model, and N is

the number of regressors. By choosing N, a multivariate

model is built with N regressors. The number of regres-

sors was tested up to N ¼ 6, leading to six models for

pressure and six for flow rate, at each cerebral region

and rhythm condition (96 models are computed in total).

With N ¼ 1, the multivariate linear regression model turns

into a univariate linear regression model.

In figure 7, the coefficients of determination, R2, are shown

for each model as a function of the number of regressors, N, in

NSR and AF conditions for pressures and flow rates at the large

arteries level (Pa and QICA,left) and in the microcirculation (Pc

and Qpv). In general, AF presents lower R2 values than NSR

for the multivariate models, while for the univariate models

(N ¼ 1) AF shows higher R2 values than NSR for all flow

rates and capillary pressures. Moreover, in both NSR and AF,

R2 values are higher in the peripheral regions than in the

large arteries, as the signal average amplitude decreases

going downstream (e.g. in AF Pa,max 2 Pa,min ¼ 42 mmHg,

Pc,max 2 Pc,min ¼ 6 mmHg).

For pressures, in the large arteries region, the univariate

models capture most of the correlation, having R2 . 0.8 for

both NSR and AF. RR21 and RR22 are sufficient to accurately
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predict the current pressure level, �P0, at the cerebral entrance.

At the capillary level, instead, R2 reaches a plateau for N ¼ 4,

meaning that four preceding beats are necessary to retain the

present haemodynamic content. For flow rates, in the large

arteries region, univariate models are not very informative

(R2 , 0.2), while the main correlation content is retained by

RR22 and saturated with RR23. In the peripheral region, uni-

variate models gain relevance exceeding R2 ¼ 0.6; however, it

is necessary to consider up to four regressors to guarantee a

plateau for R2.

For both pressures and flow rates, the number of preceding

beats necessary to fully describe the current state increases

towards the microcirculation. It should, however, be noted

that, in all the regions and rhythm conditions, the multivariate

model with four regressors (N ¼ 4) represents the maximum

correlation level obtained. In fact, beyond this threshold, by

adding further regressors the prediction of the current state is

not improved. We can therefore conclude that RR beats are

significant regressors and the present haemodynamic state

has memory of the past to the extent of about four beats. In

other words, four consecutive beats are sufficient to predict

the next pressure and flow rate levels.

To better explore the role and weight of the preceding beats,

the multivariate models retaining the maximum correlation

level (four regressors) are now analysed in detail, with the

related coefficients a and b shown in NSR and AF for the

distal and capillary–venous sections (figure 8). Coefficients

a1 and b1 are always negative with large absolute values,

meaning that a substantial contribution to potential hypoper-

fusions and hypotensive episodes is linked to the length

of RR21. With a long RR21 beating, the terms b1RR21 and

a1RR21 become predominant, leading to a low flow rate and

low pressure levels. Coefficients related to RR22 are more
variable, as a2 and b2 are positive in the capillary–venous

region, while in the distal region a2 are negative and b2 are

close to zero. Coefficients a3 and b3 present moderate positive

values, and this scenario is found again with no considerable

variation for the a4 and b4 coefficients.

On the basis of the regression coefficients, the most

dangerous RR combinations can be finally studied, i.e.

those configurations which are able to minimize flow rate

(hypoperfusion) and maximize pressure (hypertensive

episode). We only consider the AF condition, where the RR

beating is uncorrelated. In NSR, instead, the beating is corre-

lated and closely varies around 0.8 s; therefore, all coefficients

have the same weight as they refer to beats that all remain

strictly around 75 b.p.m.

— Hypoperfusions can be obtained with the following

quadruplets:

(i) Qdm,left: RR21 long beat, RR22 any beat, RR23 short

beat, RR24 normal/short beat.

(ii) Qpv: RR21 long beat, RR22 normal/short beat, RR23

short beat, RR24 normal/short beat.

— Hypertensive episodes may occur with the following

quadruplets:

(i) Pdm,left: RR21 short beat, RR22 short/normal beat,

RR23 normal/long beat, RR24 long beat.

(ii) Pc: RR21 short beat, RR22 any beat, RR23 long beat,

RR24 normal/long beat.

The least probable configuration is distal hypertension,

since a sequence of consecutive beats with decreasing dur-

ation (from long to short) has to occur, while the most

probable combinations are represented by distal hypoperfu-

sion and capillary–venous hypertension. In fact, to obtain
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one of these two conditions at the current state, it is sufficient

to have a long (or short) last beat and a short (or long) third

to last beat, which is quite a plausible circumstance in AF.
4. Discussion
By means of different statistical tools, the signal analysis so

far described not only underlines the increasing impact of

AF on the cerebral microcirculation, but also suggests a

coherent framework explaining why AF induces such evident

haemodynamic changes. The key point is how differently the

cerebral regions respond to the alteration of the cardiac

rhythm.

To better understand this, we forced the cerebral modelling

with an idealized input. A sinusoidal input signal (period T ¼
0.8 s) is taken for Pa, with a mean value of 100 mmHg and four

different amplitudes (100+5, 100+10, 100+15 and 100+20

mmHg). When at the maximum or minimum amplitude, the

signal is abruptly interrupted and instantaneously jumps to
the mean value, then maintaining this steady state: the first

case is defined as an up-mean jump (an example with an ampli-

tude of 20 mmHg is reported in figure 9a, top panel), while the

second represents a down-mean jump. This approach is bor-

rowed from the theory of dynamical systems, where the

system is excited by an external impulsive forcing to under-

stand its response time. In this case, the system involved is

the cerebral circulation and reacts in the different downstream

districts, as reported in figure 9a (from top, Pa, to bottom, Pc).

Two basic remarks arise: (i) due to the inertia of the system,

the signal in the downstream sections does not immediately

reach the steady level, but it goes on oscillating with a

damped amplitude before recovering the equilibrium state,

and (ii) the transient damping behaviour considerably varies

along the ICA–MCA pathway. To associate a quantitative

measure with the transient dynamics, in every district down-

stream from the carotid entrance, we evaluate the time lapse,

Td, necessary to reach the steady constant levels of pressure.

Td represents the temporal delay or latency to recover the equi-

librium constant state in response to a sudden and abrupt
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variation, and it is identified by jdP/dt , ej (here e ¼ 1027) at

each section. The latency Td at the entrance (Pa level) is 0, since

the jump is instantaneous, while it has a finite value immedi-

ately downstream. In figure 9b, we report the time delay for

the pressure over the ICA–MCA pathway normalized with

respect to the corresponding value at the first region, PMCA,left.

For each of the four jump amplitudes (5, 10, 15 and 20 mmHg),

the two up-mean and down-mean jumps give similar results,

thus the average value between them is taken. As absolute

values of Td depend on the threshold e and the jump ampli-

tude, we consider the time delay normalized with respect to

the upstream district. In fact, the focus is not on the specific

value assumed by the latency but on its variation towards

the microcirculation.

It can be noted that the normalized behaviours of Td/Td

(PMCA,left) do not practically depend on the jump amplitude.

In the microcirculation, the latency in recovering the equilibrium

state is about five times greater than that at the beginning of the

middle cerebral artery. The longer delay is due to the interplay

between the different mechanical features of the cerebral

system, which here is modelled as an electric circuit, composed

by a network of resistances and compliances (figure 1c). These

mechanical and structural properties make the inertia of the

system increase when entering the cerebral circulation towards

the microvasculature. As a consequence, when a disturbance

at the carotid level propagates into the cerebral vessel network,

the distal and capillary regions remain altered for longer. The be-

haviour is analogous to that of a system of springs in series and

parallel, which is externally excited at one end: each spring stiff-

ness combines with the others, and, at a point far from the

perturbed end, the damping of the oscillation is lengthened,

even if the external perturbation is ceased.

The synthetic alteration of the carotid signal here

described is a limit case, but it relates well to the fundamental

mechanism underlying the results described in the above

signal analysis. In fact, AF leads to an irregular RR series,

which in turn promotes—through the systemic circulation—

a collection of in-series pressure disturbances at the carotid

level. Each of these perturbations singularly produces an

alteration of the cerebral circulation. The higher mechanical

inertia in the peripheral districts explains why here during

AF right tails of the crossing time, Tcr, become important

(§3.1.2). In fact, every Pa modification leads to a downstream

signal excursion from the physiological threshold (i.e. mean

value in NSR). The consecutive time lapse spent above or

below this threshold allows the signal to reach maximum,
mean or minimum values, which definitely exceed the NSR

range (§3.2.1 and 3.2.2). When the signal is uninterruptedly

above the threshold, hyperperfusions and hypertensive

events are promoted. When the contrary holds, hypotensive

episodes and hypoperfusions occur.

The continuous sequence of transient perturbations at the

carotid entrance represented by the AF beating does not allow

the system to recover the physiological state before another

disturbance arrives. The uncorrelated nature of AF beating

enhances the complexity of the deep cerebral signal and

reduces its predictability, since a disturbance can lead the

system to the same or opposite direction with respect to the

previous perturbation. As a consequence, the signal period-

icity breaks towards the microcirculation, provoking a

decrease in the correlation and a reduction in the coherence

time (§3.1.1). Although the predictive grade remains satisfac-

tory, the increased signal complexity and uncertainty make

the regression models perform less well in AF than in NSR

(§3.2.3). Up to three or four preceding beats are necessary to

averagely describe the current haemodynamic state, and this

temporal range is governed by the combined interplay

between the superposition of different transient disturbances

introduced into the system by the AF and the intrinsic latency

of the system (§3.2.3). However, characterization of the present

haemodynamic state in the first cerebral regions requires in

general fewer preceding beats than in the capillary regions,

that is, signal predictability deteriorates towards the periph-

eral regions. This aspect furthermore strengthens the basic

mechanism described throughout the Discussion. Owing to

the mechanical features of the different cerebral districts

and their reciprocal interconnection, the microcirculation

suffers much more and for longer from the AF-induced

haemodynamic alterations.
4.1. Limitations
The limiting aspects of the present work are related to the com-

putational hypotheses. The modelling of the cardiovascular

system providing the pressure input, Pa, for the cerebral

dynamics does not account for the baroreceptor mechanisms

in the short term. Moreover, AF is simulated assuming an

uncorrelated beating and no atrial contraction, but with no

increase in the constant baseline value of elastance with respect

to NSR. Additionally, no long-term remodelling effects are

captured and no reduced ventricular contractility is assumed.

In the cerebral modelling, NSR and AF configurations
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solely differ by the entrance inputs, Pa, while the remaining

haemodynamic framework is set as in healthy conditions.
Table 2. Coherence times, tc, for the haemodynamic signals in the large
arteries (Pa and QICA,left) and in the capillary/venous region (Pc and Qpv), for
NSR (column 2) and AF (column 3).

NSR (s) AF (s)

Pa 3.09 1.11

Pc 3.29 0.90

QICA,left 3.02 0.94

Qpv 3.47 0.87
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5. Conclusion
Several haemodynamic mechanisms have been recently

proposed for the association between AF and cognitive dys-

function independent of clinically relevant events. However,

definitive clinical evidence is still missing, and, at the present

stage, an in silico approach can be valuable in providing

and addressing new haemodynamic-based suggestions for

primary medical treatments.

Through an accurate and diversified signal analysis, the

present work shows a range of possible symptoms for the

alteration of the haemodynamic patterns during AF in the cer-

ebral microcirculation. AF signals in the distal–capillary

circulation lose their temporal interdependence and predict-

ability, becoming more complex and revealing short-memory

features. The crossing time analysis displays an increased

probability of extreme value events, which, through the beat-

by-beat analysis, results in hypertensive and hypoperfusive

episodes. The RR beats turn out to be good haemodynamic

regressors. In particular, the role of the preceding beat in the

current vascular state is crucial, while up to four consecutive

RR beats are necessary to fully describe the averaged haemo-

dynamic level of the next beat. Exploiting this outcome, the

worst haemodynamic configuration occurs with a long (or

short) last beat and a short (or long) third to last beat, which

is rather common during AF [36,37,44]. The intrinsic structural

latency revealed by the cerebral circulation is plausibly

disturbed by AF and exacerbates the observed scenario.

The framework here described can offer physically based

hints explaining why critical events, such as hypertensive

or hypoperfusive episodes, are more likely to occur in the

cerebral peripheral regions during AF, thereby further strength-

ening the haemodynamic link between AF and cognitive decline.
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Table 3. Mean and standard deviation values, in NSR and AF conditions, of the m
Qmin).

NSR

variable minimum maximum

Pa (mmHg) 77.91+ 2.89 122.44+

PMCA,left (mmHg) 76.59+ 2.82 118.25+

Pdm,left (mmHg) 53.38+ 1.63 61.57+

Pc (mmHg) 21.69+ 0.68 27.40+

QICA,left (ml s21) 2.25+ 0.13 7.38+

QMCA,left (ml s21) 1.90+ 0.12 5.84+

Qdm,left (ml s21) 2.99+ 0.15 4.28+

Qpv (ml s21) 9.70+ 0.49 14.49+
Appendix A. Autocorrelation function, R(t), and
coherence time, tc
The autocorrelation function, R(t), representing the corre-

lation of the signal with itself at different temporal lags t,

detects repeating temporal patterns and periodicity. Through

its envelope, Renv(t), the autocorrelation function is used as a

standard measure of the coherence time, tc [45]:

tc ¼
ðþ1

�1

jRenv(t)j2 dt: ðA 1Þ

The coherence time, tc, quantifies the degree of temporal

correlation of the signal: long-term coherent signals have

autocorrelation functions with a slow rate of decay, while

short-term memory signals (such as random signals) show

very rapidly decaying autocorrelation functions. Within bio-

electromagnetic signals, long-term refers to coherence times

equal to or greater than 1–2 s [45]. Coherence time values,

tc, are reported in table 2, for both NSR and AF conditions

along the ICA–MCA pathway.
Appendix B. Minimum and maximum values
analysis
Table 3 presents the mean and standard deviation values of

the 5000 minimum and maximum values for the haemo-

dynamic variables.
axima and minima of pressures (Pmax and Pmin) and flow rates (Qmax and

AF

minimum maximum

1.55 75.34+ 8.48 117.72+ 4.46

1.58 73.96+ 8.22 113.48+ 4.40

1.23 51.70+ 5.00 59.60+ 4.11

0.67 21.93+ 2.71 27.63+ 2.76

0.21 2.35+ 0.53 7.50+ 0.78

0.19 1.96+ 0.46 5.89+ 0.68

0.16 3.04+ 0.57 4.31+ 0.59

0.43 9.96+ 1.78 14.58+ 1.69
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