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With the expansion of the microbiology field of research, a new
genome editing tool arises from the biology of bacteria that
holds the promise of achieving precise modifications in the
genome with a simplicity and versatility that surpasses previous
genome editing methods. This new technique, commonly
named CRISPR/Cas9, led to a rapid expansion of the
biomedical field; more specifically, cancer characterization
and modeling have benefitted greatly from the genome editing
capabilities of CRISPR/Cas9. In this paper, we briefly summa-
rize recent improvements in CRISPR/Cas9 design meant to
overcome the limitations that have arisen from the nuclease ac-
tivity of Cas9 and the influence of this technology in cancer
research. In addition, we present challenges that might impede
the clinical applicability of CRISPR/Cas9 for cancer therapy
and highlight future directions for designing CRISPR/Cas9 de-
livery systems that might prove useful for cancer therapeutics.

The increasing burden of cancer in the human population represents
a major concern for our society, and finding alternative treatments
that are safe as well as efficient has become a major goal for re-
searchers around the world. For the past decades, we have witnessed
an effervescence of technologies that explore DNA structure and
function, and our understanding of cancer has expanded to an extent
that enables characterization of this disease at a deeper molecular
level. The progression of basic research to reach clinical applications
necessitates reliable pre-clinical models of cancer in which therapeu-
tic strategies and agents can be evaluated for efficacy or efficiency.

Introducing targeted modifications in the genome for functional
studies and cancer modeling or, moreover, for therapeutic purposes,
requires highly efficient systems that are able to alter the existing
DNA pattern with great precision. Nucleases of bacterial origin repre-
sent powerful tools that have been widely used for genome engineer-
ing purposes in an attempt to studying gene function and, ultimately,
to implement new therapeutic strategies.

Among the existing nucleases with genome editing capabilities,
the CRISPR system surpasses other nuclease-based systems, such
as zinc-finger nucleases (ZFNs) and transcription activator-like
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effector nucleases (TALENS), in terms of simplicity of design and
versatility'  (Table 1). By 2013, the ability of the CRISPR/Cas9 sys-
tem to engineer mammalian cell genomes has been experimentally
validated, and the crystal structure of the Cas9 effector complex
was resolved in 2014." Among the three CRISPR/Cas systems
(I-III) identified in both bacteria and archaea, the type II system
from Streptococcus thermophilus or Streptococcus pyogenes is the
most versatile for genome engineering purposes.”

The CRISPR/Cas9 type II system consists of the Cas9 nuclease and a
single guide RNA (sgRNA or gRNA), which is a fusion of a CRISPR
RNA (crRNA) and a trans-activating crRNA (tracrRNA) that binds
Cas9 nuclease and directs it to a target sequence based on a comple-
mentary base-pairing rule. The target sequence must be adjacent
to a protospacer-adjacent motif (PAM) consisting of a canonical
NGG or NAG sequence. At the recognition site, a double-strand
break (DSB) is generated that can be repaired by non-homologous
end joining (NHE]), resulting in small insertions or deletions (indels)
usually associated with loss of function (knockdown/knockout) (Fig-
ure 1). In the presence of an exogenous donor DNA, by a homology-
directed recombination (HDR) mechanism, precise modifications
can be achieved at the targeted site, resulting in gain of function
(knockin).®

However, Cas9 can tolerate, to a certain extent, mismatches between
the sgRNA and the target sequence in the genome, resulting in off-
target effects, as some previous studies have shown.”® These undesir-
able effects of the CRISPR/Cas9 system might impede the use of this
genome editing technology for clinical applications; therefore, a great
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Table 1. Comparison of ZFNs, TALENs, and CRISPR/Cas9 Nuclease Systems for Genome Editing

Genome Editing Tool ZFNs TALENs

CRISPR/Cas9

Features ZF-FokI nuclease protein fusion

TALE-FokI nuclease protein fusion

Cas9 nuclease and sgRNA

Target site identification *, .
virtually any site

protein-DNA interaction, capable of targeting protein-DNA interaction, capable of targeting
virtually any site

RNA-DNA interaction, site selection restricted by
the NGG motif, which occurs statistically every
8 nt in a random DNA sequence

N DSBs directed by the FokI domain, repaired
Genome altering

DSBs directed by the FokI domain, repaired

DSBs directed by Cas9, repaired through NHE]

through NHEJ or HDR through NHE] or HDR or HDR
+ ++ +++
Design custom design based on the target sequence, custom design based on the target sequence, labor very simple design by altering the crRNA
labor intensive and time-consuming intensive, less time-consuming than ZFN sequence of the sgRNA
Efficiency ++ ++ +++
Biallelic targeting ++ ++ +++
Off-target effects ++ +++ +
low compared with ZEN and TALEN as a result of
specific more specific than ZFN allowed mismatches by the Cas9 nuclease between
sgRNA and the DNA target sequence
+ + +++
Multiplexing yes, capable of targeting multiple sites

rarely used rarely used

simultaneously

+++ ++

+

Size and delivery the ZFN monomer is significantly smaller

than Cas9

TALEN monomers are situated in the middle
of Cas9 and ZFN nucleases in terms of size

massive Cas9 protein encoded by a 4.2-kb
sequence

deal of effort has been made to improve the efficiency and specificity
of CRISPR/Cas9.

In this review, we summarize recent improvements made in CRISPR/
Cas9 design and flexibility and the applications of this genome editing
technology for cancer research. At the end of the manuscript, we discuss
challenges and future perspectives of CRISPR/Cas9 in cancer therapy.

Minimizing the Off-Target Effects of CRISPR/Cas9

Optimizing the sgRNA design represents one approach for reducing
the off-target effects of CRISPR/Cas9. It has been shown that the base
composition of the 5" sequence of the sgRNA can have a profound
effect on the efficiency of CRISPR/Cas9,” and large-scale studies
of sgRNA libraries led to design algorithms for maximizing the on-
target activity and reducing off-target effects.'” Several online tools
are now available to assist researchers in designing sgRNAs with a
higher specificity for a desired genomic locus (Table 2).

The activity of Cas9 nuclease is another prime factor causing undesir-
able off-target effects of the CRISPR/Cas9 system; specifically,
elevated levels of Cas9 has been associated with unspecific cleavage."'
Therefore, controlling the activity of Cas9 nuclease would lead to a
significant reduction of unwanted “side effects.” In this regard, several
approaches that use chemical or physical agents to achieve condi-
tional expression of Cas9 have been under investigation by re-
searchers and are illustrated in Figure 2.

Turning the activity of Cas9 on and off confers to the researcher a
means for a temporal control, limiting the exposure time of the genome
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to Cas9 nuclease, thereby reducing the off-target effects the CRISPR
system exhibits under normal conditions. Placing Cas9 under the con-
trol of a tetracycline-responsive element (TRE) promoter confers the
possibility to achieve a conditional expression in the presence of tetra-
cycline/doxycycline (Tet/Dox).'>'> However, even in the off state,
when Tet/Dox are absent, Cas9 expression still exhibits “leakiness,”
as recently reported.'* Placing the sgRNA under control of a hybrid
Tet-responsive promoter proved to be a more advantageous alternative
to obtain a tighter control of the off-target cleavage in a Dox-dependent
manner."* Regardless whether Cas9 or sgRNA expression is regulated
in a Dox-dependent manner, such inducible systems require additional
trans-acting factors and promoters to be incorporated in the construc-
tion of the delivery system, which, in the case of adeno-associated virus
(AAV) vectors, is quite problematic because of their limited cloning ca-
pacity.”” Therefore, inducible CRISPR/Cas9 systems that use minimal
genetic elements to achieve conditional expression of Cas9 might prove
to be useful in designing delivery vectors for therapeutic applications.

In one study, researchers rendered Cas9 nuclease activity dependent
on 4-hydroxytamoxifen (4-HT) by fusing a hormone-binding
domain of the estrogen receptor (ERT2) to Cas9.'® This fusion en-
sures sequestration of Cas9 nuclease to the cytoplasm in the absence
of 4-HT, consequently limiting the activity of the enzyme. A nuclear
import is seen within the first 6 hr after induction with 4-HT, and
optimal nuclease activity occurs at a time interval of 4-8 hr at
1 uM 4-HT; therefore, the off-target effects are reduced to a mini-
mum. In a similar manner, Davis et al.'” used the self-splicing prop-
erties of inteins to render Cas9 nuclease active in the presence of
4-HT. In this report, the ERT2 domain is fused to intein to render
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Figure 1. CRISPR/Cas9 Mechanism of Action

The original bacterial CRISPR/Cas9 design has been translated into an engineered
instrument for genome editing purposes and is capable of introducing specific
modifications in the target cell. In this regard, the vector comprising the crRNA and
tracrBNA that together constitute the RNA molecule for Cas9 guidance (gRNA) is
introduced in the desired cell, where it passes the cytoplasmic milieu toward the
nucleus. After delivery to the nucleus, the Cas9 gene encoded by the experimental
vector is transcribed and exported into the cytoplasm for translation of Cas9
nuclease. After synthesis of the active protein, the gRNA, transcribed by its own
promoter, interacts with the Cas9 nuclease, resulting in the ribonucleic-protein
effector complex that is internalized back into the nucleus. The cleavage of the
double-stranded genomic DNA takes place in a guided manner, where the crRNA
sequence of gRNA directs Cas9 toward the specific locus, based on sequence
complementarity, which is positioned adjacent to the PAM. When cleaved, the con-
tinuity of the host DNA can be restored through NHEJ, where the hanging ends join
together, creating small indels, or through HDR in the presence of a donor DNA.

it sensitive to 4-HT. Upon induction, intein becomes active and is
effectively spliced from an inactive variant of Cas9, in which intein
was inserted, leading to an active form of Cas9. However, this
4-HT-inducible system is not reversible compared with another sys-
tem proposed by Liu et al;'® therefore, it does not offer the advantage
of an on/off switch for more adjustable control of Cas9 activity. It is
well worth mentioning that simple split Cas9-intein systems have
been developed in which an active form of Cas9 is reconstituted
post-translationally from a Cas9-C domain and a Cas9-N domain af-
ter splicing of fused intein.'® These two inducible CRISPR/Cas9 sys-
tems use minimal genetic elements to achieve conditional expression
of Cas9, which might prove their usefulness in designing delivery vec-
tors for therapeutic applications.

Table 2. Online sgRNA Design Tools

Platform Platform Link Reference
CRISPR Design http://crispr.mit.edu/ 8
E-CRISP http://www.e-crisp.org/E-CRISP/ 8
CRISPR MultiTargeter http://www.multicrispr.net/basic_ 88

input.html

http://portals.broadinstitute.org/gpp/ 1080

sgRNA Designer: CRISPRko public/analysis-tools/sgrna-design

90

Off-Spoter https://cm jefferson.edu/Off-Spotter/

CCTop bttp://crlspr.cos.um—heldelbergde/ 91
index.html

CHOPCHOP http://chopchop.cbu.uib.no/index.php ~ #**

Other models have used the propriety of light-inducible heterodime-
rization proteins for the modulation of Cas9 activity. These “light ap-
proaches” use a catalytically inactive form of Cas9'® or a split Cas9
variant that is fused to light-responsive proteins.”” Upon stimulation
with blue light, Cas9 becomes active either by transitioning from an
inactive form'” or by reconstitution of the whole active Cas9 nuclease
from the C domain and N domain of the enzyme.”’ Although such
systems are to some extent reversible and adjustable for regulating
Cas9 activity, they are limited to in vitro applications, under which
blue light is relatively easy to apply. For in vivo applications, stimu-
lating Cas9 activity with blue light requires more invasive and dedi-
cated equipment to achieve an efficient effect, a fact that might limit
the use of such systems in clinical contexts.

A recent study elegantly used a self-restricted CRISPR/Cas9 system to
achieve control of Cas9 nuclease to minimize off-target effects.”’ In
addition to a specific targeting sgRNA, the authors co-expressed an
additional sgRNA that targets Cas9 itself. Using this approach, they
were able to limit the expression of Cas9 to several days, even in
the context of an integrative lentiviral vector. Furthermore, it has
been shown that altering the energetic state of the Cas9-sgRNA-target
RNA by substituting four positive amino acid residues to neutral ones
in the DNA binding loop of Cas9 results in a “high-fidelity” Cas9
nuclease that displays no detectable undesired genomic alterations.*”

As reviewed above, limiting undesired off-target effects is not an easy
task, requiring additional genes and inducers, modifications to Cas9,
or even invasive approaches to obtain spatiotemporal control of
CRISPR/Cas9 so that this technology can move forward to therapeu-
tic applications in a clinical context. In regard to “simple is beautiful,”
we definitely need an easy and, at the same time, reliable system that
will give us the possibility to engineer our “faulty” genomes to a
healthy state and, furthermore, to an improved state of well-being.

Multiplexing CRISPR/Cas9 Editing Capabilities

Despite the fact that we currently might have a simple CRISPR/
Cas9 system that is, to some extent, safe and efficient in targeting a
specific genome site, there are still many other obstacles to overcome
to successfully implement this strategy in clinical therapy. In some
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Figure 2. Strategies for Regulating Cas9 Nuclease Activity
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Increased levels of Cas9 can lead to unspecific cleavage, which causes hazardous effects in the target cell, resulting in off-target effects (red 5" in Figure 1). Different strategies
have been implemented to minimize and control the activity of Cas9. (A) Introduction of a Tet-controlled promoter that allows monitoring of Cas9 expression through an on/off
system dependent on Tet/Dox. (B) Fusion of Cas9 with an estrogen receptor domain (ERT2) that enables the supervision of Cas9 activity through 4-HT presence/absence.
(C) Control of the enzymatic activity via intein and its splicing properties. The N-terminal and C-terminal domains of Cas9, each containing a fused intein domain, are joined
together by a splicing event, and, upon expression of gRNA, the intein is auto-excised, and gRNA forms with Cas9 an active complex. (D) Holding of Cas9 activity through
fusion with light-responsive elements, which allows Cas9 performance only after stimulation with blue light. (E) A self-restricted CRISPR/Cas9 system that contains, in the
engineered vector, a gRNA that targets the Cas9 gene itself, resulting in an auto-regulated loop. CRY2, cryptochrome circadian clock 2; VP64, viral protein 64 transactivation

domain; CIBN, N-terminal domain of CIB1; P, promoter.

instances, targeting a single site in the genome is not sufficient to
achieve a full therapeutic effect because some diseases, like cancer,
have a multigenic basis and require targeting whole gene networks
that sustain the pathological state of the cell. Therefore, such an
approach would require the use of multiple sgRNAs able to target
multiple genomic loci, adding an extra level of complexity for
designing CRISPR/Cas9 systems.

Traditionally, this would mean that one must have at least two sgRNA
expression cassettes on the same construct or placed on two different
constructs. Co-transfection of two vectors limits the efficiency of the
CRISPR/Cas9 system in vitro and, furthermore, in vivo. In addition,
having multiple sgRNA expression cassettes on the same construct
poses a limit of physical constrains in the number of sgRNA cassettes
because of their limited cloning capacity, as seen for AAV vectors.'”

Indeed, multiplexing CRISPR/Cas9 editing capabilities would offer
several advantages over a conventional single sgRNA-based system
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for targeting multiple sites and gene networks. To date, researchers
have developed two strategies for this approach. As mentioned above,
one approach uses multiple sgRNA expression cassettes made of an
individual RNA polymerase III promoter, sgRNA, and a transcription
terminator, all imbedded in the same construct.”*** This means that
the construct would express multiple sgRNA transcripts able to target
multiple genomic loci. In the second approach, multiple sgRNAs are
released from one single transcript, produced from either one RNA
polymerase III promoter”> or one RNA polymerase II promoter.*®
Such a polycistronic transcript offers the possibility of encoding
additional exogenous factors to sgRNAs in the case of RNA polymer-
ase II-driven promoters, although efficient processing of the tran-
script for releasing active sgRNAs and polyadenylated transcripts
for nuclear export is rather complex in nature. First, sgRNA must
be released from the primary transcript and, therefore, requires the
addition of flanking sequences that are recognized by exogenous
factors that must be provided in trans, such as Cys4 protein from
Pseudomonas aeruginosa.% Second, the remaining transcript must
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be properly processed as a translational active molecule. Additionally,
a shortcoming of this system is that Csy4 has cytotoxic effects at
high concentrations,” a fact that might hinder the clinical scenario.
Moreover, this number of supplemental sequences significantly ham-
pers the efficiency of the targeting and editing capabilities of the
CRISPR/Cas9 system because of the addition of extra variables.

Exploiting the endogenous RNA processing factors would be
preferred, and simplistic approaches for multiplexing CRISPR/Cas9
have already been reported. In one study, the endogenous tRNA pro-
cessing machinery was used for processing an sgRNA-tRNA polycis-
tronic transcript to release multiple active sgRNAs.”” This approach is
a powerful and reliable system for multiplexing CRISPR/Cas9 because
it takes advantage of the abundance of endogenous cellular RNAases
without heterologous expression of additional and potential cytotoxic
factors that might interfere with normal cell function. This interfer-
ence with normal cell function could also make the evaluation of
results rather difficult and unreliable.

Having a system that can easily and efficiently target gene networks,
multiplexing CRISPR/Cas9 offers the advantage of deleting genes
or even inserting new genes in the genomes of choice. This provides
a toolbox that opens new horizons that researchers could only dream
of, with an ease never previously attained. The feasibility of CRISPR/
Cas9 systems for knockin in reporter genes in different genomic sites
has already been reported for different cell types, such as mouse
haploid embryonic stem cells’” and human embryonic pluripotent
stem cells.”® The authors used an HDR approach in which the re-
porter cassette was flanked by two homologous arms on the region
of interest in the genome, and two sgRNAs were used for guiding
Cas9 nuclease to the targeted sites. Upon cleavage, the reporter
cassette is inserted in the genome by homologous recombination
with an efficiency that varies depending on the targeted site.”® Using
this approach, studies have shown that such a procedure permits the
generation of mice harboring reporter genes up to 5 kb’ or a condi-
tional allele®® with ease, surpassing traditional approaches in terms of
simplicity, time length, and cost-effectiveness. The only requirement
is the presence in the donor plasmid of two flanking homologous
arms that may vary in length from 500 bp®” to 900 bp** and two
sgRNAs sequences able to direct Cas9 toward the targeted genomic
fragment. In the absence of a donor DNA, large genomic deletions
up to 65 kb can be easily generated,”” making CRISPR/Cas9 a
preferred system for obtaining knockout mouse models for transla-
tional research.

CRISPR/Cas9 Libraries

Taking advantage of the CRISPR/Cas9 system’s ability to target almost
any genetic loci within a target cell, researchers have created entire
libraries of sgRNAs that are directed toward specific genes to examine
the meaning of a “custom-made” phenotype in different experimental
setups.’’ By introducing into cells sgRNA libraries via delivery vectors
that are most often lentiviral particles, there is the possibility to
repress, activate, or even knock out different target genes at once to
elucidate their function within a pathologic or homeostatic context.

The extensiveness of the library is also a critical factor, where there
is the possibility to target the whole genome with the use of a single,
large “pooled” library of sgRNAs or to target specific subsets of
genes that are thought to be interconnected, known as sub-pooled
libraries.”>”” Moreover, the permanent nature of the genetic modifica-
tions mediated by CRISPR/Cas9 technology permits the evaluation of
the modified cells for extended periods of time, where there is the pos-
sibility that a certain phenotype will manifest only after several cell
divisions.

The first step when performing a screening investigation is viral
administration of the selected sgRNAs in cells that consistently ex-
presses Cas9 enzyme or in combination with the Cas9-encoded
sequence under the construct. After selection of the transfected
cells, further selective agents can be added that will enrich the resis-
tant phenotype population. The final step consists of sequencing
arrays that can reveal the difference between the experimental
and control groups in terms of enriched sgRNAs and depleted
ones, which can be seen in Figure 3. When these data are overlap-
ped with the original sgRNA library and screened for the target
genes, statistical analysis can reveal the key genes within the pheno-
type of concern.”"**,

Shalem et al.>> and Wang et al.’° pioneered the genome-wide
screening of cells using CRISPR/Cas9 libraries and presented the ad-
vantages of this method in contrast to small interfering RNA.
Although their approaches were quite different, where Shalem
1.7 transfected cells with a vector containing both sgRNAs and
a Cas9-expressing sequence, and Wang et al.”® administered viral par-
ticles containing only sgRNAs molecules in cells that already stably
expressed Cas9 enzyme, the results proved encouraging for both
groups. Thus, even though this approach for the identification
of entire genes set functions in living cells is still in its infancy,
CRISPR/Cas9 libraries hold significant advantages over the preceding
technologies (e.g., small interfering RNA [siRNA libraries]), allowing
the generation of a permanent “mutated” phenotype that can be stud-
ied across several cell division steps under different experimental

eta

conditions.

The Big Step of CRISPR/Cas9 in Cancer Research

Cancer is one of the most investigated fields in medicine because of
its high prevalence in the human population, the complexity and
heterogeneity of the disease, which makes current treatments rather
unspecific, raising the death toll of the affected individuals.”” ° Un-
derstanding the molecular mechanisms that underline the prolifera-
tive process is a prerequisite for the development of reliable
experimental models in which the altered cellular pathways can be
reproduced and novel targeted therapies can be implemented. Hence,
it did not take long until the genome editing capabilities of CRISPR/
Cas9 proved its utility in cancer research and development of thera-
peutic strategies. Such applicability ranges from functional validation
of genes implicated in cancer development and progression to cancer
modeling and therapeutic concepts, as described in Table 3. There-
fore, CRISPR/Cas9 has spread to every aspect of cancer research in
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Figure 3. Generation and Quality Control of sgRNA Libraries for CRISPR/Cas9-Mediated Phenotypic Screening

The first step illustrates the synthesis of sgRNA libraries consisting of a heterogeneous population of sequences approximately 100 bases in length with a reduced number of
mutations. Quality control is significantly facilitated when a barcode of a known sequence is incorporated into each sgRNA and analyzed at the final stages through next-
generation sequencing (NGS). After detachment of oligonucleotides from the solid support, the targeted sequences are amplified through PCR and then cloned in lentiviral
vectors that contain a selection marker for antibiotic resistance (e.g., puromycin) and also an enrichment sequence that can be detected with the help of fluorescence-
activated cell sorting (FACS) (e.g., GFP). Every sgRNA is under the activity of an U6 promoter that will facilitate its expression. The entire complex is packed in viruses that are
further used for the transduction of the target cells. The first selection consists of the capacity of cells to survive in an antibiotic-enriched medium because of their integrated
gene for puromycin or any other antibiotic that is used in the experiment. The second selection consists of the enrichment of the transduced cell population through GFP
selection by FACS. The remaining cells that contain the viral construct are then collected for DNA extraction and analyzed through NGS, which detects individual sgRNAs

because of the inserted barcode.

avery short period of time, making it a versatile technology that could
leave an important footprint with regard to redefining the meaning
of cancer biology and its treatment. From small-scale studies’™** to
high-throughput screens of gene function,"” *> CRISPR/Cas9 has
brought new insights into cancer progression and metastasis and
led to the identification of new potential therapeutic targets. Cancer
modeling has an opportunity with CRISPR/Cas9 for both in vitro
and in vivo models because the traditional Cre/LoxP recombination
technology for animal models has shortcomings in terms of labor,
time length, and costs for producing stable in vivo lines of cancer
models. In addition, this might bypass tumor xenograft models,
where the risk of immune incompatibility can interfere with the pro-
duction of reliable in vivo models. The use of immunocompromised
animals requires special conditions for maintenance of the lines, and
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lack of an immune response might interfere with the results obtained
in preclinical studies, a crucial step for evaluating the safety profile of
novel therapeutic agents.

46-48 49,50

A few studies published recently on in vitro and in vivo" " can-
cer models have paved the way for CRISPR/Cas9 in therapeutic appli-
cations for the oncology niche. In this regard, cancer immunotherapy
gained special attention by reprograming T cells through disruption
of the programmed death-1 receptor (PD-1) over conventional
PD-1 antibody therapy.*® Because the PD-1 ligand is a negative regu-
lator of T cell activity and expressed on dendritic cells as well as in
some tumors, knocking down PD-1 with CRISPR/Cas9 could repro-
gram T cell activity toward PD-1 ligand-expressing tumors. This
approach is already in phase I clinical trials for castration-resistant
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Table 3. List of CRISPR/Cas9 Applications in Cancer Research Organized by In Vitro and In Vivo Studies of Gene Function, Cancer Modeling, and Therapy

Cell Line/Organism Delivery System Cancer Type Targeted Gene Local/Systemic Reference
Gene Function Studies In Vitro
A375 melanoma cell line (human) LV melanoma SAM library +
A375 melanoma cell line (human) LV melanoma GeCKO library -
Non-small-cell lung cancer cell line LV non-small-cell lung cancer GeCKO library "
MDA-MB-231, MCF-7 (human) LV triple-negative breast cancer Shebpl >
T24, 182, 5637, -780 bl . . . 3
J8 3 SW-780 bladder plasmid transfection bladder cancer p21, E-cadherin, hBax 63
cancer cell lines (human)
Cd74-Rosl1
HEK293T (human) plasmid transfection non-small-cell lung cancer Eml4-Alk o
Ki5b-Ret
HEK293 (human) plasmid transfection non-small-cell lung cancer Met o
DId-1 (human) plasmid transfection colon cancer Pkc 66
B16-F10, 1 11 1i 7
6-F10, Ret melanoma cell lines plasmid transfection melanoma Id1, Id3 7
(mouse)
BT-474, SKBR-3, MCF-7 (human) RV/PlaSITud breast cancer Her2 o8
transfection
In Vivo
ex vivo .
Mouse Lv prostate cancer TGFBRIT ©
DU145 cells (human)
Nanogl ex vivo
Mouse LV prostate cancer 10
Nanoggp8 DU145 cells (human)
ex vivo
Mouse Lv triple-negative breast cancer Cripto-1 .
JygMC(A) (mouse)
ex vivo _
Mouse Lv triple-negative breast cancer Ctbpl 70
MDA-Mb-231 (human)
ex vivo _
Mouse plasmid transfection cervical cancer HPV Eé6, E7 71
SiHa, C33-A (human)
ex vivo B
Mouse LV Burkitt lymphoma Mcl-1, TP53 7
HSC (mouse)
ex vivo N
Mouse plasmid transduction  acute myeloid leukemia Mii3 7
HSC (mouse)
Cancer Modeling In Vitro
Myoblast cells (mouse) LV alveolar rhabdomyosarcoma Pax3, Foxol 7
HEK293A, hMSCs, PBMCs, plasmid Ewing sarcoma, acute myeloid X .
Ewsrl, Flil 1, E ’
HL-60 (human) transduction/EP leukemia wsrl, Flil, Runxl, Eto
In Vivo
Mouse v non-small-cell lung cancer Eml4-Alk local e
Mouse LV non-small-cell lung cancer Nkx2.1, Pten, Apc local 77
Mouse LV/Ad pancreatic ductal adenocarcinoma  Lkbl local 78
Mouse Ad non-small-cell lung cancer Eml4-Alk local ”
Mouse AAV lung adenocarcinoma TP53, Lkbl, Kras local 80
hepatocellular carcinoma )
Mouse HI multiple systemic 8
intrahepatic cholangiocarcinoma
Mouse HI hepatocellular carcinoma Pten, TP53 systemic 2
Mouse EP glioblastoma Pten, Apc, Nfl local o

(Continued on next page)
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Table 3 Continued

Cell Line/Organism Delivery System Cancer Type Targeted Gene Local/Systemic Reference
Mouse PEI/EP medulloblastoma Ptchl local &
Mouse EP pancreatic cancer multiple local 8
€x vivo N
Mouse LV acute myeloid leukemia Tet2, Dnmt3a, Nf1, Ezh2 ‘**
HSCs (mouse)
Apc, TP53, Kras, Smadd, X Vivo
Mouse LV colorectal cancer e s, sma s
PIK3CA intestinal stem cells (human)
Therapeutic Concepts In Vitro
11 i KH )
Osteosarcoma cell lines (KHOS), EP osteosarcoma Cdkil 46
u-20 s (human)
Primary T cells (human) EP tumor immunotherapy Cxcr4, PD-1 v
Primary T cells (human) EP tumor immunotherapy PD-1 "
In Vivo
Mouse LV pancreatic ductal adenocarcinoma  p57 local ®
prostate cancer ex vivo .
Mouse LV/EP TCR, B2M, PD-1 !

leukemia

CAR-T cells (human)

RV, retrovirus; Ad, adenovirus; HI, hydrodynamic injection; EP, electroporation; PEI, polyethylenimine; HSC, hematopoietic stem cell; hMSC, human mesenchymal stem cells; PBMC,

peripheral blood mononuclear cells; CAR, chimeric antigen receptor

prostate cancer, muscle-invasive bladder cancer, metastatic non-
small-cell lung cancer, and metastatic renal cell carcinoma (https://
clinicaltrials.gov).

Challenges and Future Perspectives of CRISPR/Cas9 for Cancer
Therapy

The simplicity that resides in the genome editing capabilities of
CRISPR/Cas9 attracted the attention of many researchers around
the world, as confirmed by the overwhelming numbers of studies
that have been published on the subject for the past 2 years. This
newly characterized RNA-guided Cas9 nuclease system opened the
era of “molecular surgery,” and, as reviewed above, cancer research
has and will continue to benefit from this new genome editing tech-
nology. In particular, modeling oncogenesis in mice using CRISPR/
Cas9 surpassed previous genome editing tools in terms of time length
and cost effectiveness without the need of multiplying colonies
of mice.

Functional studies of multiple genes in cancer cell lines with CRISPR/
Cas9 (Table 3), especially large-scale studies with sgRNAs libraries
(Table 3),**° again stressed the complexity of this insidious killer
that makes cancer particularly difficult to treat. The multigenic and
multi-mutated status gives cancer an unique heterogeneity character-
istic; this heterogeneity is even seen in different individuals affected
by the same cancer type,”">
challenge for clinical therapy. Although surgery and chemotherapy/
radiation therapy are currently in clinical use for the treatment and
palliative care of cancer patients, the lifespan, because of tumor
relapse, is quite short, and the quality of life because of adverse effects
of therapy is rather poor. All of this gave researchers the impulse to
find alternative treatments that are efficient for targeting the diseased

and this truly represents the major
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cells within our body, and gene therapy emerged as a vison for treat-
ment of human diseases that would be safe and specific.

Most of the biotherapies are based on oncolytic vectors that selectively
replicate and destroy cancer cells, releasing tumor-specific antigens,
resulting in a second immune-humoral response against distant
metastatic tumors.” However, these therapies are limited to local
administration, a fact that imposes several limitations, such as tumor
localization, that require invasive approaches that are not feasible in
certain cancer types. For the time being, CRISPR/Cas9 has been
investigated as a potential therapeutic strategy in ex vivo preclinical
setups for cancer immunotherapy in both hematological and solid tu-
mors by targeting the PD-1 gene in T cells (Table 3), reprograming
these cells of the immune system to recognize and attack cancer cells.
To date, there are four clinical trials under investigation based on the
strategy of targeting PD-1 by CRISPR/Cas9 in four different carci-
nomas (https://clinicaltrials.gov). Both the preclinical and clinical
studies are using lentiviruses (LVs) as delivery systems in T cells of
the CRISPR/Cas9 components. For ex vivo therapeutic setups, trans-
duction of primary T cells from cancer patients, characterization,
and expansion in the laboratory of the transduced cells are quite
labor-intensive and expensive. Although lentiviruses have been re-
ported to be efficient for tumor regression on in vivo models, with
CRISPR/Cas9* or other experimental setups, like utilizing antago-
mirs,”* a valuable lesson has been learned in terms of the tumorigenic
potential of integrating vectors in clinical trials.>

Having a technology that gives us the possibility to knock out or
knock in single or multiple genes with an ease that surpasses other
genome editing tools is clearly a major achievement. Furthermore,
researchers have engineered Cas9 nuclease into an RNA-guided


https://clinicaltrials.gov
https://clinicaltrials.gov
https://clinicaltrials.gov
http://www.moleculartherapy.org

www.moleculartherapy.org

Review

transcriptional activator by fusing the VP64 transcription activation
domain to a catalytically inactive Cas9 and linking a MS2-p65-
HSF1 activation complex to sgRNA via a hairpin aptamer.”
Rendering sgRNA from 20 bp to 11-15 bp, an RNA-guided transcrip-
tional activation complex, Cas9-MS2-p65-HSF1, was obtained with
an active Cas9.” This system offers the possibility of simultaneous
orthogonal activation of gene expression with gene knockout by “clas-
sical” Cas9-sgRNA system in a single cell population. The specificity
of such an approach can be further enhanced by substituting the
Streptococcus pyogenes Cas9 (spCas9) with the Streptococcus aureus
Cas9 (saCas9); this allows for recognition of the PAM of the
consensus sequence NNGRR(T), which is more complex than the
NGG spCas9 PAM.”” SaCas9 also has a significantly smaller size
than spCas9, a particularity that might be useful when physical con-
strains are imposed by the type of vector that is used as the delivery
vehicle. However, such a complex PAM reduces the number of
genomic loci that can be targeted.

Despite the numerous efforts that have been made to improve the
specificity and efficiency of CRISPR/Cas9, a major hurdle experienced
with other gene therapy approaches lies before us. Delivery into the
body and targeting the diseased cells without side effects is not some-
thing new, and each type of delivery vector has its own advantages
and limitations.”® Therefore, a safe and efficient delivery vector for
systemic administration of CRISPR/Cas9 would be highly desirable.
An emerging class of gene delivery vectors is derived from an M13
filamentous bacteriophage in which a tumor-targeting ligand is ex-
pressed on the bacteriophage capsid.”*’ Because bacteriophages do
not have natural receptors on human cells, attaching a ligand like
Arg-Gly-Asp (RGD) confers an improved specificity for tumors
over conventional vectors derived from human viruses, which need
complex engineering of the capsid to limit the tropism for their
cognate receptors. In addition, bacteriophage-derived vectors could
bypass the immune response, commonly experienced with adenoviral
vectors, in which a pre-existing immunity against adenoviral strains
can result in severe life-threatening allergic side effects, as previously
reported in the classic case of the Jesse Gelsinger gene therapy trial.”"
Furthermore, M13 bacteriophage-derived vectors can accommodate
into their genome exogenous genetic material up to 13 kb without
affecting their 3D structure, an important aspect to consider when
designing an all-in-one vector; the physical constraint experienced
with AAV delivery vectors limits the cloning capacity to 4 kb."” Dif-
ferential microRNA expression patterns between the tumor and
normal tissue®” can be exploited to restrict Cas9 activity to cancer cells
where a specific miRNA is downregulated by the inclusion of miRNA
targeting sequences in the 3' UTR of Cas9, further increasing
the specificity of the bacteriophage-derived vector for cancer
cells. Likewise, using a tumor-specific promoter to drive Cas9 expres-
sion can lead to an increase of CRISPR/Cas9 specificity for cancer

cells.*®®

Is the bacteriophage-derived vector the vehicle that will move
CRISPR/Cas9 to clinical applications in a simple and efficient
manner without the potential genotoxic effects of integrating

vectors? Perhaps, but we cannot envision such a scenario at this
time because more preclinical studies must be implemented to
test its clinical significance and evaluate the pharmacokinetic
properties of phage-derived nanoparticles. However, we must
keep in mind that the multigenic and heterogeneous nature of can-
cer is definitively the major challenge for an efficient therapy. Even
with a systemic delivery vector that can efficiently deliver CRISPR/
Cas9 to cancer cells without side effects, there is no guarantee that
a full therapeutic effect will be achieved. A thoughtful understand-
ing of the proliferative process and connections between different
cellular pathways in cancer cells is mandatory for developing effi-
cient therapeutics, especially considering that each type of cancer
has its own genomic and phenotypic profiles. Whether CRISPR/
Cas9 technology will make a difference in cancer therapeutics is
hard to tell, but it is definitely worth the effort. And the knowledge
that will arise from this process of “trial and error” will pave the
way for CRISPR/Cas9 in our daily medical practice and, if not
for cancer, then perhaps for other diseases that are threatening
our own existence and well-being.
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