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The ground truth about metadata and community
detection in networks
Leto Peel,1,2*† Daniel B. Larremore,3*† Aaron Clauset3,4,5†

Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining
of how a complex system’s components interact. This general task is called community detection in networks and is
analogous to searching for clusters in independent vectordata. It is common toevaluate theperformanceof community
detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks
with planted communities because these networks’ links are formed explicitly based on those known communities.
However, there are noplanted communities in real-world networks. Instead, it is standard practice to treat someobserved
discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth
and that treating themas such induces severe theoretical andpractical problems.Weprove thatnoalgorithmcanuniquely
solve community detection, andwe prove a general No Free Lunch theorem for community detection, which implies that
there can be no algorithm that is optimal for all possible community detection tasks. However, community detection
remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network
structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can
quantify the relationship betweenmetadata and community structure for a broad class ofmodels.We demonstrate these
techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.
INTRODUCTION
Community detection is a fundamental task of network science that seeks
to describe the large-scale structure of a network by dividing its nodes into
communities (also called blocks or groups), based only on the pattern of
links among those nodes. This task is similar to that of clustering vector
data, because both seek to identifymeaningful groupswithin somedata set.

Community detection has been used productively in many applica-
tions, including identifying allegiances or personal interests in social
networks (1, 2), biological function in metabolic networks (3, 4), fraud
in telecommunications networks (5), and homology in genetic similarity
networks (6). Many approaches to community detection exist, spanning
not only different algorithms and partitioning strategies but also funda-
mentally different definitions of what it means to be a “community.”
This diversity is a strength, because networks generated by different pro-
cesses and phenomena should not necessarily be expected to be well de-
scribed by the same structural principles.

With somanydifferent approaches to community detection available,
it is natural to compare them to assess their relative strengths andweak-
nesses. Typically, this comparison ismade by assessing amethod’s ability
to identify so-called ground truth communities, a single partition of the
network’s nodes into groups,which is considered the correct answer. This
approach for evaluating community detection methods works well in
artificially generatednetworks, whose links are explicitly placed according
to those ground truth communities andaknowndata-generatingprocess.
For this reason, the partition of nodes into ground truth communities in
synthetic networks is called a planted partition. However, for real-world
networks, both the correct partition and the true data-generating pro-
cess are typically unknown, which necessarily implies that there can be
no ground truth communities for real networks. Without access to the
very thing these methods are intended to find, objective evaluation of
their performance is difficult.

Instead, it has become standard practice to treat some observed data
on the nodes of a network, which we call nodemetadata (for example, a
person’s ethnicity, gender, or affiliation for a social network, or a gene’s
functional class for a gene regulatory network), as if they were ground
truth communities. Although this widespread practice is convenient,
it can lead to incorrect scientific conclusions under relatively common
circumstances. Here, we identify these consequences and articulate the
epistemological argument against treating metadata as ground truth
communities. Next, we provide rigorous mathematical arguments and
prove two theorems that render the search for a universally best ground
truth recovery algorithm as fundamentally flawed. We then present two
novel methods that can be used to productively explore the relationship
between observedmetadata and community structure, and demonstrate
both methods on a variety of synthetic and real-world networks, using
multiple community detection frameworks. Through these examples, we
illustrate how a careful exploration of the relationship betweenmetadata
and community structure can shed light on the role that node attributes
play in generating network links in real complex systems.
RESULTS
The trouble with metadata and community detection
The use of node metadata as a proxy for ground truth stems from a
reasonable need: Because artificial networks may not be representative
of naturally occurring networks, community detection methods must
also be confronted with real-world examples to show that they work
well in practice. If the detected communities correlate with themetadata,
then we may reasonably conclude that the metadata are involved in or
depend on the generation of the observed interactions. However, the
scientific value of a method is as much defined by the way it fails as by
its ability to succeed. Becausemetadata always have anuncertain relation-
ship with ground truth, failure to find a good division that correlates with
our metadata is a highly confounded outcome, arising for any of several
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reasons: (i) These particular metadata are irrelevant to the structure of
the network, (ii) the detected communities and the metadata capture
different aspects of the network’s structure, (iii) the network contains
no communities as in a simple random graph (7) or a network that is
sufficiently sparse that its communities are not detectable (8), or (iv) the
community detection algorithm performed poorly.

In the above, we refer to the observed network and metadata and
note that noise in either could lead to one of the reasons above. For in-
stance, measurement error of the network structure may make our ob-
servations unreliable and, in extreme cases, can obscure the community
structure entirely, resulting in case (iii). It is also possible that human
errors are introducedwhen handling the data, exemplified by thewidely
used American college football network (9) of teams that played each
other in one season, whose associated metadata representing each
team’s conference assignment were collected during a different season
(10). Large errors in the metadata can render them irrelevant to the
network [case (i)].

Most work on community detection assumes that failure to find
communities that correlate with metadata implies case (iv), algorithm
failure, although some critical work has focused on case (iii), difficult or
impossible to recover communities. The lack of consideration for cases
(i) and (ii) suggests the possibility for selection bias in the published
literature in this area [a point recently suggested by Hric et al. (11)].
Recent critiques of the general utility of community detection in net-
works (11–13) can be viewed as a side effect of confusion about the role
of metadata in evaluating algorithm results. For these reasons, using
metadata to assess the performance of community detection algorithms
can lead to errors of interpretation, false comparisons betweenmethods,
and oversights of alternative patterns and explanations, including those
that do not correlate with the known metadata.

For example, Zachary’s Karate Club (14) is a small real-world
network with compelling metadata frequently used to demonstrate
community detection algorithms. The network represents the observed
social interactions of 34 members of a karate club. At the time of study,
the club fell into a political dispute and split into two factions. These
faction labels are the metadata commonly used as ground truth com-
munities in evaluating community detection methods. However, it is
worth noting at this point that Zachary’s original network andmetadata
differ from those commonly used for community detection (9). Links in
the original network were by the different types of social interaction
that Zachary observed. Zachary also recorded twometadata attributes:
the political leaning of each of the members (strong, weak, or neutral
support for one of the factions) and the faction they ultimately joined
after the split. However, the community detection literature uses only
themetadata representing the faction each node joined, oftenwith one
of the nodes mislabeled. This node (“Person number 9”) supported
the president during the dispute but joined the instructor’s faction
because joining the president’s faction would have involved retrain-
ing as a novice when he was only 2 weeks away from taking his black
belt exam.

The division of the Karate Club nodes into factions is not the only
scientifically reasonable way to partition the network. Figure 1 shows
the log-likelihood landscape for a large number of two-group partitions
(embedded in two dimensions for visualization) of the Karate Club, un-
der the stochastic blockmodel (SBM) for community detection (15, 16).
Partitions that are similar to each other are embedded nearby in the
horizontal coordinates, meaning that the two broad peaks in the land-
scape represent two distinct sets of high-likelihood partitions: one
centered around the faction division and one that divides the network
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into leaders and followers. Other common approaches to community
detection (9, 17) suggest that the best divisions of this network have
more than two communities (10, 18). The multiplicity and diversity
of good partitions illustrate the ambiguous status of the faction meta-
data as a desirable target.

The Karate Club network is among many examples for which
standard community detectionmethods return communities that either
subdivide the metadata partition (19) or do not correlate with the meta-
data at all (20, 21).More generally, most real-world networks havemany
good partitions, and there are many plausible ways to sort all partitions
to find good ones, sometimes leading to a large number of reasonable
results. Moreover, there is no consensus on which method to use on
which type of network (21, 22).

In what follows, we explore both the theoretical origins of these pro-
blems and the practical means to address the confounding cases de-
scribed above. To do so, we make use of a generative model perspective
of community detection. In this perspective, we describe the relation-
ship between community assignments C and graphs G via a joint dis-
tribution P(C,G) over all possible community assignments and graphs
that wemay observe.We take this perspective because it provides a pre-
cise and interpretable description of the relationship between commu-
nities andnetwork structure. Although generativemodels, like the SBM,
describe the relationship between networks and communities directly
via a mathematically explicit expression for P(C,G), other methods for
community detection nevertheless maintain an implicit relationship
between network structure and community assignment. Hence, the
theorems we present, as well as their implications, are more generally
applicable across all methods of community detection.

In the next section,we present rigorous theoretical results with direct
implications for cases (i) and (iv), whereas the remaining sections intro-
duce two statistical methods for addressing cases (i) and (ii). These con-
tributions do not address case (iii), when there is no structure to be
found, which has been previously explored by other authors, for exam-
ple, for the SBM (8, 23–27) and modularity (28, 29).
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Fig. 1. The stochastic blockmodel log-likelihood surface for bipartitions of the
KarateClubnetwork (14). Thehigh-dimensional spaceof all possiblebipartitionsof the
network has been projected onto the x, y plane (using a method described in Supple-
mentary TextD.4) such that points representing similar partitions are closer together. The
surface shows two distinct peaks that represent scientifically reasonable partitions. The
lower peak corresponds to the social grouppartitiongivenby themetadata—often treated
as ground truth—whereas the higher peak corresponds to a leader-follower partition.
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Ground truth and metadata in community detection
Community detection is an inverse problem:Using only the edges of the
network as data, we aim to find the grouping or partition of the nodes
that relates to how the network came to be.More formally, suppose that
some data-generating process g embeds ground truth communitiesT in
the patterns of links in a networkG= g(T ). Our goal is to discover those
communities based only on the observed links. To do so, wewrite down
a community detection scheme f that uses the network to find commu-
nities C = f(G). If we have chosen f well, then the communities C will be
equal to the ground truth T , and we have solved the inverse problem.
Thus, the community detection problem for a single network seeks a
method f* that minimizes the distance between the identified commu-
nities and the ground truth

f * ¼ argmin
f

d
�
T ; f ðGÞ

�
ð1Þ

where d is a measure of distance between partitions.
For a method f to be generally useful, it should be the minimizer for

many different graphs, eachwith its own generative process and ground
truth. Often in the community detection literature, several algorithms
are tested on a range of networks to identify which performs best overall
(12, 30, 31). If a universally optimal community detectionmethod exists,
then itmust solve Eq. 1 for any type of generative process g and partition
T , that is

∃ f ∗ s:t: f ∗ ¼ arg min
f

d
�
T ; f

�
gðT Þ

��
∀fg; T g ð2Þ

No such universal f* community detectionmethod can exist because
themapping from generativemodels g and ground truth partitionsT to
graphs G is not uniquely invertible due to the fact that the map is not a
bijection. That is, any particular networkGcan be produced bymultiple,
distinct generative processes, each with its own ground truth, such that
G ¼ g1ðT 1Þ ¼ g2ðT 2Þ, with ðg1; T 1Þ≠ðg2; T 2Þ. Thus, no community
detection algorithmmethod can uniquely solve the problem for all pos-
sible networks (Eq. 2), or even a single network (Eq. 1). This reasoning
underpins the following theorem, which we state and prove in Supple-
mentary Text C.

Theorem 1: For a fixed network G, the solution to the ground
truth community detection problem—given G, find the T such that
G = g(T )—is not unique.

Substituting metadata M for ground truth T exacerbates the situ-
ation by creating additional problems. In real networks, we do not know
the ground truth or the generating process. Instead, it is common to
seek a partition that matches some node metadata M. Optimizing a
community detection method to discover M is equivalent to finding
f* such that

f ∗ ¼ arg min
f

d
�
M; f ðGÞ

�
ð3Þ

However, this does not necessarily solve the community detection
problem of Eq. 1 because we cannot guarantee that the metadata are
equivalent to the unobserved ground truth, d(M,T ) = 0. Consequently,
both d(C,T ) = 0 and d(C,T ) > 0 are possibilities. Thus, whenwe evaluate a
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community detectionmethod by its ability to find ametadata partition,
we confound the metadata’s correspondence to the true communities,
that is, d(M,T ) [case (ii) in the previous section], and the community
detectionmethod’s ability to find true communities, that is, d(C,T ) [case
(iv)]. In this way, treatingmetadata as ground truth simultaneously tests
themetadata’s relevance and the algorithm’s performance, with no ability
to differentiate between the two. For instance, when considering com-
peting partitions of the Karate Club (Fig. 1), the leader-follower partition
is themost likely partition under the SBM, yet it correlates poorlywith the
known metadata. On the other hand, under the degree-corrected SBM,
the optimal partition ismore highly correlatedwith themetadata (fig. S1).
Based only on the performance of recovering metadata, one would con-
clude that the degree-corrected model is better. However, if Zachary had
not provided the faction information, but instead some metadata that
correlated with the degree (for example, the identities of the club’s four
officers), then our conclusionmight change to the regular SBM being the
better model. We would arrive at a different conclusion despite the fact
that the network and the underlying process that generated it remain un-
changed. A similar case of dependence on a particular choice ofmetadata
is exemplified by divisions of high school social networks usingmetadata
of students’ grade level or race (21). Past evaluations of community de-
tection algorithms that only measure performance by metadata recovery
are thus inconclusive. It is only with synthetic data, where the generative
process is known, that ground truth is knowable and performance is
objectively measurable.

However, even when the generative process is known for a single
network or even a set of networks, there is no best community detection
methodover all networks. This is because,whenaveragedover all possible
community detection problems, every algorithm has provably identical
performance, a notion that is captured in a No Free Lunch theorem
for community detection, which we rigorously state and prove in Supple-
mentary Text C and paraphrase here.

Theorem 3 (paraphrased): For the community detection prob-
lem, with accuracy measured by adjusted mutual information, the
uniform average of the accuracy of any method f over all possible com-
munity detection problems is a constant that is independent of f.

This No Free Lunch theorem, based on theNo Free Lunch theorems
for supervised learning (32), implies that no method has an a priori
advantage over any other across all possible community detection tasks.
(Theorem 3 and its proof apply to clustering and partitioning methods
in general, beyond community detection.) That is, for a set of cases that
a particular method fa outperforms fb, there must exist a set of cases
where fb outperforms fa—on average, no algorithmperforms better than
any other. However, this does not render community detection point-
less because the theorem also implies that if the tasks of interest corre-
spond to a restricted subset of cases (for example, finding communities
in gene regulatory networks or certain kinds of groups in social networks),
then there may be a method that outperforms others within the confines
of that subset. In short,matching beliefs about the data-generating process
g with the assumptions of the algorithm f can lead to better and more
accurate results, at the cost of reduced generalizability. (See Supplementary
Text C for additional discussion.)

The combined implications of the epistemological arguments in the
previous section with Theorems 1 and 3 in this section do not render
community detection impossible or useless, by any means. However,
they do imply that efforts to find a universally best community detection
algorithm are in vain and that metadata should not be used as a
benchmark for evaluating or comparing the efficacy of community
detection algorithms. These theorems indicate that better community
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detection resultsmay stem froma better understanding of how to divide
the problem space into categories of community detection tasks, even-
tually identifying classes of algorithms whose strengths are aligned with
the requirements of a specific category.

Relating metadata and structure
From a scientific perspective, metadata labels have direct and genuine
value in helping to understand complex systems. Metadata describe the
nodes, whereas communities describe how nodes interact. Therefore,
correspondence between metadata and communities suggests a rela-
tionship between how nodes interact and the properties of the nodes
themselves. This correspondence has been used productively by re-
searchers to assist in the inference of community structure (21), to learn
the relationship between metadata and network topology (33, 34), and
to explain dependencies between metadata and network structure (35).

Here, we propose two newmethods to explore howmetadata relate
to the structure of the networkwhen themetadata only correlate weakly
with the identified communities. Both methods use the powerful tools
of probabilistic models but are not restricted to any particular model of
community structure. The firstmethod is a statistical test to assesswhether
or not the metadata partition and network structure are related [case (i)].
The secondmethod explores the space of network partitions to determine
whether the metadata represent the same or different aspects of the
network structure as the “optimal” communities inferred by a chosen
model [case (ii)].

In principle, any probabilistic generative model (15, 16, 36–39) of
communities in networks could be used within these methods. Here,
we derive results for the popular SBM (15, 16) and its degree-corrected
version (20) (alternative formulations are discussed in Supplementary
Texts A and B). The SBM defines communities as sets of nodes that are
stochastically equivalent. This means that the probability pij of a link
between a pair of nodes i and j depends only on their community
assignment, that is, pij ¼ wpi;pj , where pi is the community assignment
for node i, andwpi;pj is the probability that a link exists betweenmembers
of groups pi and pj. This general definition of community structure is
quite flexible and allows for both assortative and disassortative commu-
nity structure, as well as arbitrary mixtures thereof.

Testing for a relationship between metadata and structure
Our first method, called the blockmodel entropy significance test
(BESTest), is a statistical test to determine whether the metadata parti-
tion is relevant to the network structure [case (i)], that is, if it provides a
good description of the network under a given model. We quantify
relevance using the entropy, which is a measure of how many bits of
information it takes to record the network given both the network
model and its parameters. The lower the entropy under this model,
the better the metadata describe the network, whereas a higher entropy
implies that the metadata and the patterns of edges in the network are
relatively uncorrelated. We derive and discuss the BESTest using five
different models in Supplementary Text B. Here, we describe a par-
ticularly straightforward version of this test using the SBM.

The BESTest works by first dividing a network’s nodes according to
the labels of the metadata and then computing the entropy of the SBM
that best describes the partitioned nodes. This entropy is then compared
to a distribution of entropies using the same network but random per-
mutations of the metadata labels, resulting in a standard P value. Spe-
cifically, we use the SBM with maximum likelihood parameters for the
partition induced by the metadata, which is given by ŵrs ¼ mrs

nrns
, where

mrs is the number of links between group r and group s, and nr is the
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number of nodes in group r. Then, we compute the entropy H(G;M),
which we derive and discuss in detail, along with derivations of en-
tropies for other models, in Supplementary Text B.

The statistical significance of the entropy valueH(G;M) is obtained
by comparing it to the entropy of the same network but randomly per-
muted metadata. Specifically, we compute a null distribution of these
values, derived by calculating the entropies induced by random permu-
tationsf~pgof the observedmetadata valuesHðG; ~pÞ. This choice of null
model preserves both the empirical network structure and the relative
frequencies of metadata values but removes the correlation between the
two. The result is a standard P value, defined as

P value ¼ Pr½HðG; ~pÞ≤HðG;MÞ� ð4Þ

which can be estimated empirically by computing HðG; ~pÞ for a large
number of randomly permuted metadata vectors ~p. Smaller P values
indicate that the metadata provide a better description of the network,
making it relatively less plausible that a random permutation of the
metadata values could describe the network as well as the observed
metadata. Note that P values measure statistical significance but not
effect strength, meaning that a low P value does not indicate a strong
correlation between the metadata and the network structure. Recently,
Bianconi et al. (40) proposed a related entropy test for this task, based
on a normal approximation to the null distribution under the SBM.
The BESTest described here is a generalization of Bianconi et al.’s test
that is both more flexible, because it can be used with any number of
null models, and more accurate, because the true null distribution is
substantially non-normal (fig. S5).

The BESTest is, by construction, sensitive to even low correlations
between metadata and network structure. To quantify the sensitivity of
thisPvalue,we first apply it to synthetic networkswithknowncommunity
structure (see Supplementary Text B for a complete description of syn-
thetic network generation). For these networks, our ability to detect re-
levant metadata is determined jointly by the strength of the planted
communities and the correlation between metadata and communities.
Figure 2 shows that for networks with strong community structure, we
can reliably detect relevantmetadata even for relatively low levels of cor-
relation with the planted structure. Our method can still identify rele-
vant metadata when the community structure is sufficiently weak that
communities are provably undetectable by any community detection
algorithm that relies only on the network (8). Statistical significance re-
quires an increasing level of correlation with the underlying structure as
community strength decreases; if there is no structure in the network (D =
1), then any metadata partition will be correctly identified as irrelevant.
Note that a low P value does notmean that themetadata provide the best
description of the network, nor does it imply that we should be able to
recover the metadata partition using community detection.

We now apply the BESTest to a social network of interactions within
a law firm, and to biological networks representing similarities among
genes in the human malaria parasite Plasmodium falciparum (see Sup-
plementary Text D). The first set, the Lazega Lawyers networks, com-
prises three networks on the same set of nodes and five metadata
attributes. The multiple combinations of edge and metadata types that
yield highly significant P values (Table 1; see table S3 for results using
additionalmodels of community structure) indicate that each set ofmeta-
data provides nontrivial information about the structure of multiple
networks and vice versa, implying that all metadata sets are relevant
to the edge formation process, so none should be individually treated
as ground truth.
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The second set, the malaria var gene networks, comprises nine net-
works on the same set of nodes and three sets of metadata. For each
network, we find a nonsignificant P value when the metadata denote
the parasite genome of origin (Table 2; see table S4 for results using ad-
ditional models of community structure and additional metadata). In
contrast to the Lazega Lawyers network, these genomemetadata are sta-
tistically irrelevant for explaining the observed patterns of gene recom-
binations. This finding substantially strengthens the conclusions of
Larremore et al. (41), which used a less sensitive test based on label as-
sortativity. However, some metadata for these networks do correlate
(see Supplementary Text B).

Diagnosing the structural aspects captured by metadata
and communities
Our secondmethod provides a direct means to diagnose whether some
metadata and a network’s detected communities differ because they
reveal different aspects of the network’s structure [case (ii)]. We ac-
complish this by extending the SBM to probe the local structure
Peel, Larremore, Clauset, Sci. Adv. 2017;3 : e1602548 3 May 2017
around and between the metadata partition and the detected struc-
tural communities. This extended model, which we call the neoSBM,
performs community detection under a constraint in which each node
is assigned one of two states, which we call blue or red, and a parameter
q that governs the number of nodes in each state. If a node is blue, then
its community is fixed as its metadata label, but if it is red, then its com-
munity is free to be chosen by the model. We choose q automatically
within the inference step of the model by imposing a likelihood penalty
in the form of a Bernoulli prior with parameter q, which controls for the
additional freedom that comes from varying q. The neoSBM’s log like-
lihood isLneoSBM =LSBM + qy(q), wherey(q) may be interpreted as the
cost of freeing a node from its metadata label (see Supplementary Text
A for the exact formulation).

By varying the cost of freeing a node, we can use the neoSBM to
produce a graphical diagnostic of the interior of the space between
the metadata partition and the inferred community partition. In this
way, the neoSBMcan shed light on how themetadata and inferred com-
munity partitions are related, beyond direct comparison of the partitions
via standard techniques such as normalized mutual information or the
Rand index. As the cost of freeing nodes is reduced, the neoSBM creates
a path through the space of partitions from metadata to the optimal
community partition and, as it does so, we monitor the improvement
of the partition by the increase in SBM log likelihood. A steady increase
indicates that the neoSBM is incrementally refining the metadata
partition until it matches the globally optimal SBM communities. This
behavior implies that the metadata and community partitions represent
related aspects of the network structure. On the other hand, if the SBM
likelihood remains constant for a substantial range of q, followed by a
sharp increase or jump, then it indicates that the neoSBM has moved
fromone local optimumto another.Multiple plateaus and jumps indicate
that several local optima have been traversed, revealing that the partitions
are capturing different aspects of the network’s structure.

To demonstrate the usage of the neoSBM, we examine the path be-
tween partitions for a synthetic network with four locally optimal parti-
tions, which correspond to the four distinct peaks in the surface plot
(Fig. 3A; see Supplementary Text A for a complete description of syn-
thetic network generation). We take the partition of the lowest of these
peaks asmetadata and use the neoSBM to generate a path to the globally
optimal partition by varying the q parameter of the neoSBM from0 to 1.
The corresponding changes in the SBM log likelihood and the number
Table 1. BESTest P values for Lazega Lawyers.
Metadata attribute
Network
 Status
 Gender
 Office
 Practice
 Law school
Friendship
 <10−6
 0.034
 <10−6
 0.033
 0.134
Cowork
 <10−3
 0.094
 <10−6
 <10−6
 0.922
Advice
 <10−6
 0.010
 <10−6
 <10−6
 0.205
Table 2. BESTest P values for malaria var genes.
var gene network number
1
 2
 3
 4
 5
 6
 7
 8
 9
Genome
 0.566
 0.064
 0.536
 0.588
 0.382
 0.275
 0.020
 0.464
 0.115
Fig. 2. Expected P value estimates of the blockmodel entropy significance test as the correlation ℓ between metadata and planted communities increases (each
metadata label correctly reflects the planted community with probability (1 + ℓ)/2; see Supplementary Text B). Each curve represents networks with a fixed community
strength D =wrs/wrr. Solid lines indicate strong community structure in the so-called detectable regime (D < l), whereas dashed lines representweak undetectable communities (D > l)
(8). Three block density diagrams visually depict D values.
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of free nodes show three discontinuous jumps (Fig. 3C), one for each
time the model encounters a new locally optimal partition.

Examining the partitions along the neoSBM’s path can provide di-
rect insights into the relationship betweenmetadata and network struc-
ture. Figure 3B shows the structure at each of the four traversed optima
as block-wise interaction matrices w. Each partition has a different type
of large-scale structure, from core periphery to assortative patterns. In
this way, when metadata do not closely match inferred communities,
the neoSBM can shed light on whether and how the metadata capture
similar or different aspects of network structure.

We now present an application of the neoSBM to the Lazega Lawyers
data analyzed in the previous section. When initialized with the law
school andoffice locationmetadata, theneoSBMproducesdistinct patterns
of relaxation to the global optimum (Fig. 4, A and C), approaching it
from opposite sides of the peak in the likelihood surface. Starting at the
law school metadata, the model traverses the space of partitions to the
global SBM-optimal partition without encountering any local optima.
In contrast, the path from the officemetadata crosses one local optimum
(Fig. 4, A and B), which indicates that the law school metadata are more
closely associated with the large-scale organization of the network than
Peel, Larremore, Clauset, Sci. Adv. 2017;3 : e1602548 3 May 2017
are the office metadata. However, both sets of metadata labels are rel-
evant, as we determined in the previous section using the BESTest.
Results for other real-world networks are included in Supplementary
Text A, including generalizations of the neoSBM to other community
detection methods.
DISCUSSION
Treating node metadata as ground truth communities for real-world
networks is commonly justified via an erroneous belief that the purpose
of community detection is to recover groups thatmatchmetadata labels
(11, 13, 31, 42). Consequently, metadata recovery is often used to mea-
sure community detection performance (43), and metadata are often
referred to as ground truth (21, 44). However, the organization of real
networks typically correlates with multiple sets of metadata, both ob-
served and unobserved. Thus, labeling any particular set to be “ground
truth” is an arbitrary and generally unjustified decision. Furthermore,
when a community detection algorithm fails to identify communities that
match knownmetadata, poor algorithmperformance is indistinguishable
from three alternative possibilities: (i) The metadata are irrelevant to the
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Fig. 4. The neoSBM on Lazega Lawyers friendship data (52). (A) Points of two neoSBM paths using office (red) and law school (blue) metadata partitions are shown on the
stochastic blockmodel likelihood surface (grayscale to emphasize paths). (B) Block density diagrams depict community structure formetadata, (1 and 2) intermediate optimal, and
(3) globally optimal partitions, where darker color indicates higher probability of interaction. (C) The neoSBM traverses two distinct paths to the global optimum (3), but only the
path beginning at the office metadata partition traverses a local optimum (1), indicated by a plateau in free nodes q and log likelihood.
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Fig. 3. The neoSBM on synthetic data. (A) The stochastic blockmodel likelihood surface shows four distinct peaks corresponding to a sequence of locally optimal partitions.
(B) Block density diagrams depict community structure for locally optimal partitions, where darker color indicates higher probability of interaction. (C) The neoSBM, with partition
1 as the metadata partition, interpolates between partition 1 and the globally optimal stochastic blockmodel partition 4. The number of free nodes q and stochastic blockmodel
log likelihood as a function of q show three discontinuous jumps as the neoSBM traverses each of the locally optimal partitions (1 to 4).
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network structure, (ii) the metadata and communities capture different
aspects of thenetwork structure, or (iii) thenetwork lacks group structure.
Here, we have introduced two new statistical tools to directly investigate
cases (i) and (ii), whereas (iii) remains well addressed bywork fromother
authors (8, 23–29). We have also articulated multiple mathematical ar-
guments, which conclude that treating metadata as ground truth in
community detection induces both theoretical and practical problems.
However, we have also shown that metadata remain useful and that a
careful exploration of the relationship between nodemetadata and com-
munity structure can yield new insights into the network’s underlying
generating process.

By searching only for communities that are highly correlated with
metadata, we risk focusing only on positive correlations while overlook-
ing other scientifically relevant organizational patterns. In some cases,
disagreements betweenmetadata labels and community detection results
may, in fact, point to interesting or unexpected generative processes. For
instance, in the Karate Club network, there is one node whosemetadata
label is not recovered by most algorithms. A close reading of Zachary’s
original manuscript reveals that there is a rational explanation for this
one-node difference: Although the student had more social ties to the
president’s group, he chose to join the instructor’s group so as not to lose
his progress toward his black belt (14). In other cases, metadata may
provide a narrative that blinds us to additional structure, exemplified
by a network of political blogs (1), inwhich liberal and conservative blogs
formed two highly assortative groups. Consequently, recovery of these
two groups has been used as a signal that a method produces “good”
results (20). However, a deeper analysis suggests that this network is
better described by subdividing these two groups, a step that reveals sub-
stantial substructurewithin the dominant patterns of political connectivity
(19, 39). These subgroups remained overlooked in part because the meta-
data labels aligned closely with an attractively simple narrative.

The task of community detection is the network analog of data
clustering. Whereas clustering divides a set of vectors into groups with
similar attribute patterns, community detection divides a network into
groups of nodes with similar connectivity patterns. However, the gen-
eral problem of clustering is notoriously slippery (45) and cannot be
solved universally (46). Essentially, which clustering is optimal depends
on its subsequent uses, and our theoretical results here show that similar
constraints hold for community detection (47). However, as with
clustering, despite the lack of a universal solution, community detection
remains a useful and powerful tool in the analysis of complex networks.

There is no universally accepted definition of community structure,
nor should there be. Networks represent a wide variety of complex sys-
tems, from biological to social to artificial systems, and their large-scale
structure may be generated by fundamentally different processes. Good
community detectionmethods like the SBMcanbepowerful exploratory
tools, which can uncover a wide variety of these patterns in real networks.
However, as we have shown here, there is no free lunch in community
detection. Instead, algorithmic biases that improve performance on one
class of networks must reduce performance on others. This is a natural
trade-off and suggests that good community detection algorithms come
in two flavors: general algorithms that perform fairly well on a wide
variety of tasks and inputs, and specialized algorithms that perform
very well on a more narrow set of tasks, outperforming any general
algorithm, but which perform more poorly when applied outside their
preferred domain [an insight foreshadowed in past work (48)]. In some
cases, it may be advantageous to use a set of carefully chosen metadata
and a narrow set of corresponding networks to train specialized algo-
rithms.Historically,mostwork on community detection algorithms has
Peel, Larremore, Clauset, Sci. Adv. 2017;3 : e1602548 3 May 2017
focused on developing general approaches. A deeper consideration
of how the outputs of community detection algorithms will be sub-
sequently used, for example, in testing scientific hypotheses, predicting
missing information, or simply coarse-graining the network, may shed
new light on how to design better algorithms for those specific tasks. An
important direction of future work is thus to better understand both
these trade-offs and the errors that can occur in domain-agnostic appli-
cations (49, 50).

A complementary approach is to incorporate the metadata into the
inference process itself, which can help guide a method toward pro-
ducing more useful results. The neoSBM introduced here is one such
method. Others include methods that use metadata as a prior for com-
munity assignment (21) and identify relevant communities to predict
missing network or metadata information (33, 34, 51). However, there
is potential to go further than these domain-agnostic methods can take
us. Tools that incorporate correct domain-specific knowledge about the
systems they represent will provide the best lens for revealing patterns
beyondwhat is already knownandultimately lead to important scientific
breakthroughs. By rigorously probing these relationships, we can move
past the false notion ofmetadata as ground truth and instead uncover the
particular organizing principles underlying real-world networks and
their metadata.
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