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Abstract

Estrogens are potent and efficacious neuroprotectants both in vitro and in vivo in a variety of 

models of neurotoxicity. We determined the structural requirements for neuroprotection in an in 
vitro assay using a panel of more than 70 novel estratrienes, synthesized to reduce or eliminate 

estrogen receptor (ER) binding. We observed that neuroprotection could be enhanced by as much 

as 200-fold through modifications that positioned a large bulky group at the C2 or C4 position of 

the phenolic A ring of the estratriene. Further, substitutions on the B, C or D rings either reduced 

or did not markedly change neuroprotection. Collectively, there was a negative correlation between 

binding to ERs and neuroprotection with the more potent compounds showing no ER binding. In 

an in vivo model for neuroprotection, transient cerebral ischemia, efficacious compounds were 

active in protection of brain tissue from this pro-oxidant insult. We demonstrated that these non-

feminizing estrogens engage in a redox cycle with glutathione, using the hexose monophosphate 

shunt to apply cytosolic reducing potential to cellular membranes. Together, these results 

demonstrate that non-feminizing estrogens are neuroprotective and protect brain from the 

induction of ischemic- and Alzheimer’s disease (AD)-like neuropathology in an animal model. 

These features of non-feminizing estrogens make them attractive compounds for assessment of 

efficacy in AD and stroke, as they are not expected to show the side effects of chronic estrogen 

therapy that are mediated by ER actions in the liver, uterus and breast.
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1. Introduction

1.1 Need for non-feminizing estrogens

Menopause, in which a human female transitions to reproductive senescence, occurs during 

the fifth decade of life among women (Timiras et al., 1995). This transition is characterized 

by depleted ovarian follicles, declines in naturally circulating levels of sex hormones, such 

as estrogens and progesterone, and a dysregulation of gonadotrophin feedback loops marked 

by increasing levels of follicular stimulating hormone and lutenizing hormone (Rannevik et 
al., 1995). Further, menopause is associated with hot flashes, urogenital atrophy, cognitive 

decline (specifically learning and memory), and other symptoms that reduce quality of life 

(Freedman, 2002; Sherwin & Henry, 2008). To alleviate these symptoms, estrogen-

containing hormone therapy (HT) is given. Premarin® (conjugated equine estrogens), a 

purified pregnant mare urine compound first developed by Wyeth, is the most widely used 

estrogen-based menopausal HT in North America (Hersh et al., 2004) although a plethora of 

other estrogen-containing treatment options exist as well (Sood et al., 2014). Despite these 

treatments showing attenuation of undesirable menopausal symptoms (Sood et al., 2014) and 

possible protection against brain aging and injury (Engler-Chiurazzi et al., 2016a), recent 

comprehensive studies have demonstrated that in older women, chronic exposure to 

feminizing estrogens alone or in combination with a synthetic progestin leads to an increase 

in pro-thrombotic and pro-mitotic side effects (Manson et al., 2003; Wassertheil-Smoller et 
al., 2003; Anderson et al., 2004). These chronic toxicities of feminizing estrogens are 

mediated by the effects of persistent estrogen exposure in estrogen responsive tissues, like 

the liver, uterus, and breast. This, combined with the controversial findings of the Women’s 

Health Initiative regarding the potential increased risk for adverse outcomes among 

reproductively senescent women taking HT has spurred an intense debate as to whether 

estrogen-containing HTs should continue to be administered for treatment of menopausal 

symptoms and brain aging. Given that approximately half of the aging adult population is 

female, there is an important medical need to develop novel treatments for the menopausal 

transition and aging processes with a more acceptable risk-to-benefit ratio.

1.2. Neuroprotective effects of estrogens

We were among the first research groups to document the beneficial actions of estrogens on 

the central nervous system (reviewed in Engler-Chiurazzi et al., 2016b). We first 

demonstrated potent neuroprotective activity of the feminizing estrogen, 17β-estradiol (17β-

E2), in 1994 (Bishop & Simpkins, 1994). Since then, the neuroprotective effects of 

feminizing estrogens have been confirmed using neuronal cultures and primary cells against 

a variety of toxicities including serum deprivation (Green et al., 1997a; Green et al., 1997b), 

β-amyloid toxicity (Green et al., 1998; Pike, 1999), and oxidative stress (Behl et al., 1995; 

Goodman et al., 1996; Sawada et al., 1998; Sawada et al., 2000)), among others, in 

hippocampal, amygdala, cortical and mesencephalic neurons (for review, please see Green & 

Simpkins, 2000; Garcia-Segura et al., 2001; Lee & McEwen, 2001). Similarly, in vivo 
feminizing estrogens have been shown to enhance cognitive outcomes (Engler-Chiurazzi et 
al., 2016a). As well, in in vivo animal models of brain injury, feminizing estrogens impart 

protection in models of cerebral ischemia (Simpkins et al., 1997; Dubal et al., 1998; Yang et 
al., 2000), following kainic acid treatment (Azcoitia et al., 1998), and in contusion injury 
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models (Nakamizo et al., 2000; Gatson et al., 2012). Indeed, in stroke, the protective effects 

of estrogens are seen in a variety of models including transient and permanent middle 

cerebral artery occlusion models (Simpkins et al., 1997; Alkayed et al., 1998; Dubal et al., 
1998; Perez et al., 2005b), global forebrain ischemia models (Sudo et al., 1997), 

photothrombotic focal ischemia models (Fukuda et al., 2000), and glutamate-induced focal 

cerebral ischemia models (Mendelowitsch et al., 2001). The protection afforded by estrogens 

is seen in rats, mice, and gerbils (Simpkins et al., 1997; Culmsee et al., 1999; Chen et al., 
2001) and in adult and middle-aged female rats, as well as in reproductively senescent 

female rats (Wise et al., 2001). This protection is seen even in the presence of diabetes and 

hypertension (Carswell et al., 2000; Toung et al., 2000). Similarly, the neuroprotective 

effects of estrogens are observed against subarachnoid hemorrhage (Yang et al., 2001). 

Finally, the neuroprotective actions of estrogen are also seen in males (Hawk et al., 1998; 

Toung et al., 1998). Collectively, potent estrogen protection in these model systems suggest 

that this steroid hormone may play an important role in preserving neurons in the face of a 

variety of insults and represents an important therapeutic target for alleviating brain aging 

and disease. However, given the potential for undesirable peripheral activity of feminizing 

estrogens, the development of novel estrogen analogues that act in brain but not on 

reproductive organs represents a promising future therapeutic option for the treatment of 

brain aging.

1.3. Discovery of neuroprotection by non-feminizing estrogens

In the process of conducting controled studies for the neuroprotective effects of 17β-E2, we 

discovered that 17α-estradiol (17α-E2) was as potent as 17β-E2 in protection of neurons 

from toxicity (Green et al., 1997a). 17α-E2 is a weak diastereomer of 17β-E2 and despite 

the fact that 17β-E2 binds avidly to estrogen receptors (ERs) α and β and activates tissues in 

a hormonally-responsive manner, 17α-E2 is biologically weak at both receptors. We went on 

to show that the enantiomer of 17β-E2 (ent-17β-E2), which has identical physiochemical 

properties as 17β-E2 except for interactions with other stereospecific molecules such as ERs 

is potently neuroprotective (Green et al., 2001). ent-17β-E2 is reported to interact only 

weakly with ERs (Chernayaev et al., 1975; Payne & Katzenellenbogen, 1979) and lacks 

estrogenic effects on reproductive tissues in rodents (Terenius, 1968; 1971). Importantly, 

although ent-17β-E2 exerts only slight anti-uterotrophic activity and can antagonize the 

uterotrophic effects of 17β-E2 (Edgren & Jones, 1969; Terenius, 1971), ent-17β-E2 is still a 

potent neuroprotectant (Green et al., 2001). These collective findings suggest that 

neuroprotective effects of estrogens do not necessarily require action at the ER.

2. Structure-activity relationship among estrogens

In view of the observation that many of chronic estrogen treatment side-effects are likely due 

to peripheral effects of orally administered estrogen preparations acting via known ERs 

(Dubey et al., 2005; Maki, 2006; Salpeter et al., 2006; Coker et al., 2009; Resnick et al., 
2009), we sought to determine if non-feminizing estrogens could have the beneficial effects 

of estrogens on brain protection, without the negative peripheral side effects of traditional 

feminizing preparations. We undertook a series of studies to define the structure-activity 

relationship among estrogen-like compounds for both neuroprotection and ER binding, 
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based on our and other’s observations of a disparity between ER binding and 

neuroprotection (Behl et al., 1997; Green et al., 1997b; Moosmann & Behl, 1999; Green et 
al., 2001). We initially assessed over 70 synthetic estrogens to determine the structure 

activity relationship among the compounds.

We defined that the minimal structural requirement for neuroprotection by estrogens is the 

steroid A ring. Estrogens are the only class of steroids that have a phenolic A ring (Figure 

1). Any modifications that eliminated the phenolic nature of the A ring completely 

eliminated neuroprotective activity. These modifications included saturation of the A ring or 

creation of a covalent bond with substituents through the 3 carbon oxygen.

Modifications of the D ring had little effect on the neuroprotective activity, including 

changing the orientation of the 17 carbon hydroxyl group (as is the case with 17α-E2), 

eliminating the 17 carbon hydroxyl group (estratriene-3-ol), or opening the D ring (Perez et 
al., 2005a). The addition of polar groups in the B and C rings tended to reduce 

neuroprotective activity of estrogens indicating that the center of the molecular requires 

sufficient lipophilicity for neuroprotective activity (Perez et al., 2005a).

Finally, we observed a marked enhancement in neuroprotection with the addition of non-

polar group to the 2 and/or 4 carbons of the A ring (Perez et al., 2005a). One particularly 

potent non-feminizing estrogen is ZYC-26, which has a large adamantly group on the 2 

carbon and a methyl group on the 4 carbon (Figure 2).

When compounds were categorized by their binding affinity to ERα, we observed the 

expected positive correlations with ERβ binding (Figure 3) but a negative correlation with 

neuroprotective activity and lipid peroxidation (Figure 3).

Collectively these structure-activity relationships argue for a neuroprotective mechanism(s) 

that do not require action at the classical ERs. As such, we began a program of research to 

determine the mechanism(s) by which non-feminizing estrogens are potently 

neuroprotective.

3. Mechanism of non-feminizing estrogen neuroprotection

Two observations suggested a potential mechanism by which non-feminizing estrogens 

could be potently neuroprotective. First, the need for the estrogen molecule to avoid polar 

groups on the B and C rings suggested that their interaction with lipid membranes was a 

critical component of their neuroprotective activity. Given the high lipophilicity of estrogens, 

most estrogens are associated with lipid membranes. Indeed, we have shown that estrogens 

insert into lipid bilayers and that the presence of an adamantyl group at the C-2 position 

affects the position of the A ring 3-hydroxyl group such that it is possible to detect an 

orientation that would bring it into close proximity to the double bonds of membrane lipids; 

a position that is optimal for terminating lipid peroxidation (Cegelski et al., 2006).

Second, we demonstrated that 17β-E2, 17α-E2, and estratriene-3-ol all synergizes with the 

aqueous soluble antioxidant, glutathione to result in a 400-fold enhancement of the 

neuroprotective activity of both feminizing and non-feminizing estrogens (Green et al., 
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1998). This suggests that lipid resident estrogens can interact with soluble cytosolic 

antioxidants to halt an oxidative/inflammatory cellular cascade and achieve neuroprotection.

We then assessed the possible redox cycling of estrogens with glutathione using human 

erythrocytes (Dykens et al., 2004). Human erythrocytes (RBCs) lack mitochondria and 

nuclei, making them a useful model to assess estrogens for assessing the redox potential of 

non-feminizing estrogens. In this model, the hexose monophosphate shunt (HMS) generates 

NADPH, which serves to reduce glutathione (GSH) from oxidized glutathione (GSSG), 

allowing us to test the extent to which estrogens enhance the activity of this redox cycle. 

With H2O2 exposure, the HMS is activated. In the presence of either 17β-E2 or 17α-E2, an 

approximate doubling in HMS activity was observed (Figure 4). The potent neuroprotectant, 

ZYC-3 increased HMS activity about 3-fold, but the inactive compound, ZYC-23 did not 

affect HMS activity (Figure 4). These results indicate that estrogens are able to tap the large 

reducing potential of the HMS, and through NADPH-induced reduction of GSSH to GSH, 

and able to apply this reducing potential to lipid membranes using estrogens as a mediator.

4. Summary and Conclusions

The present series of studies provide evidence that synthetic estrogens that do not interact 

with ERs are potent neuroprotectants, likely working through a redox cycle that involves 

glutathione and the HMS. The neuroprotection depends on a phenolic A ring and potency is 

enhanced through aliphatic substituents on the 2 and/or 4 carbons of the estrogen molecule. 

These compounds avoid ERα and ERβ, and as such are candidates for chronic therapy 

aimed at preserving the brain from insults sustained by diseases, like AD, or more acute 

traumas, like stroke. However, of important clinical significance is that, despite the strong 

supportive evidence for their neuroprotective actions, because these non-feminizing 

estrogens impart these effects independent of the classical ERs, the known peripheral 

benefits of estrogen-containing HTs, including on urogenital tract, bone, and cardiovascular 

tissues when administered near to the time of menopause initiation (Freedman, 2002; 

Gambacciani & Levancini, 2014; Hale & Shufelt, 2015), may not be observed. Thus, in 

conclusion, non-feminizing estrogens represent a novel and effective therapeutic 

intervention approach for the prevention of injury-induced neuropathology.
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Highlights

• Estrogen neuroprotection can be independent of estrogen receptors

• The phenolic A ring of estrogen molecule is essential to its neuroprotective 

activity

• Allophalic substitutions at the 2 and 4 carbon of the A ring enhance 

neuroprotective potency

• Non-feminizing estrogens represent a novel target for post-menopausal brain 

aging

• Yet, with these agents, peripheral estrogenic benefits will not be observed
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Figure 1. 
Structure of 17 β-E2. Letters denote the 4 rings of the molecule and numbers indicate the 

carbons positions.
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Figure 2. 
Structure of 2-(1-Adamantyl)-4 methyl-3-hydroxyestra-1, 3, 5(10)-trien-17-one (ZYC-26).

Engler-Chiurazzi et al. Page 12

Exp Gerontol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Relationship among ER binding, neuroprotective activity and lipid peroxidation among 

estrogens. All activities were categorized by ERα binding affinity and we observed a 

marked negative relationship between ERα binding and neuroprotection in 4 assays of 

neurotoxicity. GLUT indicated glutamate toxicity at 10 and 20 mM concentrations of 

glutamate. IAA indicated indolacetic acid at 20 and 40 mM concentrations (IAA). TBARs 

indicated thiobarbituric acid reactive substances (TBARs). Reproduced from Perez et al., 

2006, with permission.
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Figure 4. 
Carbon flux through the hexose monophosphate shunt in normal human erythrocytes 

(RBCs). In the absence of an oxidative insult, the compounds have no effect on HMS flux. 

However, exposure to 10 mM H2O2 significantly increases HMS flux in untreated control 

RBCs. Treatment with the indicated compounds at 1 mM for 10 min prior to addition of 0.3 

mCi 14C-U-glucose results in varying increases in HMS flux, with 17β-E2 and 17α-E2, 

showing comparable responses. ZYC-3 significantly increased HMS flux over the estrogens, 

and ZYC-23, a non-neuroprotective negative control, yields HMS flux rates 

indistinguishable from untreated controls. Means not significantly different at P < 0.05 

(Bonferroni), share superscripts; ANOVA F = 22.18, * P < 0.0001. Adapted and reprinted 

with permission from Dykens et al., 2004
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