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ABSTRACT
Aims/Introduction: Although genome-wide association studies have identified more
than 50 susceptibility genes for type 1 diabetes, low-frequency risk variants could remain
unrecognized. The present study aimed to identify novel type 1 diabetes susceptibility
genes by newly established methods.
Materials and Methods: We carried out whole-exome sequencing and genome-wide
copy-number analysis for a Japanese family consisting of two patients with type 1 dia-
betes and three unaffected relatives. Further mutation screening was carried out for 127
sporadic cases. The functional consequences of identified substitutions were evaluated by
in silico analyses and fluorescence-activated cell sorting of blood samples.
Results: Whole-exome sequencing and genome-wide copy-number analysis of familial
cases showed co-segregation of the p.V863L substitution in CD101, the human homolog
of an autoimmune diabetes gene in the non-obese diabetic mouse, with type 1 diabetes.
Mutation screening of CD101 in 127 sporadic cases detected the p.V678L and p.T944R
substitutions in two patients. The p.V863L, p.V678L and p.T944R substitutions were absent
or extremely rare in the general population, and were assessed as ‘probably/possibly dam-
aging’ by in silico analyses. CD101 expression on monocytes, granulocytes and myeloid
dendritic cells of mutation-positive patients was weaker than that of control individuals.
Conclusions: These results raise the possibility that CD101 is a susceptibility gene for
type 1 diabetes.

INTRODUCTION
Type 1 diabetes mellitus is a multifactorial disease in which
pancreatic b-cells are destroyed primarily by a T cell-mediated

autoimmune reaction1. Autoimmunity in type 1 diabetes is
facilitated by various cells, including dendritic cells (DCs)1–3. A
subset of patients with type 1 diabetes shows familial aggrega-
tion, suggesting a significant contribution of genetic factors to
the etiology of the disease1. Type 1 diabetes represents a poly-
genic disorder, whereas other forms of diabetes mellitus, suchReceived 20 April 2016; revised 21 August 2016; accepted 12 October 2016
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as maturity-onset diabetes of the young, neonatal diabetes and
syndromic diabetes, often result from monogenic mutations or
chromosomal abnormalities1,2. Genome-wide association studies
(GWAS), together with candidate gene approaches, have identi-
fied more than 50 susceptibility genes for type 1 diabetes2.
However, these genes account for just ~80% of the genetic
heritability of type 1 diabetes, indicating that additional disease-
associated genes remain to be identified2,4. In particular, suscep-
tibility variants of low frequency might be undetected by
GWAS, as this method focuses primarily on relatively common
polymorphisms5.
CD101 (also known as V7 and IGSF2) is a transmembrane

glycoprotein expressed on various types of immune cells6–9.
Cd101 has been reported as an ‘autoimmune diabetes gene in
the non-obese diabetic (NOD) mouse’10–12. Murine CD101 is
known to modulate the function of regulatory T cells and anti-
gen-presenting cells, with genotype-dependent Cd101 expression
determining the risk of autoimmune diabetes in NOD mice11,12.
In addition, monoclonal antibodies against CD101 inhibit allo-
geneic T cell responses9. Human CD101 has also been impli-
cated in immune regulation7,8,13–16. Previous studies have
suggested that human CD101 plays a costimulatory role in T cell
activation mediated by T cell receptor/CD3 or skin DCs7,8.
However, CD101 mutations have not been associated with dia-
betes in humans. Here, we report the identification of three
CD101 substitutions in patients with type 1 diabetes. These sub-
stitutions were detected through whole-exome sequencing of
familial cases and mutation screening of sporadic cases.

MATERIALS AND METHODS
Whole-exome sequencing and genome-wide copy-number
analysis of a family with type 1 diabetes
The present study was approved by the institutional review board
committee at the National Center for Child Health and Develop-
ment, and was carried out after obtaining written informed con-
sent. We carried out molecular analyses of a Japanese family
(family A) consisting of two patients with type 1 diabetes and
three unaffected relatives. The male proband (case 1) and his
mother (case 2) developed diabetes at the ages 2.6 and 18 years,
respectively (Table 1). At disease onset, case 1 was positive for
the insulin autoantibody, whereas case 2 was positive for the islet
cell surface antibody. Human leukocyte antigen (HLA) typing
showed known risk alleles of the Japanese population17,
DRB1*04:05 and DQB1*04:01, in cases 1 and 2 and two unaf-
fected family members, and DQB1*03:02 in case 1 and his unaf-
fected father (Table 1). The unaffected grandmother of case 1
(the mother of case 2) carried two risk alleles, DRB1*04:05 and
DQB1*04:01, together with a protective DQB1*03:01 allele.
Cases 1 and 2 showed no additional clinical features. No family
history of other autoimmune diseases was recorded in this family.
We carried out whole-exome sequencing using genomic DNA

samples obtained from cases 1 and 2 and three unaffected family
members (the father and two older siblings of the proband).
DNA libraries were constructed using a SureSelect Kit (51 Mb

version 4; Agilent Technologies, Santa Clara, CA, USA), and
sequenced using a Hiseq 1000 sequencer (Illumina, San Diego,
CA, USA). Nucleotide alterations were called by Avadis NGS
1.3.1 (DNA Chip Research, Yokohama, Japan) or SAMtools
0.1.17 software (https://sourceforge.net/projects/samtools/files/
samtools/). We searched for nucleotide alterations shared by
cases 1 and 2, but absent from the three unaffected relatives. We
focused on exonic mutations that alter protein sequences and
intronic substitutions located within a 5-bp region from an
exon–intron boundary. Known polymorphisms with an allele
frequency of more than 1.0% in the general population (NCBI
Browser, http://www.ncbi.nlm.nih.gov/), and mutations whose
functional outcomes were predicted as ‘benign’ by in silico analy-
sis using PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)
were excluded from further analysis. We referred to the OMIM
database (https://www.ncbi.nlm.nih.gov/omim) to examine
whether the genes identified in the present study were associated
with any human disorders. We also searched the PubMed
database (http://www.ncbi.nlm.nih.gov/pubmed/) for previous
reports on these genes. Nucleotide alterations in CD101
(NM_004258) and GAD2 (NM_000818.2) were confirmed by
Sanger sequencing. Primer sequences are available on request. In
addition, we analyzed the parental origin of a CD101 mutation
identified in case 2. Copy-number alterations in case 1 were
analyzed by array-based comparative genomic hybridization
(SurePrint G3 Human Microarray, 2 9 400 k format; Agilent
Technologies). We referred to the Database of Genomic Variants
(http://projects.tcag.ca/variation/) to exclude known benign
variants.

Mutation screening of CD101 in sporadic cases with type 1
diabetes
We carried out mutation screening of CD101 in 127 sporadic
cases with type 1 diabetes (49 males and 78 females, aged 2.0–
18.1 years). All patients were of Japanese origin, and developed
diabetes between the age of 0.9 and 15.7 years. The patients
were positive for anti-GAD and/or islet antigen 2 antibodies.
Patients with syndromic diabetes were excluded from the study.
Nucleotide alterations in CD101 coding exons and their

flanking regions were examined by amplicon-sequencing using
Nextera Kits (FC-121-1031 and FC-121-1012; Agilent Tech-
nologies) and a Miseq next-generation sequencer (Illumina). All
CD101 nucleotide alterations, except for common polymor-
phisms found in the NCBI Browser, were confirmed by Sanger
sequencing. To assess the presence or absence of the
pathogenicity of CD101 substitutions, we attempted to obtain
parental samples of mutation-positive patients.

Functional assessment of CD101 substitutions
We examined whether the CD101 substitutions identified in the
patients are present in the general population. First, we ana-
lyzed 185 DNA samples obtained from healthy Japanese con-
trols (Human Science Research Resources Bank, Tokyo, Japan;
present distributer, National Institute of Biomedical Innovation,
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Osaka, Japan). The presence or absence of the CD101 substitu-
tions were examined by single-nucleotide polymorphism geno-
typing (custom-made TaqMan SNP Genotyping Assays; Life
Technologies, Carlsbad, CA, USA) or by Sanger direct sequenc-
ing. Second, we examined frequencies of the CD101 substitu-
tions in databases. We referred to the Human Genetic
Variation Database (http://www.genome.med.kyoto-u.ac.jp/
SnpDB/) and the Exome Aggregation Consortium (ExAC)
Browser (http://exac.broadinstitute.org/). We also examined the
position and evolutionary conservation of affected amino acids
in the CD101 protein.

Expression analysis of CD101 in unaffected individuals and
substitution-positive patients
To analyze CD101 expression on hematopoietic cells, we car-
ried out multicolor fluorescence-activated cell sorting using
LSRFortessa (BD Biosciences, San Jose, CA, USA). Fresh
peripheral blood was obtained from five healthy individuals
and three CD101 substitution-positive patients (cases 1, 2 and
4). Fresh blood samples of case 3 were unavailable. Popula-
tions of lymphocytes, monocytes and granulocytes were differ-
entiated using forward scatter and side scatter of flow
cytometry. For analysis of CD101 expression on DCs, cells
expressing human CD45 were gated on HLA-DR+ and lin-
eage-, and divided into two subpopulations in terms of expres-
sion of CD11c and CD123; that is, CD11c+/CD123- cells and
CD11c-/CD123+ cells, which were referred to as myeloid and
plasmacytoid DCs, respectively (Figure 1a,b). Antibodies used
were FITC-conjugated human CD45, APC-Cy7-conjugated
HLA-DR, APC-conjugated CD123, PerCP-Cy5.5-conjugated
CD11c, PE-conjugated CD101, and brilliant violet 421-conju-
gated CD3, CD19 and CD14 for lineage markers. The CD101
antibody was purchased from AbD Serotec (Kidlington,
Oxford, UK), and other antibodies were purchased from Bio-
Legend (San Diego, CA, USA).

RESULTS
Molecular analyses of family A
Whole-exome sequencing of family A showed that nine hith-
erto unreported nucleotide changes in nine genes and 15 rare
polymorphisms in 14 genes co-segregated with type 1 diabetes
(Table 2; Figure 2a,b). Seven of the 24 nucleotide changes were
intronic substitutions or an inframe insertion of unknown
pathogenicity. Of the 23 mutated genes, CD101 represented the
human homolog of a known diabetes-causative gene in NOD
mice11,12, and GAD2 encoded a major autoantigen for type 1
diabetes3. The p.V863L substitution in CD101 was hitherto
unreported, whereas the p.I228T substitution in GAD2 was
found in 262 of 121,380 alleles in the ExAC Browser. The
remaining 21 genes have not been associated with type 1 dia-
betes or other autoimmune disorders; eight of these genes were
associated with some genetic disorders other than diabetes. The
p.V863L substitution in CD101 was shared by the unaffected
mother of case 2 (the grandmother of case 1). Mutations in

known diabetes-associated genes, including INS, PTPN22,
IL2RA and CTLA4, were not found in this family. Genome-
wide copy-number analysis in case 1 detected no deletions or
duplications, except for common copy-number variations.

Mutation screening of CD101 in sporadic cases with type 1
diabetes
Mutation screening of CD101 of 127 sporadic patients identi-
fied 10 rare nucleotide substitutions (Table S1). These substitu-
tions included p.V678L and p.T944R, which were absent or
extremely rare in the general populations, and were assessed as
‘probably damaging’ by in silico analysis (Table S1; Figure 2a,
b). Case 3 carrying the p.V678L substitutions and case 4 carry-
ing the p.T944R substitutions developed diabetes at 10.5 and
13.2 years-of-age, respectively (Table 1). At disease onset, these
cases were positive for anti-GAD antibodies. Both cases 3 and
4 carried risk HLA alleles of the Japanese population. Blood
samples from family members of cases 3 and 4 were unavail-
able for genetic testing.

Functional assessment of CD101 substitutions
The p.V863L, p.V678L and p.T944R substitutions were absent in
185 healthy Japanese individuals. Furthermore, these substitu-
tions have not been registered in the Human Genetic Variation
Database. Likewise, the p.V678L and p.V863L substitutions were
absent from 121,412 alleles in the ExAC Browser, and the
p.T944R substitution has been identified in one of 121,370 alleles.
The p.V678L and p.V863L substitutions resided within the

immunoglobulin-like domains of CD101, whereas the p.T944R
substitution was located in a connecting region between an
immunoglobulin-like domain and the transmembrane domain
(Figure 2a). The signal peptide was not affected by these substi-
tutions. The three substitutions involved nucleotides that were
evolutionary conserved among humans, rhesus, dogs and ele-
phants (Figure 2b).

Expression analysis of CD101 in unaffected individuals and
substitution-positive patients
In keeping with previous reports7–9,13,14, CD101 was highly
expressed on monocytes and granulocytes of control individu-
als, whereas lymphocytes including T cells, B cells and natural
killer cells of these individuals barely expressed it (red lines in
Figure 1c). Interestingly, the expression of CD101 on the
monocytes and granulocytes of cases 1, 2 and 4 was weaker
than that of the control individuals. The reduction of CD101
expression was also observed in myeloid DCs of these cases
(Figure 1b and blue lines in Figure 1c). Expression of CD101
was weak or absent on plasmacytoid DCs of both patients and
control individuals. Collectively, the CD101 mutations likely
affected protein expression primarily on myeloid lineage cells.

DISCUSSION
Whole-exome sequencing of family A showed that a p.V863L
substitution in CD101, the human homolog of an autoimmune
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diabetes gene in NOD mice10–12, co-segregated with type 1 dia-
betes. Notably, type 1 diabetes was seen in cases 1 and 2, but
not in the father or the older siblings of case 1, although HLA
risk alleles were shared by all of these individuals. Whereas 23
other nucleotide substitutions were also linked to the disease
phenotype of this family, there were no data supporting an
association between these substitutions and diabetes. In fact,
many of the 23 substitutions were of unknown pathogenicity,
or resided within genes that underlie human disorders other
than diabetes. Although cases 1 and 2 carried a p.I228T substi-
tution (rs143186590) in GAD2 encoding a major autoantigen

of type 1 diabetes, a relatively high frequency of GAD2 p.I228T
in the general population argued against the pathogenicity of
this mutation. Johnson et al.18 suggested that genetic variations
in GAD2 are unlikely to underlie type 1 diabetes. Actually,
GAD2 variations have been associated with obesity and anxiety
disorders, rather than type 1 diabetes19,20. Mutations in known
diabetes-causative genes, including INS, PTPN22, IL2RA and
CTLA4 were excluded in family A. Furthermore, although sev-
eral submicroscopic deletions in the genome have been associ-
ated with type 1 diabetes21, such defects were absent in case 1.
Subsequently, we carried out CD101 mutation screening of 127
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sporadic patients with type 1 diabetes and identified additional
missense substitutions. The p.V863L, p.V678L and p.T944R
substitutions in CD101 were absent or extremely rare in the
general population, and were scored as possibly or probably
damaging. Furthermore, the three substitutions were well-con-
served among most placental mammals. Collectively, the pre-
sent findings, in conjunction with prior observations that
CD101 plays a significant role in T cell regulation6–16,22,23,
imply an association between CD101 mutations and type 1 dia-
betes. CD101 mutations might increase genetic predisposition
to diabetes only in individuals at risk of the disease, because
cases 1–4 invariably carried one or more of the HLA risk alle-
les. While the mother of case 2 was free from the disease

despite having the same CD101 substitution as cases 1 and 2,
this normal phenotype might reflect the presence of the protec-
tive DQB1*03:01 allele. Considering the small number of partic-
ipants in the present study, our findings need to be validated in
future studies.
Fluorescence-activated cell sorting analysis detected CD101

expression on hematopoietic cells in both control individuals
and mutation-positive patients. The percentage of CD101-posi-
tive cells among monocytes, neutrophils and myeloid DCs was
somewhat lower in cases 1, 2 and 4 compared with that in five
control individuals. The underlying mechanism of the reduced
CD101 expression in these cases remains unknown. Actually,
the signal peptide and the transmembrane domain are not

Figure 2 | Nucleotide substitutions of CD101 identified in the present study. (a) The structure of wild-type CD101 DNA and CD101 protein, and the
position of three substitutions. The black and white boxes on genomic deoxyribonucleic acid denote the coding regions and the untranslated
regions, respectively. The p.V678L and p.V863L substitutions resided within the immunoglobulin-like domains (blue boxes), while the p.T944R
substitution was located in a connecting region between an immunoglobulin-like domain and the transmembrane domain (orange box). The
signal peptide (red box) was not affected by these substitutions. (b) Three substitutions in CD101. These substitutions were identified by next-
generation sequencing and confirmed by Sanger sequencing (left panel). The black arrows indicate mutated nucleotides. Representative results of
an in silico analysis (PolyPhen-2) are shown (middle panel). Evolutionary conservation of each substitution is shown (right panel).
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affected by the p.V678L or p.T944R substitutions. Furthermore,
it is unclear whether these minor differences in the expression
levels are of clinical significance. We cannot exclude the possi-
bility that CD101 mutations identified in the present study are
functionally neutral variants. Nevertheless, altered CD101
expression has been associated with various autoimmune disor-
ders. Jovanovic et al.16 showed that the fraction of CD101-posi-
tive cells among the CD8+ T cell population was reduced in
patients with rheumatoid arthritis. ��Akesson et al.23 found that
CD101 expression in regulatory T cells was moderately
increased in children with celiac disease. In addition, reduced
surface expression of murine CD101 was associated with the
risk of infection-induced liver autoimmunity22. Altered expres-
sion of CD101 on DCs could influence the progression of pan-
creatic insulitis, because DCs are known to play a critical role
in the recruitment of lymphocytes in insulitis of the NOD
mouse24. Further studies, such as viral vector-mediated trans-
duction of the mutant CD101 to immune cells, will clarify the
functional consequences of the p.V678L, p.V863L and p.T944R
substitutions.
Previous GWAS did not suggest any association between

CD101 and diabetes. This can be explained by the rarity of
CD101 substitutions in the general population. It is known that
disease-associated variants with an allele frequency of less than
0.5% in the general population are barely detectable by GWAS,
unless the variants underlie monogenic Mendelian disorders5.
As we identified CD101 substitutions in just two of the 127
sporadic patients, such substitutions appear to be rare, even in
patient cohorts. The present results show that next-generation
sequencing of familial cases is useful for identifying rare risk
variants that have been missed by GWAS.
In conclusion, we identified rare CD101 mutations in familial

and sporadic cases of type 1 diabetes. The present findings, in
conjunction with the results of previous studies6–16,22–24, raise
the possibility that CD101 is a susceptibility gene for type 1 dia-
betes.
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