Invariants of sets of linear varieties

ROSA Q. HUANG

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Communicated by Gian-Carlo Rota, March 19, 1990

ABSTRACT A minimal set of generators of the ring of invariants for four linear subspaces of dimension n in a vector space of dimension 2n is computed, using the symbolic method introduced by Grosshans *et al.* [Grosshans, F., Rota, G.-C. & Stein, J. A. (1987) *Invariant Theory and Superalgebras* (Am. Math. Soc., Providence, RI)].

Section 1. Introduction

The notation of Grosshans *et al.* (1) is used. Let V be a vector space of dimension *n* over a field K of characteristic zero. A decomposable skew-symmetric tensor in $\Lambda(V)$ defines a subspace of V or, equivalently, a linear variety in a projective space of dimension n - 1. By combining the straightening algorithm, the exchange identity, and the Grassmannian condition for decomposable skew symmetric tensors (1), a complete set of invariants for four linear subspaces of dimension n in a vector space of dimension 2n is computed. This problem was left open by Turnbull in 1941 (2), who had attained some partial results. A related problem has also been studied by Gelfand and his school in the 1970s (3).

A complete set of invariants for five linear subspaces of dimension 3 in a vector space of dimension 6 has also been determined, but the full computation is at present 102 typewritten pages long. This result will be announced in a subsequent note.

Section 2. The Bracket Algebra

Let L be a positively signed alphabet. Assign each letter $x \in L$ a positive integer arity(x), called the arity of x. Let [L] be the alphabet whose members are all monomials w in Super[L]. A letter in [L] is denoted by [w]. The bracket algebra Bracket[L] of dimension n is the quotient of the free associative algebra Tens[[L]] generated by the alphabet [L], subject to the congruence relations below, where w, w', and w'' are monomials in Super[L]:

(i) [w] = 0 if Length $(w) \neq n$;

(*ii*) $[w][w'] = (-1)^n [w'][w]$; and

(iii) the exchange identity

$$\sum_{w'} [ww'_{(1)}][w'_{(2)}w''] = \sum_{w} (-1)^{\text{Length}(w_{(2)})}[w'w_{(1)}][w_{(2)}w''].$$

An element p in Tens[[L]] will be identified with its image in Bracket[L]. Let $D = (w_1, w_2, \ldots, w_k)$ be a Young diagram with $w_i \in Mon(L)$. The Young tableau of D is the bracket monomial

$$Young(D) = [stand(w_1)][stand(w_2)] \dots [stand(w_k)].$$

If $w_i = x_{i1}x_{i2} \dots x_{in}$, the word $x_{1j}x_{2j} \dots x_{kj}$ is called the *j*th column of *D*. The Young diagram *D* is called standard (1) if it has weakly increasing rows and strictly increasing columns. Such a Young tableau Young(*D*) in Bracket[*L*] does not

vanish only if each of the words w_1, w_2, \ldots, w_k is of length *n*. This condition will be tacitly assumed below.

PROPOSITION 1 [standard basis theorem for bracket algebra (4)]. Given a Young diagram D, there exist unique standard Young diagrams D_i with the same content as D and unique nonzero integer coefficients r_i such that

$$Young(D) = \sum r_i Young(D_i).$$

We will denote [D] as Young(D) when no confusion arises.

Section 3. Symbolic Representation of Invariants for Linear Varieties

Let V be a vector space of dimension n over the field K. A set of decomposable skew symmetric tensors $S_0 = \{t_a, t_b, t_c, \ldots\}$ in $\Lambda(V)$ is associated with a set of subspaces $S = \{a, b, c, \ldots\}$ of V or, equivalently, with a set of linear varieties $S = \{a, b, c, \ldots\}$ in a projective space of dimension n - 1, where each subspace a in S is spanned by the vector factors of t_a .

For each $a \in S$, let L_a be an infinite set of positively signed letters

$$L_a = \{a_1, a_2, a_3, \ldots \}.$$

Define arity (a_i) to be the dimension of a as the subspace of V. Letters in L_a are also called *a*-letters. Define the alphabet L to be

$$L = L_a \cup L_b \cup L_c \cup \ldots$$

Two letters in L are said to be *equivalent* if they are both in L_a for some $a \in S$. Two Young diagrams D and D' are said to be *equivalent* if $D = (x_{11} \dots x_{1n_1}, \dots, x_{k1} \dots x_{kn_k})$ and $D' = (\pi(x_{11}) \dots \pi(x_{1n_1}), \dots, \pi(x_{k1}) \dots \pi(x_{kn_k}))$ for some permutation π of L such that x and $\pi(x)$ are equivalent for all $x \in L$. We say a monomial p in Bracket[L] has right content if cont(p; x) equals to either zero or arity(x) for all x in L. A Young diagram D is said to have right content if [D] does.

Let $Bracket[L]_0$ be the K-subspace of Bracket[L] generated by monomials with right contents. It also has an algebra structure such that, for two monomials p and q with right contents, we have

$$pq = 0$$

if the monomial pq does not have a right content.

Definition 1: Define the algebra Linear[L] to be the quotient of the algebra Bracket[L]₀ by the ideal I that is generated by the following monomials p in Bracket[L]₀:

(i) $p \in I$ if $\sum_{x \in L_a} \operatorname{cont}(w; x) > k$ for some equivalence class L_a with $\operatorname{arity}(a_1) = k$ and for some bracket factor [w] of p. (ii) $p = [a_1^{(k)}b_1^{(n-k)}] \in I$ for all $a_1 \in L_a$, $b_1 \in L_b$, where L_a and L_b are two equivalence classes with $\operatorname{arity}(a_1) = k$, $\operatorname{arity}(b_1) = n - k$.

The motivation for condition i is the fact that any k + 1 vectors in a linear subspace of dimension k are linearly dependent. Condition ii is a technical one to facilitate the computation of invariants.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. \$1734 solely to indicate this fact.

If a monomial p has right content, it is identified with its image in Linear[L]. In particular, we keep the notation [D] for the image of [D] in Linear[L] if [D] has the right content.

The following proposition is a corollary of the first fundamental theorem (1).

PROPOSITION 2. Let J be the ideal generated by monomials p in Bracket[L]₀ that satisfy Condition ii of Definition 1. Let the algebra linear[L] be the quotient of Bracket[L]₀ by the ideal J. Then there is a surjective linear mapping Φ from linear[L] to the ring of joint invariants of the set of decomposable skew-symmetric tensors t_a in S₀.

Moreover $\Phi([D]) = \pm \Phi([D'])$ if D and D' are equivalent Young diagrams and the sign can be determined (4).

Elements in Linear[L] are called a symbolic representation of the invariants or simply invariants. The straightening algorithm and the exchange identity can be carried over to Linear[L], although the uniqueness of the coefficients r_i in *Proposition 1* no longer holds.

A position occupied by a letter x in a Young diagram D is a triple (i, j, x) when the letter x occurs in the *i*th row and the *j*th column of D. Such a position is sometimes written as <u>x</u> when *i* and *j* need not to be referred. Let $\underline{X} = (i, j, x_{ij})_{(i,j) \in I}$ be a set of positions in D occupied by a multiset $X = \{x_{ij}\}_{(i,j) \in I}$. Given a permutation π of X, denote by πD the Young diagram obtained from D by replacing each position (i, j, x_{ij}) of \underline{X} by $(i, j, \pi(x_{ij}))$. Suppose D has k rows, let

$$\underline{X} = \underline{X}_1 \cup \underline{X}_2 \cup \ldots \cup \underline{X}_k,$$

where each X_i is a set of positions in the *i*th row of D (with the possibility to be an empty set), occupied by a multiset X_i . We may write X_i as a word in Mon(L). A permutation π of X induces the words πX_i in a natural way. Two permutations π and π' are called *row distinct* if

$$\pi X_1 \otimes \pi X_2 \otimes \ldots \otimes \pi X_k \neq$$
$$\pi' X_1 \otimes \pi' X_2 \otimes \ldots \otimes \pi' X_k$$

in Super[L] $\otimes \ldots \otimes$ Super[L] (k-times).

A set of positions X in D can be shuffled if in Linear[L],

 $\sum [\pi D] = 0,$

where π ranges over all row distinct permutations of X.

PROPOSITION 3. Given a Young diagram D and one of its row w, let $\underline{X_1}$ be the set of all positions in w occupied by a-letters for some equivalence class L_a . Suppose X_1 is not empty. Let $a_1 \in X_1$, and let $\underline{X_2}$ be the set of all positions in D but not in w occupied by the letter a_1 . Then in Linear[L],

$$[\mathbf{D}] = \sum \mathbf{r}_{\pi}[\mathbf{\pi}\mathbf{D}],$$

where the sum ranges over the set of row distinct permutations π of $X_1 \cup X_2$ such that πX_1 contains only the letter a_1 and where r_{π} are integers.

The proof is carried out by induction on the multiplicity of a_1 in X_1 .

PROPOSITION 4. Let w be a row in a Young diagram D. If w contains k equivalent letters of arity k as well as n - k equivalent letters of arity n - k, then [D] vanishes in Linear[L].

This is a corollary of *Proposition 3*.

PROPOSITION 5. Given a Young diagram D, a set of positions \underline{X} in D can be shuffled if one of the following holds for the multiset X:

(i) X consists of k + 1 equivalent letters of arity k;

(ii) X consists of k equivalent letters of arity k as well as n - k equivalent letters of arity n - k;

(iii) X consists of any n + 1 letters.

The proof of this proposition follows from the exchange identity and from *Proposition 3*.

Definition 2: A Young diagram $D_a = (w_1, w_2, \ldots, w_k)$ is called a *block* (or an *a-block* when the space *a* is relevant) relative to a space $a \in S$ when for $1 \le i \le k$, we have $w_i = a_i a_i \ldots a_i u_i$, where $k = \operatorname{arity}(a_1)$ and $u_i \in \operatorname{Mon}(L)$. A block k times

product is defined as

$$[D] = [D_a][D_b] \dots [D_c]$$

for some $a, b, \ldots, c \in S$, where D_a, D_b, \ldots, D_c are blocks relative to spaces a, b, and \ldots, c , respectively.

PROPOSITION 6. For a Young tableau [D] in Linear[L] we have

(i) [D] is a sum of block products in Linear[L], that is

$$[\mathbf{D}] = \sum_{i} r_{i}[\mathbf{D}_{ia}][\mathbf{D}_{ib}] \dots [\mathbf{D}_{ic}]$$

where r_i are integers.

(ii) If we fix any two equivalence classes L_a and L_b with the property arity $(a_1) + arity(b_1) \ge n$, then in each term of the sum above only the a-block contains a-letters and only the b-block contains b-letters.

The proof of part *i* follows from the exchange identity, and the proof of part *ii* follows from the straightening algorithm.

PROPOSITION 7. For a block product $[D_a][D_b] \dots [D_c]$ in Linear[L], each block can be straightened separately in the following sense:

$$[\mathbf{D}_{\mathbf{a}}][\mathbf{D}_{\mathbf{b}}] \dots [\mathbf{D}_{\mathbf{c}}] = \sum_{i} r_{i}[\mathbf{D}_{i\mathbf{a}}][\mathbf{D}_{i\mathbf{b}}] \dots [\mathbf{D}_{i\mathbf{c}}],$$

where for each block D_a with arity $(a_1) = k$, the Young diagrams D_{ia} are a-blocks and their rightmost n - k columns are standard in some ordering of L that may vary for different blocks D_a , D_b , ..., D_c , and where r_i are integers.

The proof depends on the fact that the exchange identity can be applied within each block in the following sense:

$$\sum_{w'} [a_1^{(k)} w w'_{(1)}] [a_2^{(k)} w'_{(2)} w''] = \sum_{w} (-1)^{\text{Length}(w_{(2)})} [a_1^{(k)} w' w_{(1)}] [a_2^{(k)} w_{(2)} w''].$$

PROPOSITION 8. In a block product $[D] = [D_a][D_b] \dots [D_c]$, let a block D_a have arity $(a_1) = n - k$. Then a set of positions X in the rightmost k columns of D_a can be shuffled if one of the following holds for the multiset X:

(i) X consists of any k + 1 letters;

(ii) X consists of any k equivalent letters of arity k.

The proof follows from the above exchange identity within the *a*-block D_a .

PROPOSITION 9. In a block product $[D] = [D_a][D_b] \dots [D_c]$, let a block D_a have arity $(a_1) = n - k$, and let cont $(D_a; x) =$ arity(x) = k for some $x \in L \setminus L_a$. Then [D] vanishes in Linear[L].

This is a corollary of part *ii* of *Proposition* 8.

Section 4. Invariants of Four Medials

Let V be a vector space of dimension 2n over K. An *n*-dimensional subspace a of V is called a *medial*. We can identify a medial with a projective linear variety of dimension n - 1 in a projective space of dimension 2n - 1. Our problem is to determine the algebraic generators of the ring of invariants of four medials.

Let

$$t_a = \alpha_1 \alpha_2 \dots \alpha_n, \qquad t_b = \beta_1 \beta_2 \dots \beta_n,$$

$$t_c = \gamma_1 \gamma_2 \dots \gamma_n, \qquad t_d = \delta_1 \delta_2 \dots \delta_n$$

be four decomposable skew-symmetric tensors in $\Lambda(V)$, where α_i , β_i , γ_i , and δ_i are vectors of V. Let a, b, c, and d be the corresponding four medials; i.e., $a = \text{span} \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$, etc.

THEOREM 1. For the ring of invariants of four medials, the following n + 4 invariants form a minimum set of algebraic generators:

(i) six single determinants such as $[\alpha_1\alpha_2 \ldots \alpha_n\beta_1\beta_2 \ldots \beta_n]$, etc.;

(ii) any n - 2 out of the n - 1 shuffle products:

$$[\alpha_1 \ldots \alpha_n \dot{\gamma}_1 \ldots \dot{\gamma}_i \check{\delta}_{i+1} \ldots \check{\delta}_n]$$

 $= \sum_{\sigma,\tau} sign(\sigma) sign(\tau) [\alpha_1 \ldots \alpha_n \gamma_{\sigma(1)} \ldots \gamma_{\sigma(i)} \delta_{\tau(i+1)} \ldots \delta_{\tau(n)}]$

 $\times [\beta_1 \ldots \beta_n \gamma_{\sigma(i+1)} \ldots \gamma_{\sigma(n)} \delta_{\tau(1)} \ldots \delta_{\tau(i)}],$

 $\times [\beta_1 \ldots \beta_n \dot{\gamma}_{i+1} \ldots \dot{\gamma}_n \check{\delta}_1 \ldots \check{\delta}_i]$

where σ and τ range over permutations of the set $\{1, 2, \ldots, n\}$ and $1 \le i \le n - 1$.

The symbolic version of *Theorem 1* can be stated as follows.

THEOREM 2. Let each of L_a , L_b , L_c , L_d contain infinite many positive letters of arity n, and let $L = L_a \cup L_b \cup L_c \cup$ L_d . Then any n - 2 of the following n - 1 equivalence classes Q_i of invariants form a minimum set of algebraic generators of the algebra Linear[L]:

$$\begin{split} Q_i &= \{ [a_1^{(n)} c_1^{(i)} d_1^{(n-i)}] [b_1^{(n)} c_1^{(n-i)} d_1^{(i)}] & | \\ a_1 &\in L_a, \quad b_1 \in L_b, \quad c_1 \in L_c, \quad d_1 \in L_d \}, \end{split}$$

where i = 1, 2, ..., n - 1.

The proof is subdivided into five steps, as follows:

Step 1. Prove that the block products $[D] = [D_a][D_b]$ generate the algebra Linear[L]. By part *i* of Proposition 6 the block products

$$[D] = [D_a][D_b][D_c][D_d]$$

generate the algebra Linear[L], with the possibility that the *c*-block D_c and the *d*-block D_d may be void. I claim that [D] vanishes unless D_c and D_d are void. By part *ii* of *Proposition* δ , we may assume that the Young diagrams D_c and D_d contain only *c*-letters and *d*-letters. If $D_c = (w_1, w_2, \ldots, w_k)$ is not a void *c*-block, then $w_1 = \underbrace{c_1c_1 \ldots c_1}_{n \text{ times}} u$, where *u* is a word of

length *n* in Mon(L_d). Thus [D] vanishes by Proposition 4. Similarly [D] vanishes if the *d*-block D_d is not void. Hence the generators of the algebra Linear[L] are block products [D] = $[D_a][D_b]$.

Step 2. Apply Proposition 7 to straighten separately the rightmost *n* columns of D_a and D_b by giving the alphabet *L* an order such that $c_1 < d_1$ for all $c_1 \in L_c$, $d_1 \in L_d$. We obtain four subdiagrams D_{ac} , D_{ad} , D_{bc} , and D_{bd} of *D* with shapes λ_{ac} , λ_{ad} , λ_{bc} , and λ_{bd} , where D_{ac} is the subdiagram of D_a consisting of all *c*-letters occurring in D_a and where $\lambda_{ac} = (\lambda_{ac,1}, \lambda_{ac,2}, \ldots, \lambda_{ac,k})$ with $\lambda_{ac,1} \ge \lambda_{ac,2} \ge \ldots \ge \lambda_{ac,k}$, etc. In this step we will prove that $|\lambda_{ad}| = |\lambda_{bc}|$ and $|\lambda_{ac}| = |\lambda_{bd}|$.

Since D_{ac} is standard, its first column must be $c_1c_2 \ldots c_k$, where c_i are different *c*-letters. I claim that these are the only *c*-letters occurring in *D*. To prove this, we apply *k* times *Proposition 3*, respectively, to the first, the second, ..., the *k*th rows of D_{ac} and thereby obtain

$$[D] = \sum r_{\pi_k \pi_{k-1} \ldots \pi_l} [\pi_k \pi_{k-1} \ldots \pi_l D] = \sum r_{\pi} [\pi D],$$

where π_i are permutations of *c*-letters and r_{π} are integers and where in each term $[\pi D]$ the subdiagram πD_{ac} is of the form

$$\pi D_{ac} = \underbrace{(c_1c_1 \dots c_1)}_{\lambda_{ac,1} \text{ times}}, \underbrace{c_2c_2 \dots c_2}_{\lambda_{ac,2} \text{ times}}, \dots, \underbrace{c_kc_k \dots c_k}_{\lambda_{ac,k} \text{ times}}.$$

Therefore if there is a (k + 1)th *c*-letter c_{k+1} occurring in *D*, then in each term $[\pi D]$ this letter c_{k+1} must occur *n* times in the *b*-block πD_b . Thus [*D*] vanishes by *Proposition 9*, and we may assume that c_1, c_2, \ldots, c_k are the only *c*-letters occurring in *D*. Similarly if the rightmost column of D_{ad} is d_1d_2 ... d_k , then we may assume that d_1, d_2, \ldots, d_k are the only *k* of *d*-letters occurring in *D*. In conclusion, we obtain

$$\begin{aligned} |\lambda_{ad}| &= \sum_{i=1}^{k} \lambda_{ad,i} \\ &= \sum_{i=1}^{k} \operatorname{cont}(D_a; d_i) \\ &= \sum_{i=1}^{k} (n - \operatorname{cont}(D_b; d_i)) \\ &= kn - \sum_{i=1}^{k} \operatorname{cont}(D_b; d_i) \\ &= kn - \sum_{i=1}^{k} \lambda_{bd,i} \\ &= \sum_{i=1}^{k} \lambda_{bc,i} \\ &= |\lambda_{bc}|. \end{aligned}$$

Similarly we have $|\lambda_{ac}| = |\lambda_{bd}|$.

Step 3. Use induction on $\max(\lambda_{ad}, \lambda_{bc})$ in the dominance order to prove that [D] is a polynomial in the set of invariants $\bigcup_{i=1}^{n-1} Q_i$.

Suppose that

$$\lambda_{ad} = \max\{\lambda_{ad}, \lambda_{bc}\} = (\lambda_{ad,1}, \lambda_{ad,2}, \ldots, \lambda_{ad,k})$$

is the largest among shapes $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$ in the dominance order such that $|\lambda| = |\lambda_{ad}|, \lambda_i \le n$. Then $\lambda_{ad,1} = n$; i.e., the *k*th row of D_a will contain *n* letters in L_a as well as *n* letters in L_d . We can infer that [D] vanishes by virtue of *Proposition 4*.

Suppose next that [D] is a polynomial in the set of invariants $\bigcup_{i=1}^{n-1} Q_i$ whenever max $\{\lambda_{ad}, \lambda_{ac}\}$ is larger than a shape λ , where $|\lambda| = |\lambda_{ad}|$ and $\lambda_i \leq n$. We can prove that [D] will also be a polynomial in those invariants when max $\{\lambda_{ad}, \lambda_{bc}\} = \lambda$. Assume that $\lambda_{ad} = \lambda$. Apply 2k times *Proposition 3*, respectively, to the first, the second, . . . , the kth rows of D_{ac} and then to the kth, the (k - 1)th, . . . , the first rows of D_{ad} and thereby obtain

$$[D] = \sum r_{\tau_1 \dots \tau_k \pi_k \dots \pi_l} [\tau_1 \dots \tau_k \pi_k \dots \pi_l D]$$

= $\sum r_{\tau \pi} [\tau \pi D],$

where π_i and τ_i are permutations of L_c and L_d , respectively, and $c_{\tau\pi}$ are integers; in each term $[\tau \pi D]$ the subdiagrams $\tau \pi D_{ac}$ and $\tau \pi D_{ad}$ are of the form

$$\tau \pi D_{ac} = (\underbrace{c_1 c_1 \dots c_1}_{\lambda_{ac,1} \text{ times}}, \underbrace{c_2 c_2 \dots c_2}_{\lambda_{ac,2} \text{ times}}, \dots, \underbrace{c_k c_k \dots c_k}_{\lambda_{ac,k} \text{ times}}),$$

$$\tau \pi D_{ad} = (\underbrace{d_1 d_1 \dots d}_{\lambda_{ad,1} \text{ times}}, \underbrace{d_2 d_2 \dots d_2}_{\lambda_{ad,2} \text{ times}}, \dots, \underbrace{d_k d_k \dots d_k}_{\lambda_{ad,k} \text{ times}}).$$

Changing notation, we write [D] instead of $[\tau \pi D]$ from now on. We straighten the rightmost *n* columns of D_b after giving letters $c_1, c_2, \ldots, c_k, d_1, d_2, \ldots, d_k$ the following order:

$$c_k < c_{k-1} < \ldots < c_1 < d_k < d_{k-1} < \ldots < d_1.$$

We then obtain

$$[D] = \sum_i r_i [D_a] [D_{ib}],$$

where in each term the *b*-block D_{ib} is standard in the above order. Let λ_{ibc} be the shape of the subdiagram D_{ibc} of D_{ib} containing all the *c*-letters occurring in D_{ib} . Then we have

$$\lambda_{ibc} \ge (\operatorname{cont}(D_{ib}; c_k), \operatorname{cont}(D_{ib}; c_{k-1}), \dots, \operatorname{cont}(D_{ib}; c_1))$$

$$= (\operatorname{cont}(D_b; c_k), \operatorname{cont}(D_b; c_{k-1}), \dots, \operatorname{cont}(D_b; c_1))$$

$$= (n - \operatorname{cont}(D_a; c_k), n - \operatorname{cont}(D_a; c_{k-1}), \dots, n - \operatorname{cont}(D_a; c_1))$$

$$= (\operatorname{cont}(D_a; d_k), \operatorname{cont}(D_a; d_{k-1}), \dots, \operatorname{cont}(D_a; d_1))$$

$$= \lambda_{ad}$$

$$= \lambda.$$

By the induction hypothesis we need consider only the term $[D_a][D_{1b}]$, where

$$\lambda_{1bc} = \lambda$$

= (cont(D_{1b}; c_k), cont(D_{1b}; c_{k-1}), . . . , cont(D_{1b}; c₁)).

This term can be factored into

$$[D_a][D_{1b}] = \prod_{i=1}^{k} [a_i^{(n)} c_i^{(\mu_i)} d_i^{(n-\mu_i)}][b_i^{(n)} c_i^{(n-\mu_i)} d_i^{(\mu_i)}]$$

where $(\mu_1, \mu_2, \ldots, \mu_k) = (n - \lambda_k, n - \lambda_{k-1}, \ldots, n - \lambda_1)$. This completes the proof that the set of invariants $\bigcup_{i=1}^{n-1} Q_i$ generate the algebra Linear[L]. Step 4. Let $j \in \{1, 2, ..., n-1\}$, and $I = \{1, 2, ..., n-1\}$, $\{j\}$. Prove that any invariants in Q_j can be expressed by invariants in $\bigcup_{i \in I} Q_i$.

Consider the following n + 2 bracket monomials in the bracket algebra Bracket[L]:

$$q_i = [a_1^{(n)} c_1^{(i)} d_1^{(n-i)}] [c_1^{(n-i)} d_1^{(i)} b_1^{(n)}], \qquad i = 0, 1, \dots, n,$$
$$q_{n+1} = [a^{(n)} b^{(n)}] [c^{(n)} d^{(n)}].$$

Applying the exchange identity we obtain that in Bracket[L]

$$q_{n+1} = (-1)^n \sum_{i=0}^n q_i.$$
 [1]

Since q_0 , q_n , q_{n+1} vanish in Linear[L], we obtain

$$q_j = -\sum_{i\in I} q_i$$

as desired.

Step 5. Prove the minimality of a set of generators $\bigcup_{i \in I} Q_i$. If such a set of generators were not minimal, then one could prove that there is a linear relation in Bracket[L] among the n + 1 bracket monomials $\{q_i | i \in I \cup \{0, n, n + 1\}\}$. Together with Eq. 1 we can obtain a linear relation in Bracket[L] among the n + 1 bracket monomials $\{q_i | i = 0, 1, \ldots, n\}$ by eliminating q_{n+1} from the two linear relations. But q_0, q_1, \ldots, q_n are standard Young tableaux in the order $a_1 < c_1 < d_1 < b_1$, and therefore they are linearly independent in Bracket[L]. This contradiction proves the minimality of the set of generators. q.e.d.

My deepest thanks go to my doctoral dissertation advisor, Prof. Gian-Carlo Rota, who suggested the problems and provided perspective insight and generous guidance.

- 1. Grosshans, F., Rota, G.-C. & Stein, J. A. (1987) Invariant Theory and Superalgebras (Am. Math. Soc., Providence, RI).
- 2. Turnbull, H. W. (1942) Proc. Edinburgh Math. Soc. 7(2), 55-72.
- 3. Gelfand, M. & Ponomarev, V. A. (1970) Problems of Linear Algebra and Classification of Quadruples of Subspaces in a Finite-Dimensional Vector Space, Colloquia Mathematica Societatis Janos Bolyai (Tihany, Hungary), pp. 163-237.
- Huang, R. Q., Rota, G.-C. & Stein, J. A. (1989) Supersymmetric Algebra, Supersymmetric Space, and Invariant Theory (Annali Scuola Normale Superiore, Pisa, Italy).