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Abstract
Mating preference can be a driver of sexual selection and assortative mating and is, 
therefore, a key element in evolutionary dynamics. Positive mating preference by simi-
larity is the tendency for the choosy individual to select a mate which possesses a simi-
lar variant of a trait. Such preference can be modelled using Gaussian-like mathematical 
functions that describe the strength of preference, but such functions cannot be ap-
plied to empirical data collected from the field. As a result, traditionally, mating prefer-
ence is indirectly estimated by the degree of assortative mating (using Pearson’s 
correlation coefficient, r) in wild captured mating pairs. Unfortunately, r and similar 
coefficients are often biased due to the fact that different variants of a given trait are 
nonrandomly distributed in the wild, and pooling of mating pairs from such heteroge-
neous samples may lead to “false–positive” results, termed “the scale-of-choice effect” 
(SCE). Here we provide two new estimators of mating preference (Crough and Cscaled) 
derived from Gaussian-like functions which can be applied to empirical data. Computer 
simulations demonstrated that r coefficient showed robust estimations properties of 
mating preference but it was severely affected by SCE, Crough showed reasonable esti-
mation properties and it was little affected by SCE, while Cscaled showed the best prop-
erties at infinite sample sizes and it was not affected by SCE but failed at biological 
sample sizes. We recommend using Crough combined with the r coefficient to infer 
mating preference in future empirical studies.
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1  | INTRODUCTION

Individuals of many animal taxa display mating preferences (Andersson, 
1994) which can be defined as the sensory and behavioral properties 
that affect the propensity of individuals to mate with particular phe-
notypes (Heisler et al., 1987; Jennions & Petrie, 1997). Mating prefer-
ences often, however, incur some fitness costs such as increased time, 
energy expenditure, and predation risk during the search for mates. 
As a result, the mechanism by which mating preference may evolve 

remains the subject of controversy (Clark et al., 2007; Gavrilets, 
2004). A range of potential benefits of exhibiting a mating preference 
which may outweigh these costs has been proposed, such as im-
proved paternal care or the acquisition of “better” genes from mating 
with “high-quality” mates (Andersson, 1994), and avoiding inbreeding 
(Consuegra & Garcia de Leaniz, 2008; Landry, Garant, Duchesne, & 
Bernatchez, 2001; Lumley et al., 2015; Yeates et al., 2009). Mating 
preference may also evolve through incidental runaway (sexual) selec-
tion (Chandler, Ofria, & Dworkin, 2013; Lande, 1981), sexual conflict 
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(Arnqvist, Rowe, Krupa, & Sih, 1996), or by other mechanisms (Blyton, 
Shaw, Peakall, Lindenmayer, & Banks, 2016; Eddy et al., 2016; Hine, 
McGuigan, & Blows, 2011).

Irrespective of the evolutionary causes, exhibiting a mating pref-
erence has two distinct key evolutionary consequences (Gavrilets, 
2004; Lewontin, Kirk, & Crow, 1968; Merrell, 1950): sexual selec-
tion (changing the probability of transmitting alleles in progeny of the 
preference-targeted trait, sensu Arnold & Wade, 1984) and assortative 
mating (nonrandom mating between individuals bearing different phe-
notypes/genotypes, Gavrilets, 2004). These processes can be linked in 
certain scenarios, as a preference causing positive assortative mating 
(similar types are more frequent in mates than expected by chance) 
is expected to generate positive frequency-dependent sexual selec-
tion (Servedio, 2016), while a preference causing negative assortative 
mating (different types are preferred in mates) is expected to produce 
negative frequency-dependent sexual selection (Pusey & Wolf, 1996; 
Takahashi & Hori, 2008). These concepts and their definitions have, 
however, been the subject of much debate over the past decades 
(Arnold & Wade, 1984; reviewed in Andersson, 1994; Edward, 2015; 
Gavrilets, 2004).

Mating preference has been shown to play a key influence in the 
theoretical dynamics of several evolutionary processes: assortative 
mating and sexual selection (consequences of mating preference), for 
example, may contribute to reproductive isolation between incipient 
taxa (Gavrilets, 2004, 2014; Santos, Matos, & Varela, 2014; Servedio, 
2016; Thibert-Plante & Gavrilets, 2013; Thibert-Plante & Hendry, 
2011; Turelli, Barton, & Coyne, 2001). A major question is whether the 
theoretical conditions that allow the evolution of mating preference 
(intermediate levels of disruptive selection, low mating cost, strength 
of the mating preference, etc., see Gavrilets, 2004) in sympatry can be 
empirically observed in the wild. A difficulty in answering this ques-
tion remains in linking theoretical arguments (and definitions) with 
empirical estimates (Gavrilets, 2004; Servedio, 2016; but see Roff & 
Fairbairn, 2015 for an exception). The methods to model mating pref-
erence and their consequences (e.g., assortative mating) have, how-
ever, not been empirically validated. To attempt to address this we 
briefly review the main strategies to model theoretically, and estimate 
empirically, true mating preferences from field data in an attempt to 
integrate these approaches.

Two mating preference mechanisms have been modelled depend-
ing on the evolutionary scenario considered (reviewed in Gavrilets, 
2004; Kirkpatrick, Rand, & Ryan, 2006; Servedio, 2016; and ignoring 
any indirect mechanism to find a mate via habitat choice, resource 
search, etc.). The first mechanism refers to the case where individuals 
of the choosy sex (usually females) prefer certain mates that display 
particular variants of a trait (see Gavrilets, 2004). Such form of mating 
preference may lead to sexual selection and, hence, as a strong driver 
of extreme sexual dimorphism (e.g., weapons and ornaments in one 
sex but not in the other) observed in many birds and insects (Crespi, 
1989; Futuyma, 2013). The second is a preference based on pheno-
type matching or similarity (i.e., a tendency to choose mates possessing 
similar variants of a trait), and such a preference by similarity may lead 
to positive assortative mating observed in many species (reviewed in 

Arnqvist et al., 1996; Crespi, 1989; Jiang, Bolnick, & Kirkpatrick, 2013; 
Servedio, 2016). These preferences can be modelled by using explicit 
genetic mechanisms (Kirkpatrick et al., 2006; Servedio, 2016) or by 
Gaussian-like mathematical functions (Gavrilets, 2004, 2014; Lande, 
1981). Explicit genetic mechanisms are often adequate to model the 
effects on qualitative traits (e.g., color) assuming one or two loci con-
trol the mating preference, while Gaussian-like functions seem more 
appropriate to model quantitative trait loci (e.g., size and length, Lande, 
1981; Roff & Fairbairn, 2015). For example, under a positive preference 
by similarity, any preference function should give a higher probability 
of mating when the mating individuals share similar variants of a trait 
(e.g., similar color or size, Carvajal-Rodríguez & Rolán-Alvarez, 2014).

Traditionally, the Gaussian-like functions originally developed for 
theoretical studies were not, however, applicable to empirical data but 
recent modifications now allow their application (Carvajal-Rodríguez 
& Rolán-Alvarez, 2014). Different strategies have been considered to 
infer mating preferences empirically. Laboratory choice experiments, 
for example, have been used to investigate the mechanisms of mat-
ing preference (Coyne, Elwyn, & Rolán-Alvarez, 2005; Knoppien, 
1985), and the associated statistical tools to analyze such experiments 
have also been developed (Gilbert & Starmer, 1985; Rolán-Alvarez & 
Caballero, 2000). These approaches, however, have limitations be-
cause mating is often difficult to induce under laboratory conditions, 
and the patterns observed under such conditions may not reflect the 
true mating patterns which occur in the field (Coyne, Kim, Chang, 
Lachaise, & Elwyn, 2002; Coyne et al., 2005).

An alternative strategy is to measure the strength of mating prefer-
ence by observing mating pairs directly in the field (reviewed in Crespi, 
1989; Jiang et al., 2013). In this second strategy, there is one statistical 
tool (PSI; the ratio of the observed frequency of a pair/expected fre-
quency under random mating; see Rolán-Alvarez & Caballero, 2000) 
available that could, under certain scenarios, estimate mating prefer-
ences for qualitative traits (e.g., color) in the wild. There is, however, 
no direct estimator of mating preference for quantitative traits (e.g., 
size) in the wild. Therefore, most authors have adopted an indirect 
approach for estimating the mating preference, focusing either on 
assortative mating or on sexual selection effects. When estimating 
assortative mating in the field (presumably caused by mating prefer-
ence by similarity), the most common strategy is to use the Pearson’s 
correlation coefficient (r) or related statistics on the trait values across 
the range of observed mates (reviewed in Jiang et al., 2013); the larger 
the coefficient, the stronger the preference by similarity. Recently, 
however, it has been shown that such a strategy can produce a great 
bias in certain cases (e.g., simulations have shown that a Pearson’s r 
of .8 could be observed under random mating in certain scenarios; 
see Rolán-Alvarez et al., 2015), caused by the scale-of-choice effect 
(SCE). The concept of the SCE is that different variants of a given trait 
can be distributed nonrandomly across spatial and temporal scales, 
and hence, pooling of mating pairs from such heterogeneous samples 
may lead to “false-positive” results (Rolán-Alvarez et al., 2015). Indeed, 
mating pairs can be difficult to observe/score in the field and, because 
of this, researchers often pool these pairs over a geographic range or 
time series (e.g., Jiang et al., 2013). The SCE will, therefore, occur when 
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two conditions are met: firstly that the organism looks for a mate at a 
smaller scale than the pooled scale and, secondly, that at the smaller 
scale there is some trait heterogeneity (Figure 1). These two condi-
tions could be common in organisms which exhibit low adult mobility 
(Rolán-Alvarez et al., 2015) and has already been demonstrated for 
one species with negative assortative mating (Rolán-Alvarez et al., 
2015) and two species with positive assortative mating (Ng, Williams, 
Davies, Stafford, & Rolán-Alvarez, 2016).

The major focus of the present study was, therefore, to develop new 
estimators of mating preference by similarity that are less biased by the 
SCE (as compared to traditional approaches using Pearson’s coefficient 
r) and hence provide a better linkage between theoretical and exper-
imental estimates of mating preference. We use a modified Gaussian 
function from traditional theoretical models to simulate positive as-
sortative mating and thus obtain a set of simulated mating pairs with 
an a priori-controlled strength of preference. With such a collection of 
simulated mating pairs, we were then able to evaluate a posteriori dif-
ferent estimators of the (a priori) strength of mating preference. The 
simulations were derived under the effect of several factors (trait mean 
and variance, differences in trait between sexes, scale of the trait, etc.) 
in order to assess how robust the estimations were. A second round of 
simulations were also run to evaluate how the estimates behaved under 
scenarios affected by SCE (sensu Rolán-Alvarez et al., 2015). Finally, we 
provide examples to demonstrate the application of the new estimators 
(as compared to the traditional method using Pearson’s r) on empiri-
cal data for three marine snail species: Littorina fabalis, Echinolittorina 
malaccana, and Echinolittorina radiata, where the SCE has already been 
demonstrated (Ng et al., 2016; Rolán-Alvarez et al., 2015).

2  | MATERIALS AND METHODS

2.1 | Estimating mating preference

Several Gaussian mathematical functions have been used to infer 
mating preference under the similarity preference model (Carvajal-
Rodríguez & Rolán-Alvarez, 2014; Débarre, 2012; Dieckmann & 
Doebeli, 1999; Gavrilets & Vose, 2007; Gavrilets, Vose, Barluenga, 
Salzburger, & Meyer, 2007; Thibert-Plante & Gavrilets, 2013; 
Servedio, 2015). These functions predict the probability of mating for 
any particular pair based on a few key parameters (Gavrilets, 2004), 
namely: (1) the C parameter (equivalent to Pearson’s r in empirical 
approaches) which represents the strength of mating preference for 
a trait which is supposedly evolving and contributing to assortative 
mating; (2) the D parameter, which represents the absolute difference 
between male and female trait values (see Equation 1 below). In addi-
tion, several of these functions include a parameter, s2, which allows 
fine-tuning of the preference under simulated conditions, but is as-
sumed to be biologically irrelevant and is maintained constant within 
the simulation (Carvajal-Rodríguez & Rolán-Alvarez, 2014; but see 
an alternative strategy in Jennions & Petrie, 1997). Most theoretical 
functions were defined for a specific D scale (typically Dmax = 1,), but 
we chose the function FND because it is scale independent and hence 
applicable to empirical data which may not fit well into the D = 1 scale 
(Carvajal-Rodríguez & Rolán-Alvarez, 2014). Under positive assorta-
tive mating (C > 0 parameter; see example below) the FND function 
value will be proportional to the probability of mating (p) for a given 
couple having certain trait values (D parameter).

where s2 is the mating tolerance, C is the mating preference itself 
(range from 0 to 1), D is the absolute difference between male (Xm) 
and female (Xf) unstandardized traits (size or shell length in this case) 
for each pair evaluated, and Dmax is the maximum D value that can be 
observed in the population. For example, we can model positive size 
assortative mating (say C = 0.5) by computer simulation and obtain a 
series of N random male and female size pairs from a population (from 
certain a priori population mean and variance; see Table S1 and cor-
responding explanations in Appendix S1). Therefore, the encounter  
between a male and a female is random but whether they will mate or 
not depends on the mating probability given by the preference function 
FND. The FND value of each mating pair is calculated by Equation 1. 
Once we have the FND values of the N randomly formed couples, a 
Monte Carlo procedure based on pseudorandom numbers (as is the 
standard practice) will pick-up the mating pairs so that the probability 
of being chosen is proportional to their FND values (see Appendix S1). 
The resulting set of mating pairs is expected to show a Pearson’s r (for 
size) close to 0.5 (see Table S1). In this example, the preference param-
eter is C = 0.5, which has been established a priori, while the measured 
Pearson’s r is a posteriori and could be considered as an estimate of 
the C parameter.

We were interested to check the robustness of the new mating 
preference estimators proposed in this study following a particular 

(1)p∝e(−C
2 × D2)∕(s2× D2

max
),

F IGURE  1 Scheme to explain how scale-of-choice effect (SCE) 
bias is estimated (modified from Ng et al., 2016). The small, white, 
circles in pairs represent putative mating pairs, while the relative size 
of these circles is correlated with the trait mean. The SCE occurs 
as a consequence of pooling mating pairs at a larger scale (Spooled; 
yellow area), while mate choice is actually produced at a smaller 
scale (within S1–S5; green areas), and in addition, there are some 
trait heterogeneity at this scale (between S1 to S5). Therefore, a 
way to estimate the SCE is to measure the statistic (Pearson’s r, 
Cscaled, or Crough) at the pooled level minus the average value within 
homogeneous groups (Groups 1 and 2). Note that SCE is expressed in 
the same units than the statistic used
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trait distribution in mating pairs under a positive assortative mating 
scenario (C > 0). To do this, we firstly used the Pearson’s correlation 
coefficient r (the traditional approach for empirical data) and secondly 
two versions of a direct estimate of the C parameter (Cscaled and Crough) 
from the FND mating preference function. An illustration of how the 
mating pairs can be simulated by FND is shown in Figure 2a, while 
Figure 2b illustrates how the strength of the mating preference (both 
Cscaled and Crough) can be estimated from the observed/simulated 
pairs.

Given a sample of observed or simulated mating pairs, the algorith-
mic procedure to estimate C, by the positive assortative mating FND 
function, is as follows:

1.	 Calculating the p value of every copulating pair from the observed 
set of mating pairs in the studied population using the ri statistic 
(where ri = Zm × Zf; as an estimate of the assortative mating for 
each pair separately; Perez-Figueroa et al., 2008), where Zm and 
Zf are the male and female standardized traits (Xmale and Xfemale) 
values. The range of values observed for ri in the population is 
rescaled (0.01–0.99) to avoid indeterminate solutions when es-
timating C from Equation 1 (see step 3 below and Figure 3 for 
an example of conversion of ri to probabilities).

2.	 Estimating for every pair the value of D (D = |Xmale − Xfemale|) and 
Dmax for each population (Dmax = |Xmax − Xmin|). X is the value of the 
trait (shell size in our experimental model) used in the pair (Xmale, 
Xfemale) or in the population (Xmin, Xmax). The same tolerance is used 
in all simulations and during empirical estimation (s2 = 0.01).

3.	 Solving C from Equation 1. This approach occasionally gives C esti-
mates (C′) larger than 1, and so the way to correct for this will char-
acterize the two alternative statistics proposed: Crough excludes any 
C value larger than 1, and so the sample size for estimation would 
be reduced when the data sample size is low and the a priori C val-
ues high. Alternatively, Cscaled allows all C values, but the final mean 
estimate is rescaled to range between 0 and 1.

F IGURE  2  (a) Scheme of how the FND function can be used to simulate a set of mating pairs under certain a priori strength of mating 
preferences. (b) Scheme of how a set of observed/simulated mating pairs can be used to estimate any C parameter (Cscaled or Crough, see Section 2)

FIGURE 3 Example of conversion of ri statistics to mating probabilities 
for a similar set of putative mating pairs obtained from a population with 
the same mean and variance and under different mating preferences (C 
values). (a) Histogram of ri statistic (contribution of each pair to Pearson’s r; 
see Perez-Figueroa et al., 2008) generated in populations under different 
a priori strength of mating preferences (C). (b) The former ri values were 
rescaled from 0.01 to 0.99 to match probability estimates. Note that, as 
expected, the mating pairs would produce a probability distribution with 
lower mean P under high preference (C = 0.5), because a high preference 
would render a high probability exclusively if the pairs show very similar 
trait values (rare cases with low D)
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2.2 | Validation of the estimation process by 
simulations (EP simulation)

Simulations were undertaken to validate the mating preference esti-
mations under different scenarios (Table 1). Simulations were achieved 
by generating different mating pairs (Npair = 30, 100 and 1,000) under 
different levels of positive assortative mating (C range 0–1, with 0.1 
steps under FND). Additionally, the scenarios involved different Dmax 
ranges (1, 5, and 10) and four different trait distributions (with dif-
ferent mean and variances across sexes: distribution 0–3 in Table 1). 
The null case distribution (case 0) considered certain mean (Dmax/2) 
and standard deviation (Dmax/4; named case 0), but considered three 
further alternative scenarios: case 1 (female mean = 5 × Dmax/2), case 
2 (SD = Dmax), and case 3 (SD= Dmax; female mean= Dmax). Mating pref-
erences were simulated using different tolerances (s2= 0.1, 0.01, and 
0.001, although as the results were qualitatively similar, only results 
for 0.01 are presented). Each simulation was repeated 1,000 times. 
Once the mating pairs were generated, mating preferences were esti-
mated by using classical Pearson’s correlation (r) and C′, as explained 
above.

These estimates were compared with the a priori true C values 
and, therefore, the robustness of the different estimators (r, Crough, 
and Cscaled) was compared by measuring bias (= true C − estimated C), 
range of estimation, regression coefficient between estimators and 
true C, and coefficient of variation among computer samplings (which 
allow inference of sampling robustness), as in Carvajal-Rodríguez and 
Rolán-Alvarez (2014).

2.3 | Validation of the scale-of-choice effect by 
simulations (SCE simulation)

The SCE is the bias caused by measuring assortative mating at an inap-
propriate scale (Rolán-Alvarez et al., 2015), and it can be measured by 
the difference between the estimator (e.g., r or Crough) at the incorrect 
scale—the estimator at the appropriate/true scale (Figure 1). In order 
to investigate how SCE could affect our estimators, an additional set 
of simulations were performed following the same scenarios used 
above (Table 1; Rolán-Alvarez et al., 2015), using 11 choice (C) val-
ues, three different numbers of pairs (N = 20, 100 and 500), two sets 
of subgroups (Ngroups   = 10 and 100) to contribute to the SCE with 
11 different levels of variation among those subgroups (coefficient of 

variation; CV = 0–1, step by 0.1), and three different levels of varia-
tion within groups (SD = 0.1, 0.3, and 0.45; Table 1). The SCE bias is 
expected to emerge whenever CV is larger than 0 as demonstrated 
by Rolán-Alvarez et al. (2015) using Pearson’s coefficient r. The new 
simulations introduce a few relevant differences in the method to 
simulate assortative mating as compared to the previous simulations. 
Specifically, while in Rolán-Alvarez et al. (2015) mating pairs were 
generated from a correlated bivariate distribution (with a range of C 
from −1 to 1), in the present simulation we used the FND function 
to mimic the mating preference (range of C from 0 to 1, step by 0.1; 
Table 1).

2.4 | Estimating mating preference from wild mating 
pair (empirical) data

The new estimators (Crough and Cscaled) were applied and com-
pared with the classical Pearson’s r, to mating pair data (shell size) 
from species where SCE has been previously detected (L. fabalis, 
E. malaccana, and E. radiata) using both published data on the two 
Echinolittorina species and unpublished data from L. fabalis (Ng 
et al., 2016; Rolán-Alvarez et al., 2015). The locality and sampling 
details for L. fabalis were identical to the Rolán-Alvarez et al. (2015) 
study except that the samples were obtained in July 2014. The SCE 
measures the magnitude of bias in estimating the correlation coef-
ficient by taking into account the nonrandom distribution of dif-
ferent size classes among the samples from different small areas 
on the shore (see Figure 1). Five homogeneous sets of size classes 
(or subgroups) were used in the SCE analyses, derived from the 
mean individual size in each small area. The Statisticsaveraged was, 
therefore, calculated over these homogeneous sets of size classes, 
and the significance of the SCE was evaluated by comparing the 
Statisticsaveraged (Pearson’s r or Crough) against the Statisticspooled as 
a null value using a t test. The SCE can, therefore, be estimated as 
Statisticpooled − Statisticaveraged across the five classes (see Ng et al., 
2016; Rolán-Alvarez et al., 2015). We also added a short simulation 
step by resampling the empirical data under C = 0 in order to statis-
tically check whether the observed Crough could be explained solely 
by random mating. The algorithm to calculate Crough and Pearson’s 
r from empirical data were implemented in C++, and the software 
is available from DRYAD (Fernández-Meirama et al., 2017; https://
doi.org/10.5061/dryad.5jd7j).

TABLE  1 Combination of scenarios used in the two different simulations (estimation process [EP] and scale-of-choice effect [SCE])

Simulation Choice Npair Dmax Distribution Ngroup CV SD N Scenarios

EP 0–1
 step 0.1

30, 100, 1,000 1, 5, 10 0, 1, 2, 3 — — — 396

SCE 0–1
 step 0.1

20, 100, 500 1 0 10, 100 0–1
 step 0.1

0.1, 0.3, 0.45 2,178

Npair is number of pairs simulated, Dmax the maximum possible difference in the population for the trait. Distribution represents four distinct scenarios for 
mean and variance of the trait across sexes. For the SCE simulation, Ngroup is the number of subgroups simulated, CV the coefficient of variation expected 
across the simulated subgroups and SD the standard deviation within those groups. Finally, N scenarios are the number of combinations of scenarios in each 
simulation. Each combination was replicated 1,000 times.

https://doi.org/10.5061/dryad.5jd7j
https://doi.org/10.5061/dryad.5jd7j
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3  | RESULTS

3.1 | Validation of estimation process

The robustness of the three estimators of positive mating prefer-
ence by similarity, Crough, Cscaled, and Pearson’s correlation coef-
ficient (r) were evaluated (Table 2). All statistics showed a high 

and significant (all cases p < .05) linear regression slope, but only 
Pearson’s r and Cscaled showed a slope close to 1 (Table 2), and 
hence, these two estimators of mating preference (C) were relatively 
more robust than the Crough considering this property (Figure 4). This 
Crough limitation in estimating C occurs because the range of the esti-
mated values was only about one-third of expected values (Table 2, 
Figure 4). The robustness of all estimators was improved with larger 

TABLE  2 Summary of results obtained under the estimation process simulation for the three statistics (Pearson’s r, Cscaled, and Crough)

Npair Dmax Distr.

Pearson’s r Cscaled Crough

Slope Mean Slope Mean Slope Mean

30 1 0 0.96 0.64 1.07 0.46 0.26 0.54

1 0.96 0.64 1.09 0.48 0.28 0.55

2 0.95 0.65 1.07 0.46 0.30 0.56

3 0.96 0.65 1.09 0.46 0.30 0.56

5 0 0.96 0.64 1.09 0.46 0.27 0.54

1 0.96 0.64 1.04 0.44 0.28 0.55

2 0.95 0.66 1.12 0.47 0.30 0.56

3 0.95 0.65 1.11 0.47 0.30 0.56

10 0 0.96 0.64 1.12 0.48 0.26 0.54

1 0.96 0.64 1.12 0.46 0.28 0.55

2 0.95 0.65 1.09 0.46 0.29 0.55

3 0.95 0.65 1.15 0.49 0.29 0.55

Averaged ± SD 0.95 ± 0.005 0.65 ± 0.007 1.10 ± 0.031 0.47 ± 0.013 0.28 ± 0.014 0.55 ± 0.005

100 1 0 0.99 0.61 1.08 0.44 0.36 0.61

1 0.99 0.60 1.08 0.45 0.36 0.61

2 0.99 0.60 1.08 0.44 0.36 0.61

3 0.99 0.60 1.08 0.45 0.36 0.61

5 0 0.99 0.60 1.05 0.43 0.35 0.61

1 0.99 0.60 1.05 0.43 0.35 0.61

2 0.99 0.60 1.04 0.43 0.36 0.61

3 0.98 0.61 1.08 0.44 0.36 0.61

10 0 0.99 0.60 1.07 0.42 0.36 0.61

1 0.98 0.61 1.08 0.43 0.36 0.61

2 0.99 0.61 1.08 0.43 0.36 0.61

3 0.99 0.61 1.04 0.42 0.36 0.61

Averaged ± SD 0.99 ± 0.001 0.60 ± 0.001 1.07 ± 0.018 0.43 ± 0.010 0.35 ± 0.023 0.61 ± 0.001

1,000 1 0 0.99 0.53 1.06 0.42 0.40 0.66

1 0.99 0.53 1.06 0.42 0.40 0.66

2 0.99 0.53 1.06 0.42 0.40 0.66

3 0.99 0.53 1.06 0.42 0.40 0.66

5 0 0.99 0.53 1.05 0.41 0.39 0.66

1 0.99 0.53 1.06 0.41 0.40 0.66

2 0.99 0.53 1.06 0.41 0.39 0.66

3 0.99 0.53 1.06 0.41 0.39 0.66

10 0 0.99 0.53 1.06 0.41 0.40 0.66

1 0.99 0.53 1.05 0.41 0.40 0.66

2 0.99 0.53 1.06 0.41 0.40 0.66

3 0.99 0.53 1.06 0.41 0.40 0.66

Averaged ± SD 0.99 ± 0.001 0.53 ± 0.000 1.06 ± 0.004 0.41 ± 0.003 0.40 ± 0.001 0.66 ± 0.001

Npair, Dmax, and Distribution (Distr.) as in Table 1. The regression coefficient b of the true choice simulated against the estimate (Slope) is given, as well as 
the mean of the estimates across the full set of choices simulated (expected value 0.5).
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sample sizes (Npair; see Table 2). Additionally, the overall error in es-
timation of C was relatively moderate for the three estimators (ex-
pected mean value should be 0.5), although the bias for the Crough 
and Cscaled increased somewhat at the largest sample size (Table 2). 
These properties were rather insensitive to the different scenarios 
proposed (see low SD in Table 2), and the estimation errors within 
each scenario were typically small enough to effectively distinguish 
the C values differing by 0.1 units (except for Crough when estimating 
values of C larger than 0.6, Figure 4). When using simulation aver-
ages across scenarios, Pearson’s r and Cscaled outperformed Crough 
in estimating C. The sampling robustness of estimators was meas-
ured by the mean coefficient of variation of the different statistics 
across the 1,000 computer simulations within the scenarios (sum-
marized across scenarios by averages ± SD): CVPearsonr = 1.0% ± 1.5; 
CVCscaled = 392% ± 818.0; CVCrough = 9% ± 1.3. The results clearly 
showed that both Pearson’s r and Crough outperformed Cscaled, which 
showed severe sampling errors during simulations, which limits the 
utility of this estimator.

3.2 | Validation of SCE

The sensitivity of each estimator (Pearson’s r, Cscaled, and Crough) of mat-
ing preference by similarity to the SCE bias was evaluated (Tables 1 
and 3). The results were averaged across subgroups (CV) and level of 
variation within groups (SD) as they did not produce any great varia-
tion on SCE trends (except under small CV; see Figure 5). Pearson’s r, 
as expected, showed a strong bias for those scenarios that included 
the pooling of subgroups which showed a certain degree of hetero-
geneity (i.e., CV > 0.5). The bias was rather insensitive to sample size 
(Npair; Table 3). The SCE biased the estimation of mating preference 
(C) based on Pearson’s r from low to high values (up to 0.6), while C es-
timates based on Crough and Cscaled were biased to a much lesser extent 
(moderately to no bias; Figure 5). In this case, Cscaled and Crough clearly 
outperformed Pearson’s r and were less sensitive to the problems as-
sociated with the SCE.

3.3 | Application of the new estimators of mating 
preference to empirical data

The estimations of mating preference (C) using Cscaled were too noisy 
to be useful (see above) and are not presented, but the estimated C 
based on Crough averaged across the five homogeneous subgroups and 
its corresponding estimated SCE are illustrated in Table 4. The Crough 
across samples was relatively similar between species (around 0.4). 
The estimated SCE was, however, reduced by half in E. malaccana and 
E. radiata, although it remained similar in L. fabalis, which indicates the 
ability of Crough to reduce the SCE bias at least in those cases with the 
highest SCE.

4  | DISCUSSION

A mathematical description of any potential evolutionary mechanism 
is a prerequisite to fully understand and predict biological phenom-
enon (Servedio et al., 2014). In this study, we proposed a new method 
to estimate positive mating preference by similarity using the FND 
mathematical function (Carvajal-Rodríguez & Rolán-Alvarez, 2014). 
This strategy can be used to infer mating preference in organisms 
that show positive assortative mating for size (or any similar trait in 
both sexes). The method is based on the assumption that, without a 
priori knowledge of the genetic mechanisms contributing to the pref-
erence, a mathematical function can amalgamate all the preferences 
into one variable, C (sensu Gavrilets, 2004, 2014; Thibert-Plante & 
Hendry, 2011; Débarre, 2012; Thibert-Plante & Gavrilets, 2013; Roff 
& Fairbairn, 2015), which itself could be determined by many quanti-
tative loci. Such a strategy has been used since the origin of quantita-
tive genetics (Falconer & Mackay, 1996) but previously was only used 
for making theoretical predictions. The FND Gaussian-like function is 
a modification of the traditional methods used in theoretical studies 
which is able to accommodate empirical data and as such provides a 
link between the two research approaches.

F IGURE  4 All estimated statistics (Pearson’s r, Cscaled, and Crough) for the true strength of the preference (C) simulated a priori and the three 
different mating pair sample sizes (Npairs). The true values regressed against the estimated statistics are shown. Note that the statistics are 
basically not affected by the six scenarios (Ngroup × SD; see Table 1) considered
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For the first time, we were able to formally evaluate how the clas-
sical Pearson’s r is related to the strength of mating preference using 
the FND function in a combination of simulations and empirical data. 
Interestingly, Pearson’s r showed excellent estimation properties and 
allowed efficient estimations of mating preferences in all scenarios, 

except in situations when the SCE was simulated. Here we showed 
that when SCE was not present, Pearson’s r could be a valuable tool 
to estimate the strength of mating preference, but as shown previ-
ously (Rolán-Alvarez et al., 2015), when the SCE is present, it can pro-
duce huge bias in Pearson’s r as an estimator of mating preference. 
Therefore, for any model organism in which SCE has been experi-
mentally shown to be small or negligible, Pearson’s r can be used to 
infer mating preference directly in the wild. Using such an approach, 
theoretical predictions and empirical studies can be connected, which 
allows fundamental progress in our understanding of the role of mat-
ing preference in driving genetic differentiation in the wild (Gavrilets, 
2004; Roff & Fairbairn, 2015; Servedio, 2016). Future theoretical pre-
dictions regarding mating preferences by similarity can, therefore, be 
empirically verified whenever the study has corrected for any potential 
SCE bias. Where there is a bias due to the SCE, there are only two 
known strategies to correct for this. The first uses the information of 
nonmating individuals surrounding the mating pair to reorganize the 
dataset into a series of homogeneous subgroups and then uses the 
averaged of Pearson’s r across subgroups to correct for the pooled 
estimate (see Figure 1 and Table 4; also see Rolán-Alvarez et al., 2015; 
Ng et al., 2016). This strategy is feasible, but it requires extra sampling 
effort and cannot be used on published data that have not applied an 
appropriate experimental design.

The second strategy makes use of specific estimators of the 
strength of mating preference, such as the Cscaled or Crough described 
here. From our evaluation of the two new estimators (Crough and 
Cscaled), one of them (Cscaled) showed ideal theoretical properties but 
failed when applied to realistic sample sizes, while the other (Crough) 
showed limited theoretical properties but behaved reasonably well at 
low sample sizes. We also empirically demonstrated that Crough greatly 
reduced the SCE bias as compared with the traditional approach using 
Pearson’s r in some cases (C < 0.6). This new estimator, therefore, 
could be useful and provide a complementary approach with Pearson’s 
r (showing high bias due to SCE for C < 0.5) to infer mating preferences 
directly in the wild. The theoretical limitations of Crough, however, sug-
gest it should be used with caution, especially when the estimate 
shows values larger than 0.60, as such values are not proportional 
to the true strength of mating preference (Figure 4). Comparing field 
data with how the different estimators behave further corroborated 
the simulated results. Crough statistics could reduce (even half) the SCE 
effects compared to Pearson’s r. The Crough statistics, therefore, can 
be applied to those datasets which lack information about nonmating 
individuals surrounding the mating pair in order to check whether such 
estimators do, in fact, change any interpretation based on Pearson’s 
r. It would be insightful, for example, to reanalyze the data reviewed 
by Jiang et al. (2013) to see whether halving the SCE bias on average 
changes the overall patterns observed.

A new question that arises is why our new estimators seem to 
be less sensitive to issues of the SCE or why Pearson’s r coefficient 
is more sensitive to the SCE. In fact, statisticians have yet to have a 
good understanding of why Pearson’s r coefficient is affected by data 
heterogeneity producing such unpredictable biases (see discussion in 
Hassler & Thadewald, 2003). The new proposed estimators are based 

TABLE  3 Summary of the mean scale-of-choice effect (SCE) bias 
(statisticpooled − statisticaveraged; see Section 2) obtained under the 
SCE simulation for the three statistics (Pearson’s r, Cscaled, and Crough) 
for all Npair and choice values and averaged across the rest of factors 
(Ngroups, SD and CV)

Npair Choice

SCE

Pearson’s r Cscaled Crough

20 0 0.62 0 0.28

0.1 0.56 0 0.27

0.2 0.42 −0.01 0.23

0.3 0.28 −0.01 0.19

0.4 0.18 −0.01 0.15

0.5 0.13 −0.01 0.12

0.6 0.09 −0.01 0.09

0.7 0.07 −0.01 0.09

0.8 0.05 0 0.08

0.9 0.05 0 0.09

1 0.04 0 0.11

Averaged 0.23 ± 0.214 −0.01 ± 0.005 0.15 ± 0.076

100 0 0.62 0 0.25

0.1 0.58 0 0.24

0.2 0.48 0 0.22

0.3 0.36 0 0.18

0.4 0.26 −0.01 0.14

0.5 0.18 −0.01 0.1

0.6 0.13 −0.01 0.07

0.7 0.1 −0.01 0.05

0.8 0.08 −0.01 0.02

0.9 0.06 0 0

1 0.05 0 0

0.26 ± 0.213 0.00 ± 0.005 0.12 ± 0.096

500 0 0.62 0 0.23

0.1 0.59 0 0.23

0.2 0.52 0 0.21

0.3 0.42 0 0.18

0.4 0.32 0 0.14

0.5 0.24 0 0.11

0.6 0.18 0 0.08

0.7 0.13 −0.01 0.05

0.8 0.1 0 0.03

0.9 0.08 0 0.01

1 0.07 0 −0.01

0.30 ± 0.209 0.00 ± 0.003 0.11 ± 0.089
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on a different algorithm from Pearson’s r which is known to be ex-
tremely affected by outliers (Rousselet & Pernet, 2012). In addition, 
our methods indirectly limit the effects of outliers due to partial resca-
ling (or excluding extreme values), and this could be part of the expla-
nation. Nevertheless, more research will be needed to understand this 
kind of bias (or its absence) in statistics related either directly or indi-
rectly to correlation coefficients. The new proposed estimators could, 
however, be further improved in the future, ideally to a level without 
bias due to the SCE in estimating mating preference.

Several authors have called for improvement in the relationship 
between theoretical and empirical methodologies to allow progress 

in evolutionary theory (Gavrilets, 2004, 2014; Roff & Fairbairn, 2015; 
Servedio, 2015). In this paper, we add to the strategy initiated by Roff 
and Fairbairn (2015) trying to connect both frameworks, by proposing 
a new estimator (Crough) for mating preferences (as well as checking 
the applicability of Pearson’s r for the same purpose) from mating pairs 
directly captured in the wild. Although the method could be problem-
atic for estimating unbiased preferences, it may be sound and robust 
enough for comparing estimates among groups and testing hypotheses 
on mate choice evolution. The priority would be to use this function in 
theoretical and empirical studies, as well to check whether theoretical 
predictions can be supported or rejected by observations in the field. 

FIGURE  5 Representation of the magnitude of the mean simulated scale-of-choice effect error (Statisticpooled − Statisticaveraged; with correspond
ing standard errors) for the different estimators of mating preference at different simulated preference strengths (C): (a) Pearson’s r, (b) Cscaled, and 
(c) Crough. The relationship is summarized for three representative coefficients of variation (CV) and three mating pair sample sizes (Npair)

Species Locality

Pearson’s r All samples

Caveraged SCECSCE5
® N Cpooled

Echinolittorina 
malaccana

Shek O 0.49* 40 0.51 0.32 ± 0.051 0.19**

Cape D’Aguilar 0.47* 228 0.60 0.38 ± 0.025 0.22**

Echinolittorina radiata Cape D’Aguilar 0.54* 49 0.53 0.30 ± 0.041 0.23***

Littorina fabalis Abelleira 0.12 95 0.40 0.28 ± 0.044 0.13***

The SCE is experimentally obtained by Cpooled − Caveraged (see Ng et al., 2016; Rolán-Alvarez et al., 2015).
*p < .05; **p < .01; ***p < .001.

TABLE  4 Crough estimates from 
experimental data, and experimental 
estimations of the scale-of-choice effect 
(SCE) for this new estimator, which can be 
compared with the SCE estimates from 
Pearson’s r
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Our approach could be applied, for example, to ecological models for 
studies of speciation, such as Littorina saxatilis (Rolán-Alvarez, 2007), 
stick-insects (Nosil, Egan, & Funk, 2008; Nosil & Feder, 2013), the 
stickleback (Kraak & Hart, 2011; Hendry, Hudson, Walker, Räsänen, & 
Chapman, 2011; Vines et al., 2016), or cichlids (Gavrilets et al., 2007; 
Martin, 2013; Seehausen et al., 2008), to check whether theoretical 
predictions match empirical estimates in the wild. Additionally, this 
methodology could be used for testing whether runaway sexual selec-
tion could contribute to the allopatric process of speciation (reviewed 
in Servedio & Bürger, 2014).
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