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NIS can lead to declines or even extinctions of native spe-
cies, disrupt ecosystem functions, enhance transmission 
of viruses and pathogens, and cause substantial damage 
to natural resources and ecosystem services (Simberloff 
et al. 2013). Consequently, considerable research has been 
conducted to examine the biology, ecology, and evolution 
of NIS (e.g., Sakai et  al. 2001; Roman and Darling 2007; 
Lejeusne et  al. 2014), characterize key transport vectors 
and pathways (i.e., transport means and geographic routes, 
respectively) (e.g., Hulme 2009; Wilson et al. 2009), iden-
tify determinants of invasion success (e.g., Kolar and Lodge 
2001; Williamson 2006; Blackburn et  al. 2015), forecast 
spatial distribution and spread (e.g., Muirhead and MacIsaac 
2005; Floerl et  al. 2009; Larson et  al. 2014), as well as 
assess and predict impacts of NIS on recipient communities 
(e.g., Dick et al. 2013; Alexander et al. 2014; Jeschke et al. 
2014). Understanding the mechanisms and patterns of bio-
logical invasions allows us to develop strategies to prevent 
and manage the negative effects of NIS (Pyšek and Richard-
son 2010), while gaining valuable insights into ecological, 
evolutionary, and biogeographic theories and concepts (see 
Lodge 1993; Sax et al. 2007; Jeschke 2014).

Research efforts in invasion ecology; however, vary across 
systems, with the majority of studies conducted in terrestrial 
habitats rather than aquatic ones (Jeschke et al. 2012; Lowry 
et  al. 2012). Marine and coastal ecosystems worldwide are 
being invaded at extraordinary rates as a result of human 
activities such as shipping, aquaculture, fisheries, ornamen-
tal and live seafood trades, the opening and construction of 
canals, habitat modification, and climate change, which pro-
vide increasing opportunities for marine NIS to be introduced 
and subsequently established in new environments (Occhip-
inti-Ambrogi and Savini 2003; Molnar et al. 2008; Williams 
et  al. 2013). Therefore, studies focusing on biological inva-
sions in marine and coastal environments are warranted.
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Introduction

The introduction and establishment of nonindigenous spe-
cies (NIS) beyond their natural distributional range is a key 
component of global environmental change (Simberloff 
et  al. 2013). While only a small proportion of introduced 
NIS become invasive in the recipient habitats (Blackburn 
et  al. 2011), their impacts can be detrimental. Invasive 
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This Topical Collection on Invasive Species compiles 
50 articles, including 44 Original Papers, four Reviews, 
and two Short Notes, addressing a wide array of topics 
in marine invasion ecology. Additionally, the collection 
is complemented by two Editorial Comments, a preface 
(Briski and Chan 2015) and this summary. The topics of 
these articles can be broadly categorized into eight themes: 
propagule pressure associated with transport vectors, spe-
cies characteristics, attributes of recipient ecosystems, 
invasion genetics, biotic interactions, invasion hypothesis 
testing, invasion dynamics and spread, and impacts of 
nonindigenous species. This collection covers a number 
of nonindigenous algae, macrophytes, invertebrates, and 
fishes in marine and coastal ecosystems spanning from as 
far south as Argentina and New Zealand to as far north as 
the Canadian Arctic. The range of approaches used in the 
studies includes field surveys, field experiments, laboratory 
experiments, bioassays, literature reviews, meta-analyses, 
and mathematical modelling. Here, we briefly summarize 
some of the highlights of this collection, while a detailed 
description of each study can be found in the original paper. 
Although many studies addressed more than one topic, we 
focus on the most interesting and important findings of 
each publication for the sake of brevity.

Propagule pressure associated with transport 
vectors

A number of theoretical and empirical studies have dem-
onstrated that propagule pressure—the number of individu-
als involved in an introduction event (propagule size) and 
the number of introduction events (propagule number)—is 
the most consistent predictor of invasion success (e.g., Von 
Holle and Simberloff 2005; Lockwood et al. 2005; Simber-
loff 2009). Increased propagule size and propagule number 
enhance the probability of establishment of a population 
by decreasing environmental and demographic stochastic-
ity, respectively (Lockwood et  al. 2005; Simberloff 2009; 
Blackburn et  al. 2015). Transport vectors influence the 
movement, quantity, and quality of propagules being deliv-
ered to new habitats, thereby playing a crucial role in deter-
mining the outcome of biological invasions (Lockwood 
et al. 2005; Hulme 2009; Wilson et al. 2009).

This collection covers two leading transport vectors of 
NIS in marine and coastal ecosystems: shipping (ballast 
water and biofouling) and aquaculture. Casas-Monroy et al. 
(2016) presented the first estimation of propagule pressure 
for viable (i.e., alive and able to reproduce) nonindigenous 
dinoflagellates in ballast water of commercial ships arriv-
ing at Pacific and Atlantic ports in Canada. The authors 
found that propagule pressure varied by transport pathway, 
and that ballast water exchange was not sufficient to reduce 

ballast-mediated invasion risk in marine and coastal habi-
tats. Three studies evaluating the importance of ship bio-
fouling as a vector for the introduction and spread of marine 
NIS reported mixed results (Chan et al. 2016; Kauano et al. 
2017; van der Gaag et al. 2016). The first study examining 
temporal changes in biofouling assemblages on military 
vessels during transits in the marine Arctic recorded six 
potential NIS capable of surviving round trip voyages from 
temperate to arctic ports in Canada (Chan et al. 2016). Sim-
ilarly, an experimental study found that the sailing speed 
and desiccation time typical of small fishing and recreation 
boats in southern Brazil had little effect on the survivorship 
of biofouling organisms (Kauano et al. 2017). In contrast, 
results from mesocosm experiments indicate that the non-
indigenous mussels Dreissena polymorpha and Mytilopsis 
leucophaeata and the native mussel Mytilus edulis would 
not be capable of tolerating unfavourable salinity levels for 
durations typical of actual ship voyages in the North Sea 
(van der Gaag et al. 2016). In terms of the aquaculture vec-
tor, a laboratory study demonstrated that transplanted mus-
sels could serve as a transport vector for Nitzschia bizerten-
sis, a new toxin-producing diatom recently found in Bizerte 
Lagoon, Tunisia; the diatom was able to survive, regrow, 
and retain its toxicity following filtration and ejection as 
biodeposits by mussels (Bouchouicha-Smida et al. 2015).

Species characteristics

Species characteristics such as fast growth, polyphagy, 
high dispersal ability, broad physiological tolerance, high 
genetic variability, high phenotypic plasticity, and associa-
tion with humans have been proposed as common attributes 
of successful NIS (e.g., Sakai et al. 2001; Kolar and Lodge 
2002; Jeschke and Strayer 2006; Blackburn and Jeschke 
2009; Lenz et al. 2011). Articles in this collection focused 
on the importance of physiological tolerance to the inva-
sion success of marine NIS. Species with the capacity to 
tolerate broader abiotic conditions may have a greater like-
lihood of surviving transport, establishing in new habitats, 
and expanding their introduced range (Lenz et  al. 2011; 
Bates et al. 2013). An experimental study investigating the 
effects of temperature and salinity on the performance of 
the nonindigenous kelp Undaria pinnatifida and two native 
kelps, Lessonia variegata and Ecklonia radiata, from Tau-
ranga Harbour, New Zealand found that the NIS gener-
ally exhibited broader tolerance to the treatments than the 
native ones (Bollen et  al. 2016). Indeed, a separate study 
reported that the nonindigenous population of U. pinnati-
fida in Hauraki Gulf, New Zealand was able to tolerate 
temperatures much warmer than those in its native range by 
adjusting its growth cycle, allowing individuals to persist 
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under conditions previously thought to be unfavourable 
(James and Shears 2016a).

Differential physiological tolerance between native and 
nonindigenous populations of a species suggests that the 
trait may be selected during the invasion process (Ham-
mann et  al. 2016; Schmidt et  al. 2016). Comparisons of 
the physiological responses of native and nonindigenous 
populations of the seaweed Gracilaria vermiculophylla 
to heat shock in common-garden experiments conducted 
in both the native (Qingdao, China) and introduced (Kiel, 
Germany) ranges suggest that the nonindigenous popula-
tions are more tolerant to heat stress than the native ones 
(Hammann et  al. 2016). Similarly, two populations of the 
foraminifera Amphistegina lobifera—one from the Gulf 
of Aqaba that invaded the Red Sea during the post-glacial 
recolonization, and a recently-invaded Lessepsian popula-
tion from the Eastern Mediterranean—exhibited excep-
tional thermal resistance that has no apparent adaptive rel-
evance to the local environments (Schmidt et al. 2016).

Within a population, differences in physiological toler-
ance between sex and growth phases may have implica-
tions for invasion success. Pennoyer et al. (2016) reported 
that individuals in the green colour phase of the nonin-
digenous European green crab Carcinus maenas from 
Maine, USA typically performed better than those in the 
red colour phase under conditions of low salinity, and that 
females often outperformed males in their respective col-
our phases.

Attributes of recipient ecosystems

Once arrived at new habitats, successful NIS must survive 
ambient environmental conditions and establish a self-
sustaining population (Blackburn et al. 2011). Ecosystems 
that are susceptible to invasions tend to have environmental 
conditions similar to those of the native habitat of invad-
ing NIS, high environmental heterogeneity, a history of 
habitat disturbance, low species diversity, and few natural 
enemies (e.g., Levine et al. 2004; Fridley et al. 2007; Mel-
bourne et  al. 2007; Herborg et  al. 2007; Clark and John-
ston 2011). In fact, a review study identified a network of 
anthropogenic (e.g., physical disturbance, increased sedi-
mentation, eutrophication, and fishing), abiotic (e.g., sub-
strate complexity and water movement), and biotic (e.g., 
the presence of canopy macrophytes, alga turfs, other NIS, 
and herbivory) variables that regulate the spread of the non-
indigenous green macroalgae Caulerpa cylindracea in the 
Mediterranean Sea (Piazzi et al. 2016).

Human-modified habitats such as shipping ports, 
marinas, and aquaculture sites may serve as hotspots for 
marine invasion owing to high propagule supply and/

or abiotic features that promote NIS establishment. An 
examination of invasion patterns in shipping ports on 
the Atlantic and Pacific coasts of Canada revealed that 
latitude, salinity, sediment type, and human populations 
were strongly related to NIS establishment (Choi et  al. 
2016). While summer water temperature and cargo ship-
ping traffic explained the majority of variability in the 
number of fouling NIS established in coastal regions of 
the United States (Lord et al. 2015), a study investigating 
the association between the presence of NIS and physi-
cal features of marinas in the United Kingdom identi-
fied freshwater input, marina entrance width, and seawall 
length as significant predictors of NIS occurrence (Fos-
ter et  al. 2016). Populations of the nonindigenous kelp 
U. pinnatifida on mussel farms were more prolific, with 
longer annual presences and greater reproductive capac-
ity than those on natural reefs, because aquaculture sites 
provided the optimal environmental conditions (e.g., high 
water clarity and great water motion) for NIS establish-
ment (James and Shears 2016b).

While classical invasion theory suggests that dis-
turbance promotes invasion by freeing resources and 
reducing competition (Elton 1958; Davis et  al. 2000), 
its influence on invasion success appears to be complex, 
depending on species and ecosystem properties, type and 
timing of disturbance, and spatial scale (e.g., Lonsdale 
1999; Melbourne et al. 2007; Clark and Johnston 2011). 
An experimental study reported that colonization by the 
nonindigenous isopod Cirolana harfordi from Sydney 
Harbour, Australia was facilitated by the presence of an 
assemblage and influenced by the type of resident assem-
blage, with greater success on disturbed assemblages than 
undisturbed ones (Bugnot et al. 2016). The type of distur-
bance was important, as an alternative source of organic 
matter simulating the effects of disturbance occurring 
upstream of the study site had no influence on coloni-
zation (Bugnot et  al. 2016). In contrast, results of two 
empirical studies conducted in New Zealand suggest that 
disturbance had limited effects on the recruitment of U. 
pinnatifida (Morelissen et  al. 2016; South and Thomsen 
2016). The timing and size of native algal cover removal 
did not affect the recruitment of U. pinnatifida on experi-
mental plots located on a rock low-intertidal shore in 
central New Zealand (Morelissen et al. 2016). Similarly, 
while native canopy removal facilitated the recruitment of 
U. pinnatifida on experimental plots in Lyttelton Harbour, 
New Zealand, the nonindigenous kelp had weak and tran-
sient impacts on the native assemblages during the early 
stage of the invasion at a small spatial scale (South and 
Thomsen 2016). The study concluded that the kelp was 
a “passenger”, not “driver”, of ecological change (South 
and Thomsen 2016).
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Invasion genetics

Evolutionary processes (e.g., genetic bottleneck, genetic 
drift, selection, admixture, and adaptation) can strongly 
influence whether invading NIS can persist and proliferate 
in introduced environments (Sakai et  al. 2001; Lee 2002; 
Roman and Darling 2007). Johnson et al. (2016) presented 
the first study that examined the genetic composition of the 
lionfish Pterois volitans/miles in the Gulf of Mexico, which 
suggests that the nonindigenous populations likely origi-
nated from the Caribbean and expanded rapidly after initial 
colonization, despite undergoing a genetic bottleneck. The 
first genetic study conducted for nonindigenous popula-
tions of the sponge Paraleucilla magna in the Mediterra-
nean and Northeastern Atlantic revealed that the invasion 
success of the species could be attributed to high genetic 
diversity, likely owing to multiple introductions and pheno-
typic plasticity (Guardiola et al. 2016). A study examining 
the temporal genetic structure and diversity of a nonindig-
enous population of the ascidian Styela plicata in Wilming-
ton, North Carolina, USA found that the population was 
maintained by a recurrent arrival of propagules from neigh-
bouring populations, supplementing the genetic pool with 
new alleles after exposure to periodic floods and fluctua-
tions in temperature and salinity (Pineda et al. 2016). Using 
cytochrome c oxidase subunit I barcoding sequences, Sun 
et al. (2017) examined the genetic divergence among global 
populations of the calcareous tube worm Hydroides dian-
thus. The authors demonstrated that H. dianthus is a species 
complex consisting of two phylogenetic lineages (Clades A 
and B). Interestingly, results of the study suggest that the 
native range of H. dianthus might be the Mediterranean, 
rather than the east coast of USA as previously assumed 
(Sun et al. 2017).

Recent advances in genomics tools can further improve 
our understanding of the role of evolutionary processes in 
determining the success of marine NIS. In a review paper, 
Sherman et  al. (2016) discussed how genomic (DNA), 
transcriptomic (RNA), and epigenetic tools can be used to 
identify adaptive variation within and among (native and 
nonindigenous) populations, to uncover candidate genes 
responsible for certain adaptive traits, and to understand 
the mechanism of epigenetic variation in plastic responses 
to novel environments. In particular, high-throughput 
sequencing (HTS)-based methods have been used as tools 
for early detection and monitoring of marine NIS owing to 
their high capacity to detect species at low abundance with 
low associated costs (Zhan et al. 2013; Carugati et al. 2015; 
Simmons et  al. 2016). Xiong et  al. (2016) outlined the 
major technical issues that can lead to false negatives and 
false positives when employing these methods, discussed 

the causes and consequences of these errors, and offered 
solutions for future studies.

Biotic interactions

Biotic interactions may promote or impede the establish-
ment and spread of NIS in recipient environments via 
mechanisms such as competition, exploitation, facilita-
tion, and mutualism (e.g., Simberloff and Von Holle 1999; 
Freestone et  al. 2013; Alofs and Jackson 2014). This col-
lection explores the effects of facilitation, kleptoparasitism, 
scavenging, herbivory, predation, and competition on inva-
sion success of marine NIS. An example in which biotic 
interactions facilitated the establishment of a marine NIS 
is provided by Drouin et al. (2016). The abundance of the 
nonindigenous green alga Codium fragile ssp. fragile in 
an eelgrass habitat in Grande-Entrée Lagoon (Magdalen 
Islands, Eastern Canada) was positively related to the den-
sity of the native canopy-forming species Zostera marina 
(Drouin et al. 2016). The native species may be essential to 
the establishment of C. fragile by trapping sediments and 
algal fragments, providing substrata for anchorage (Drouin 
et al. 2016). In contrast, Silva et al. (2017) found that native 
sponges (e.g., Iotrochota arenosa and Scopalina ruetzleri) 
may occasionally outcompete nonindigenous Tubastraea 
corals in Ilha Grande Bay, Brazil by overgrowing them, 
though the most common competitive interaction among 
the species is contact without dominance.

The influence of biotic interactions on the invasion 
success of marine NIS; however, may be less straightfor-
ward. For instance, mathematical models examining the 
trophic interactions among the nonindigenous green crab 
C. maenas and the native dogwhelk Nucella lapillus for-
aging on Mytilus spp. mussels in Atlantic Canada revealed 
that crab kleptoparasitism (i.e., crabs taking mussels from 
whelks) had negative effects on whelks, whereas no sig-
nificant impact on whelks was detected for crab scaveng-
ing (i.e., crabs feeding on mussels abandoned by whelks) 
(Quinn and Boudreau 2016). A study examining the impact 
of a native herbivorous reef fish, the bluespine unicornfish 
(Naso unicornis), on the growth and distribution of the 
nonindigenous Gracilaria salicornia in the Hawaii Marine 
Laboratory Refuge reported that the unicornfish might 
serve as both a control agent and a natural transport vector 
for G. salicornia (Bierwagen et  al. 2017). Finally, results 
of laboratory experiments suggest that a complex habitat 
mediated the negative effects of predation on the native 
mud crab Dyspanopeus sayi by the nonindigenous Euro-
pean green crab C. maenas in Atlantic Canada (Gehrels 
et al. 2016).
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Invasion hypothesis testing

Several hypotheses have been proposed to explain suc-
cessful invasions (Catford et  al. 2009; Jeschke et  al. 
2012; Lau and Schultheis 2015). However, these hypoth-
eses have been tested mostly in terrestrial systems rather 
than aquatic ones, and the results are inconsistent (Ric-
ciardi and MacIsaac 2011; Jeschke et  al. 2012). Studies 
in this collection empirically tested the enemy-release 
hypothesis (ERH), the novel weapon hypothesis (NWH), 
and the evolution of increased competitive ability (EICA) 
hypothesis in marine and coastal habitats. The ERH pro-
poses that NIS are liberated from the negative effects of 
co-evolved natural enemies, and are thus able to establish 
and/or cause detrimental impacts in introduced environ-
ments (Elton 1958; Colautti et al. 2004; Prior et al. 2015). 
In the same vein, the NWH suggests that the success of 
NIS is related to their competitive, defensive, or preda-
tory traits, which native species have never encountered 
before in invaded habitats (Callaway and Ridenour 2004). 
The EICA hypothesis states that the escape from natural 
enemies allows NIS to reallocate resources from defense 
to growth and competitive ability via evolutionary mech-
anisms (Blossey and Nötzold 1995). Three studies exam-
ining the feeding preference of native invertebrate grazers 
for nonindigenous algae (Sargassum muticum, Hetero-
siphonia japonica, and U. pinnatifida) and a number of 
native competitors in pair-wise and multiple-choice feed-
ing assays found that the grazers generally preferred 
native algae over the nonindigenous ones because they 
were deterred by the chemical properties (e.g., secondary 
metabolites) of the invaders (Jiménez et al. 2015; Sager-
man et al. 2015; Schwartz et al. 2016). These results are 
consistent with the ERH and EICA hypotheses. In addi-
tion, the grazers’ preference for S. muticum from the 
invaded habitat (North Sea) over the ones from the native 
range (Japan) could indicate a resource allocation from 
chemical defense to reproduction and growth, which is in 
line with the EICA hypothesis (Schwartz et al. 2016).

Results of two studies; however, did not support the 
ERH (Merella et al. 2016; Pedersen et al. 2016). Pedersen 
et al. (2016) demonstrated that the nonindigenous brown 
alga S. muticum was typically consumed at the same rate 
or faster than a range of native algae, depending on the 
growth rate and morphology of algal species being com-
pared in feeding experiments. A parasitological study 
of the nonindigenous bluespotted cornetfish (Fistularia 
commersonii) in the Mediterranean Sea found no evident 
decrease of parasite richness and levels of infection in the 
fish (Merella et  al. 2016). In fact, the species acquired 
new parasites while retaining a subset of natural ones in 
the invaded range (Merella et al. 2016).

Invasion dynamics and spread of NIS

Analyzing invasion patterns of NIS can provide insights 
into the drivers and mechanisms of biological invasions 
(e.g., Marini et  al. 2013; Ruiz et  al. 2013; Gallardo and 
Aldridge 2015) and permit the projections of future spread 
(e.g., Peterson 2003; Chu et al. 2005; Herborg et al. 2007). 
Knowledge of current and future distributions of NIS 
allows resource managers to prioritise control and preven-
tion efforts at high-risk sites. For example, an examination 
of temporal and spatial patterns of ascidian invasions in the 
continental United States and Alaska identified an invasion 
hotspot on the Pacific coast and ship biofouling as the pri-
mary transport vector (Simkanin et al. 2016). In addition, a 
review of ascidian invasions worldwide provided by Zhan 
et  al. (2015) outlined the invasion history and impacts of 
nonindigenous ascidians, factors underlying the success of 
these invasions, and relevant regulations and management 
strategies that are available to prevent and control further 
spread. Similarly, Marchini and Cardeccia (2017) presented 
a comprehensive inventory of global marine nonindigenous 
amphipods and their distributions worldwide, allowing for 
horizon-scanning initiatives, predictive species distribu-
tion modelling, as well as NIS monitoring. The authors also 
highlighted a number of knowledge gaps, notably the chal-
lenges in assessing the invasion status of species with cer-
tainty owing to taxonomic problems and dubious species 
records (Marchini and Cardeccia 2017).

A study modelling the connectivity among metapopula-
tions of lionfish (P. volitans/miles) in the Gulf of Mexico 
identified the Campeche Bank as an important source of 
lionfish recruits to the north-eastern Gulf of Mexico (John-
ston and Bernard 2017). Both Miller (2016) and John-
ston and Akins (2016) developed sophisticated models to 
forecast the spread of newly reported NIS, the ascidian 
Didemnum vexillum in Southeastern Alaska and the dam-
selfish Neopomacentrus cyanomos in the Gulf of Mexico, 
respectively, based on physiological tolerances and/or life 
history traits of species. A study comparing per capita algal 
resource use at different temperatures among three mussel 
species, the recent invader Semimytilus algosus, the estab-
lished invader Mediterranean mussel Mytilus gallopro-
vincialis, and the native Aulacomya atra, predicted that S. 
algosus will become established along the south coast of 
South Africa, though M. galloprovincialis will maintain 
dominance along the coast (Alexander et  al. 2015). Pod-
bielski et  al. (2016) proposed that the sea anemone Dia-
dumene lineata, recently discovered in Kiel Fjord in the 
Western Baltic Sea, could invade the Kattegat and Skager-
rak regions, but not the Baltic Proper based on the criti-
cal salinity obtained from physiological assays. Finally, a 
study examining the physiology, life cycle constraints, and 
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habitat availability of the European cuttlefish Sepia offici-
nalis suggested that the species has the potential to expand 
its range to North America via the North Atlantic under cli-
mate change (Xavier et al. 2016).

Impacts of nonindigenous species

The dramatic effects of invasive species on recipient eco-
systems are well recognized (Simberloff et al. 2013). This 
collection compiles information on the impact of over 40 
marine NIS, including five well-known invaders, the killer 
alga Caulerpa taxifolia (Cvitkovic et  al. 2017), the alga 
U. pinnatifida (South and Thomsen 2016), the European 
green crab C. maenas (Gehrels et  al. 2016; Lutz-Collins 
et al. 2016; Quinn and Boudreau 2016), the Mediterranean 
mussel Mytilus galloprovincialis (Alexander et  al. 2015), 
and the Asian date mussel Arcuatula senhousia (Como 
et al. 2016). The first four listed species are considered the 
world’s worst invasive NIS (ISSG 2016), while the latter is 
listed as one of the 100 worst invasive NIS in Europe (DAI-
SIE 2016).

For example, two nonindigenous macroalgae Schyzi-
menia dubyi and Ahnfeltiopsis sp. recently detected on 
the Argentinean coast around Mar del Plata modified the 
benthic habitat and altered the structure and composi-
tion of benthic biota (Palomo et  al. 2016). The European 
green crab (C. maenas) significantly altered the commu-
nity structure of local invertebrates in muddy habitats of 
Prince Edward Island, Canada by creating feeding pits in 
sediments (Lutz-Collins et al. 2016). Comparisons of mei-
ofauna assemblages associated with bare sediments, the 
killer alga (C. taxifolia), and the native seagrass Posido-
nia oceanica in the eastern Adriatic coast suggested that 
the invader altered the structure of meiofauna assemblages 
and caused a decline in meiofauna density (Cvitkovic et al. 
2017). A laboratory experiment demonstrated that the non-
indigenous Asian date mussel (A. senhousia) could disrupt 
benthic-pelagic coupling by reducing the 13C-uptake by the 
native clam Ruditapes decussatus and thus the availabil-
ity of phytoplankton-derived C for deposit feeders (Como 
et al. 2016). Goren et al. (2016) reported that the food web 
structure of mixed native-nonindigenous fish communities 
in the Mediterranean Sea off the coast of Israel had under-
gone dramatic modifications as a result of increased domi-
nance of nonindigenous fishes at the high trophic levels. A 
study quantifying losses of ecosystem services caused by 
the lionfish (P. volitans/miles) in Bahamian reefs found 
losses of 26.67 and 21.67 discounted service unit years 
(DSUY) per km2 owing to reductions in recruitment and 
biomass of lionfish prey fishes (Johnston et al. 2015).

Negative impacts of NIS; however, may be mitigated by 
effective prevention and management efforts (Simberloff 

2008). Fiori et al. (2016) developed a spatially explicit risk 
assessment to evaluate the potential effects of different 
strategies, including integral sanitation of the coastal zone, 
treatment of domestic sewage, and manual removal of oys-
ter beds at specific locations, for managing the impacts of 
the Pacific oyster (Crassostrea gigas) in the Bahía Blanca 
estuary, Argentina. The potential effectiveness of individual 
approach is expected to vary depending on the location, 
though all approaches would offer risk reduction to some 
degree (Fiori et al. 2016).

Conclusions

Biological invasion is a major driver of global environmental 
change (Simberloff et al. 2013). While considerable research 
has been conducted to understand and predict invasions, the 
amount of effort devoted to these studies is not consistent 
across ecosystems, with the majority of the studies under-
taken in terrestrial systems rather than aquatic ones (Jeschke 
et al. 2012; Lowry et al. 2012). This Topical Collection on 
Invasive Species addresses this knowledge and data gap by 
compiling some of the most recent research in marine inva-
sion ecology. Articles in the collection considered a wide 
range of topics, including propagule pressure associated with 
transport vectors, species characteristics, attributes of recipi-
ent ecosystems, invasion genetics, biotic interactions, testing 
of invasion hypotheses, invasion dynamics and spread, and 
impacts of nonindigenous species. However, this collection 
is not by any means inclusive. For instance, the collection 
examined only two of the many important transport vec-
tors of marine NIS (shipping and aquaculture). Other spe-
cies traits in addition to physiological tolerance need to be 
investigated in future studies. Only three invasion hypotheses 
(ERH, NWH, and EICA) were empirically tested in studies 
of this collection. The inconsistent results obtained by these 
studies highlight the complexity and the context-dependent 
nature of biological invasion. Therefore, much research is 
still needed to advance the field.
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