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A mathematical model can be analysed to construct
policies for action that are close to optimal for
the model. If the model is accurate, such policies
will be close to optimal when implemented in
the real world. In this paper, the different aspects
of an ideal workflow are reviewed: modelling,
forecasting, evaluating forecasts, data assimilation
and constructing control policies for decision-making.
The example of the oil industry is used to motivate
the discussion, and other examples, such as weather
forecasting and precision agriculture, are used to
argue that the same mathematical ideas apply in
different contexts. Particular emphasis is placed
on (i) uncertainty quantification in forecasting and
(ii) how decisions are optimized and made robust
to uncertainty in models and judgements. This
necessitates full use of the relevant data and by
balancing costs and benefits into the long term may
suggest policies quite different from those relevant to
the short term.

1. Introduction
Making a decision or setting a control entails a choice
with the aim of reaching an objective as closely as
possible. In turn, a forecast is needed that predicts the
outcome of each control setting so that an informed
choice can be made. In many cases, there is only sparse
knowledge about the starting state of the system of
interest and only approximate knowledge of how the
system will evolve. In many situations, the task of
making decisions and setting controls is left to intuition
and experience. However, when a situation goes beyond
everyday experience, mathematics can be surprisingly
effective.

For example, the production of oil from a geological
formation located at a depth of 2–5 km below Earth’s
surface often involves injecting water into the formation
through a system of wells. Oil and gas is thus pushed
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towards production wells and is recovered from the mixture of oil, gas and water that flows to
the surface. The remoteness of the formations means that there is uncertainty in the geometry and
properties of the rocks and so the design of the system of wells has to account for many different
possible shapes of layers and faults and many different possible patterns and levels of porosity
and permeability. The initial design and later decisions involve matters such as the number of
wells to be drilled, their location and path and the operating flow rates or pressures. The initial
uncertainty, hopefully reduced by making measurements at the large scale using seismic waves,
and at the small scale by measuring the properties of rocks along the wells, needs to be quantified.
With such a quantified uncertainty, the subsequent decisions can then be made in a way that
accounts for the different unknown possible situations. Then, on balance, the recovery plan is
optimal on average over the different possible scenarios. These are examples of the optimal
decisions to which we refer in the title of this paper.

This example of the oil industry, to be discussed in more detail after an overview in general
terms, will indicate how mathematics is used throughout the process of finding oil and gas
and the subsequent recovery of oil and gas through the system of wells. We will also make
comparisons with other applications such as weather forecasting, precision agriculture and
revenue management.

In our discussion of the ‘industrial mathematics workflow’ the first notion to be explained
is that of a mathematical model. We then describe how deterministic and probabilistic forecasts
are made, how such forecasts are evaluated, how data are assimilated so as to improve future
forecasts and how an optimal decision or control can be calculated.

Throughout the article the term control policy will be used to mean either

(i) a deterministic control policy, which is a mathematical function taking as its arguments all
of the relevant observations and delivering as its value a decision, or

(ii) a stochastic control policy, which is a stochastic process delivering decisions that are
randomly assigned with probabilities that depend on the relevant observations.

Stochastic control theory seeks methods for constructing control policies through the formulation
and solution of optimization problems. The classification of types of control policy will be of
particular value in helping decision-makers understand better how they might benefit from the
assistance of the mathematical sciences.

One topic we will not discuss is that of competition, negotiation or conflict between two
or more decision-makers. In some situations, a particular decision-maker can treat the other,
competing, decision-makers as part of the system they are aiming to control. In general, though,
the existence of competitors requires the introduction of new ideas from game theory, such as
those described in [1], which we will not cover. Stochastic control policies tend to be used in the
context of competing agents, but could find application in the control situations considered in
the following.

An important aim of this article is to emphasize the distinction between open-loop control
policies that make all the decisions at the outset and closed-loop control policies that make
the decisions at the time for action, thereby responding to changing circumstances as they
are observed.

Throughout the article, the terms systematic approximation and heuristic approximation will be
used. A systematic approximation is an approximation that can be systematically improved by
performing further calculations. Heuristics are approximations that have no scientific basis for
systematic improvement. Very often a heuristic is adequate and sometimes can even outperform
the known systematic methods.

2. Modelling
The first task in mathematical modelling is to describe the state of the system of interest; for
example, a physical system such as the atmosphere or an economic system such as a supermarket.
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In the following, we will assume that the state of a system can be described by an array of numbers
which will be called the state vector or just the state. We will refer to any particular number in
the array as a component of the state vector. The number of components in the state vector
is referred to as the dimension of the system. We will also assume that the state dimension is
finite, and that time proceeds in discrete steps of equal duration, time-0, time-1, . . . , time-n, . . . and
so on. In practice, mathematicians often derive such models as approximations to an infinite-
dimensional continuous model, but the end result in most applications is a finite-dimensional
algorithm to be used on a computer. This decision to frame the discussion in finite-dimensional
terms is to avoid extensive use of mathematical notation and the need for technical details.
However, on occasion some notation will be used as a summary of the preceding textual
explanation.

The developers of simulation software often think only in terms of finite-dimensional models,
but it is always useful if we can find exact ‘closed-form’ solutions for simple infinite-dimensional
limits. Such exact solutions, particularly in the form of easily understandable formulae, can
provide insight into the behaviour of more complicated models and provide benchmarks for
checking computer codes. One example of the interplay between numerical approximations
and exact solutions is provided by the advection equation [2]. This equation models the way a
contaminant is transported in a fluid, and is a particularly difficult equation to approximate with
a finite-dimensional approximation.

In many applications, the state vector is built by dividing the system into a network of
connected parts. For physical systems, this involves dividing the space of interest into a grid
of ‘cells’. Within each cell in a physical system a small set of numbers will be used to quantify
variables such as pressure or temperature. In a social system the ‘cells’ might be people,
or households, connected to one another in a social network with variables such as wealth
or occupation.

In the following, the equations used to relate the state vector at one time with the state vector
at the preceding time will be called a forward model. Note that the term ‘forward model’ is not
universally used in this general sense, and is only used to mean the equation that gives the state
vector at time-n as a function of the state vector at time-(n − 1). In practice, the equations are not
usually an explicit set of instructions but a large set of simultaneous equations connecting the state
components at a particular time in a particular cell with the state components of the neighbouring
cells, and the corresponding state components at the previous time step. These equations must
then be solved in some iterative fashion on a computer, and the software that we use to perform
these calculations is called a simulator.

As time evolves, some of the components of the state will change, but many might be left
unchanged. The ones that change, following the terminology of weather forecasters, we will call
variables. Components of the state vector that are constant in time will be called deterministic
parameters and stochastic components that only appear in the equations at one particular time
will be called stochastic parameters. The control variables, which represent physical devices, such as
valves, or design parameters in a system to be manufactured, are adjustable parameters that may
be used to optimize some part of the output of the forward model.

When forward models, at each time step, depend on a large subset of components of the state
vector that are stochastic and independent from each other and independent from the components
at other times we say that the model is a stochastic model. When such stochastic components are
absent from the model, we say that the model is deterministic.

This notion of a state vector is not standard in all domains, and such a state vector would be
referred to in some subjects as an augmented state vector.

Let us use (i) the symbol vn to denote the variables, the time changing components of the state
vector at time-n, (ii) the symbol un to denote the time-independent components, the deterministic
parameters where the forward model for the deterministic parameters is simply un = un−1, and
(iii) the symbol wn to denote the stochastic parameters. If the system is stochastic the complete
state vector at time-n is ψn = (un, vn, wn). If the system is deterministic the state vector is just
ψn = (un, vn).
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We can summarize the notion of a forward model by noting that in the most general case
it provides the probability density of a state given the immediately preceding state. This can be
written as the formula π (ψn |ψn−1), where π is a general symbol for a probability density function
and where the subscript n is a time index. This formula is to be read as the ‘probability density
of the state at time-n conditioned on the state at time-(n − 1)’ and the vertical bar is to be read as
‘conditioned on’ or as ‘given’. In the following where we use notation, we follow the convention of
the statistics literature where the same symbol, in this case π , is used to denote different functions
depending on their arguments.

Many models have hierarchical structures, wherein at the largest scale the number of parts is
relatively small but each part is composed of smaller parts that respond on shorter time scales. In
turn, the smaller parts could be composed of yet smaller parts and so on. If a state vector can be
assigned to the largest parts alone, then a simulation through time is possible even on a modest
computer. However, the initial state vector might have been specified on a smaller scale, so that in
the larger grid cells a detailed description using smaller cells is available. However, if the detailed
state, using information on all of the scales, is used in the simulator, the amount of computer
memory required to solve the simulator equations may be larger than that which is available. In
such cases, it is therefore necessary to develop averaging techniques1 and perhaps even modify
the simulator equations so that the model only uses the state specification at the largest space and
time scales.

Simulation software, either open source or commercial, is now widely available. For many
applications such as weather or oil reservoir forecasting, the effort needed to write software can be
of the order of a hundred person-years. However, the value of such software to the economy arises
more from the value to users, through forecasting, system optimization and decision-making,
than from the immediate value from licensing or selling the simulation software. Experience has
shown that advances in numerical simulation are as much down to improvements in algorithms
as to improvements in computer technology.

3. Forecasting
In the special case of deterministic forecasting, when we know the initial state vector for a forward
model in its entirety and the model is deterministic, a computer can calculate a unique update of
the state at each time step to provide a forecast.

However, in most applications, we do not know the initial state vector and, in many
applications, the model is also sometimes stochastic. Since the presence of stochastic parameters
in the forward model and the absence of knowledge of the initial state are both instances of
not knowing something we are concerned in general with probabilistic forecasting, which we
now discuss.

If the initial state of a system is not known, we collect all the relevant information in
order to build a probability density function—called our prior density—that summarizes our
initial knowledge. We could, for example, assume that knowledge of one particular component
is independent from all the other components. Then our uncertainty as to the value of that
component could be summarized by assigning a mean and a variance to quantify our degree of
certainty regarding the mean. The Gaussian density function with its familiar bell-shaped graph is
a useful and common starting assumption, and the joint density for the entire state vector would
then be given as a product of the Gaussian densities for the individual components. In a more
general case, we might believe there to be correlations between the components. To model this,
we could assign cross-covariances to build a multivariate Gaussian density.2

An important property of the Gaussian density is that its maximum value occurs when the
state is equal to the mean state. Another property is that the covariance matrix of the Gaussian

1This is the subject known variously as homogenization, upscaling or parametrization [3–6].

2When we believe that densities are not Gaussian, one approach is to transform our state components and characterize them
as functions of some other state vector that does have a Gaussian probability density.
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density is the inverse of the matrix of the second derivatives of its negative logarithm. These two
properties play a key role in the next stage of the workflow, as described later on.

If we wish to forecast from an initial state prescribed by a prior density, rather than a particular
state vector, we might try to forecast using the mean state of the prior as a starting state and if
the model is stochastic setting the stochastic parameters to their mean values. This is possible,
but, except in the special case that the forward model is linear, it is not a good idea, as when
we make a forecast we want to know the mean state of the future and not the future of the
system starting at the mean state. A better approach is to sample from the prior density, and
use a large ensemble of different state vectors for the initial conditions. Most sampling algorithms
will ensure that each state in the ensemble is selected with equal probability and so the future
ensemble constructed by processing each ensemble member using our simulator will again have
states with equal probability. We can then compute the mean and variance of the future ensemble
and so obtain approximate forecast statistics. The forecast will have a sampling error that could
be reduced by increasing the size of the ensemble.

It is possible to estimate the probability density of a state given an ensemble of states with
prescribed probabilities in a process called density estimation [7]. Such estimated densities will
often be in the form of a weighted sum of Gaussian densities, in general multivariate. Each
ensemble member becomes the mean of a contribution to the Gaussian sum and some appropriate
covariance matrix, such as a diagonal matrix, is needed for each contribution. As the number
of ensemble members is increased and the covariance matrices have decreasing variance the
estimated density is a systematic approximation to the original density from which the ensemble
has been drawn [7].

In turn, the ensemble of states can be used to produce an ensemble of forecasts of the
observations to be made. This can be done by using a forward model of the measuring apparatus
to calculate a vector of predicted observations for each state in the ensemble. Again, this
ensemble can be used to construct a joint probability density for the vector of observations. This
construction of a probability density is essential in the next step where the forecasts are evaluated
for accuracy. Note that we can make probabilistic forecasts of any combination of state vector
components and observations, but it is only the forecasts of the observations themselves that can
be tested against reality.

4. Forecast evaluation
An interesting question now arises. If an ensemble of forecasts has been made, and one or two of
the forecasts turn out to have been accurate (when compared with the actual observations as they
become available) and the rest of the ensemble made mediocre forecasts, was the ensemble good
or bad as a forecast? A literature has grown around this question and there are many methods
of scoring a forecast. An example of such a scoring method, for a probabilistic forecast, is to first
of all perform density estimation to recover a forecast probability density for the observations
from the ensemble. The logarithmic score is then given by the negative logarithm of the density
evaluated using the observation values. The smaller the logarithmic score, the more accurate is
the forecast. By accumulating a sum of such scores over a sequence of time steps, we can compare
one forecasting system with another, using the same observation values. The difference in scores
can then be used to indicate which models and priors provide the best forecasts.

A detailed discussion of such scoring has been given in the edited volume of Jolliffe &
Stephenson [8]. An extensive investigation into forecast evaluation, in the context of insurance
pricing, has been undertaken by Maynard [9], who suggests that several different types of score
should be used together when assessing the fidelity of probabilistic forecasts.

5. Observations and data assimilation
Once a forecast has been made and scored, we are in a position to assimilate the data from
the latest observations by updating our probabilities for each ensemble member before moving
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to the next forecast. The terminology in this subject is not standardized, and, in this paper,
we use the term uncertainty quantification for the whole process of (i) making a probabilistic
forecast, (ii) scoring or evaluating a forecast, and (iii) data assimilation. When we talk of ‘data
assimilation’ we mean the process of building and analysing the probability density of the states
given particular values of the observations.

(a) Making an observation
Measurement is rarely a simple matter of reading a number from a digital display. Indeed, many
measurements are indirect and can only be inferred where a mathematical model is available.
For example, if we are measuring the permeability or elasticity of rock, we need a model of the
measuring instrument and its interaction with the system under observation. Such measurements
are always affected by stochastic noise and so measurement models are inherently probabilistic.

In the following, the words ‘observation’ and ‘measurement’ are often synonymous. However,
there is sometimes a difference. In the usage followed here, an observation is always direct in
that it is the actual recording made by a measuring instrument. By contrast, a measurement,
as already indicated, can be indirect in that the numbers that are reported are the result of
an inference using an observation, and a model that relates the observation to the quantity to
be measured. In many cases such measurements are localized in space and time and can be
completely decoupled from the more general problem of measuring a state vector. An example of
this is provided by the measurement of the permeability of a porous material. The measurement
involves flowing a fluid through a sample of the material and observing the pressure drop for
a controlled flow rate. The permeability is then inferred using a simple formula derived from
combining the principle of mass conservation with Darcy’s law that relates the flow rate, the
pressure drop and the fluid viscosity. In turn, observation of the pressure drop or the flow rate
might involve a further layer of modelling and inference. We thus see a complicated process that
we usually ignore and take for granted. So, in the following we will use the words ‘observation’
and ‘measurement’ to mean much the same but bearing in mind the hidden depths of the
scientific process.

The measurement model can often be thought of as predicting a measurement value that is
a known function of the system state plus some stochastic noise with zero mean and known
variance. Thus, the measurement model provides the probability density of the observation
conditioned on a particular system state. However, only the probability density of the system
state is given and hence we need the joint probability density of the observation and state which
can be forecast by taking the product of the two densities.

Let us denote the vector of observations at time-n by sn. The observation is then a function,
h, of the state vector plus some random disturbance, ξn, of the form sn = h(ψn) + ξn, where ξn is
sampled from a density depending on some of the control variables. This can be summarized in
the formula π (sn |ψn), which can be read as the ‘probability density of the observation given the
state’. Once the observation has been made, the formula π (sn |ψn) reduces to just a function of
the state.

(b) A framework for data assimilation
Once we have chosen a forward model, an observation model and an initial probability density
for the state we can construct the most general statement of the outcome in the form of the joint
probability density of all of the states and all of the observations. This can then be reduced
by integrating over various choices of the states at different times to provide, for example, the
‘filtering density’, which is the probability density of the current state given all of the observations
up to and including those at the current time. Another density of interest is the ‘smoothing
density’, which is the probability density of some combination of past states (or even of particular
components of past states) depending upon all of the observations up to some time later than
the current time. The forecasting density, which we discussed in the previous section, is the
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probability density of a future state given observations up to some fixed past time. (In the earlier
discussion this past time was simply the initial time.)

We can summarize this using some notation, which makes the structures we are discussing
much easier to comprehend. The general expression for the joint density can be written as
π (ψ0:N , s0:M), where ψ0:N is the sequence of all the state vectors from time-0 to time-N and s0:M
is the sequence of the observations from time-0 to time-M.

By integration over all state vectors other than ψN one can find π (ψN , s0:M). When M = N we
have the filtering density, when M<N we have the forecasting density and when M>N we have
the smoothing density. For further discussion, see [10–12].

(c) Bayes’ theorem
The joint density of the observations and the states can be decomposed in two different ways.
These are:

(i) the probability density of the observations given the states, multiplied by the probability density
of the states, or

(ii) the probability density of the states given the observations, multiplied by the probability density
of the observations.

Bayes’ theorem [13] is the statement that these two decompositions are equal.
Thus, our general density function can be written in the two equivalent forms,

π (ψ0:N , s0:M) = π (s0:M |ψ0:N)π (ψ0:N)

= π (ψ0:N | s0:M)π (s0:M).

The first line of this equation is known from the forward model, the observation model and the
prior, but the second equation, in general, is not known directly because the term π (s0:M) is very
expensive to calculate.

Once we have made a measurement and know the values of the observations, Bayes’ theorem
enables us to calculate the posterior density, which is the probability density of the states given the
observations. The technical term likelihood is used for the function obtained by evaluating the
probability density of the observations given the state evaluated at the particular value of the
observations after they are known. Bayes’ theorem then reveals that the posterior probability
density of the states given the observations is proportional to the product of the likelihood
and the prior density.3 Thus, the consequence of Bayes’ theorem is that we can find, in
principle,

π (ψ0:N | s0:M) = π (s0:M |ψ0:N)π (ψ0:N)
π (s0:M)

.

There are methods, such as Markov chain Monte Carlo (MCMC) [16], for sampling from the
posterior, π (ψ0:N | s0:M), that avoid the need to calculate the term π (s0:M).

We emphasize that the application of Bayes’ theorem is not a way of extracting theories
or models from data: it is just a procedure for updating probability densities. As we have
indicated in the previous section, we need to perform forecast evaluation to quantify the fidelity of
models and probability densities. There is no systematic procedure for improving models. Indeed,
constructing models at the start of a project and then improving models as the need arises requires
imagination, experience, skill and collaboration.

3Bayes’ theorem leads to some surprising and counter-intuitive results. These often relate to asking questions about the
probability that something has happened given a related observation in the context of prior information. For example, the
base-rate fallacy [14] and the Monty Hall brain teaser [15].
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(d) Smoothing methods for data assimilation
The posterior density, as is apparent from the preceding discussion, is a very complicated
mathematical object. It depends on very many—perhaps millions—variables and parameters,
and in general has a very complicated shape with many local maxima. Thus, a summary of
the information encapsulated in the posterior density is required for conceptual and also for
computational reasons. These summaries are in the form of a deterministic summary given by, for
example, a state that is the position of a local maximum of the density, or a stochastic summary
given by an ensemble of samples.

(i) Deterministic summaries

The term mode is used to mean a local maximum of a probability density and the term objective
function is used to mean the negative logarithm of the density. In the case of the Gaussian density,
the mode is unique, a global maximum of the density and equal to the mean. If there is only one
mode, then we say that the density is mono-modal and the second derivatives of the objective
function give an estimate of the inverse of the covariance matrix. It turns out that it is practical for
us to compute the mode of a mono-modal density and also a local mode when there is more than
one mode. In general, there are many modes and this non-uniqueness needs to be quantified
and understood if data assimilation is to be useful in practice. The calculations involved in
finding modes of a density rely on efficient optimization methods such as the quasi-Newton
method [17] that only require the first-order gradient of the objective function with respect to the
states at each time. In practical problems where the state dimension is very large it is fortunately
feasible to compute gradients using a method known as the adjoint method, which uses a forward
run of the simulator, storing the state vectors at each time step, and a backwards in time run
of a related linear model that can be coded in an efficient way. The adjoint method enables
the computation of gradients with a small percentage overhead on a forward run and is one
of the most important numerical algorithms in applied mathematics [18]. Without the adjoint
method many methods for data assimilation (and, as we shall see, for making decisions) would
be infeasible.

For completeness let us note that the deterministic summary approach to data assimilation
is, in many cases, equivalent to the older method of regularized inverse problems as developed in
the applied mathematics literature [10]. The advantage of the Bayesian formulation is, however,
that there is a clear method—through summarizing prior knowledge in the prior density—for
deriving the regularization term that is, in fact, the negative logarithm of the prior density.

Once the mode has been computed we require at least an estimate of the diagonal terms in the
covariance matrix. These diagonal terms are the individual variances in the posterior density of
the initial state vector. Progress has been made [19] in finding approximate covariance matrices
but it would seem that the difficulty of this problem leads the majority of researchers to think that
ensemble methods are the way forward.

(ii) Ensemble summaries

The usual method for summarizing a density in statistics and theoretical physics is to draw an
ensemble of samples from the density using a controlled random walk in a method known as
MCMC [16]. In statistics, the models can be of low enough state dimension, and, in theoretical
physics, the models can be sufficiently simple (even though of very large dimension), for the
MCMC method to be practical. In most uncertainty quantification problems such as oil reservoir
data assimilation and weather data assimilation, MCMC is not practical unless a very good
starting state is available. This might be a state obtained using a conventional optimization
method, as used for deterministic summaries, but suitably roughened by adding random
disturbances in a controlled way to the observation values and the prior mean. This is the heuristic
method of maximum randomized likelihood [18], which in some applications might be adequate even
without the refinement of the rigorous MCMC method [20].
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(e) Sequential methods for data assimilation
If, at any time step, we have a representation of the latest probability density of the state given
all previous observations, our forward model enables us to find the forecast density for the
next observations, and the posterior density once the observations are made. In principle this
sequential update, which is called filtering, solves a central problem in uncertainty quantification.
When the forward model is linear, and the prior and all stochastic parameters have Gaussian
probability densities, filtering can be shown to generate a sequence of Gaussian probability
densities for the prior and posterior filtering densities at each stage of the sequence. This sequence,
which for the linear-Gaussian case is known as the Kalman filter, is of fundamental importance
to many disciplines. However, when the state dimension is very large, the covariance matrices
that are generated are dense matrices and cannot be stored without compression and loss of
information.

When the forward model is nonlinear the Kalman filter is not applicable, but heuristic
approximations based on linearization of the forward model can be used to generate various
versions of the extended Kalman filters [21]. Although these filters are sometimes useful, in general
they are unreliable and can be unstable in ways that are hard to understand and difficult to cure.
Thus, in recent years attention has turned to a class of methods that use an ensemble to represent
the probability densities. These methods go by the name of ensemble Kalman filters and have many
variants [21]. Most of the variants are heuristic but some are systematic [22]. The key ideas in
these methods are that (i) an ensemble of state vectors is available that can be used to find the
ensemble mean and the covariance of the probability density, (ii) the forward model can be used to
generate a forecast by updating each ensemble member over one time step, and (iii) the ensemble
covariance is used in a linear operation to adjust each ensemble member to better agree with the
latest observations.

Unfortunately, limitations in computer memory force ensemble methods to use ensembles that
are too small. As a result the ensemble estimates of the correlations between different components
of the state vector are in error. This then leads to the need for heuristic techniques to obtain
reasonable results, particularly for problems where large parts of the state vector (such as all of
the components of a particular physical type) are not observed. When the problem is largely one
of interpolation the method is quite useful, but in general ensemble Kalman filters are not reliable.
In particular, the changes made in adjusting the ensemble of states to agree with the observations
can generate artificial transients. Sometimes the transients lead to instability and destroy the
predictive skill of the forecast step and so destroy the value of the filter. Thus, much current
research aims to improve the situation in data assimilation. For example, into the use of sequential
ensemble methods for solving the smoothing formulation of the data assimilation problem [23].

(f) Hybrid sequential–smoothing methods
In practice, a hybrid method is used, sometimes called long-window 4D-Var. ‘Long-window’ refers
to a window of time that is chosen to be short enough that there are not too many observations
during the window, but long enough for the posterior density to be relatively insensitive to
approximations in the prior. ‘4D-Var’ refers to the use of an optimization method for finding a
mode of the density—sometimes called a variational (Var) method—in three-dimensional space
and one-dimensional time. The prior for each window is an approximation to the posterior at
the end of the previous window. By making the window long enough we can mitigate the effect
that the approximate ‘prior’ is not consistent with the observations used for the earlier windows.
This long-window method represents the state of the art in uncertainty quantification [24]. By
increasing the length of the window we obtain a systematic method that combines the virtues of
both sequential and smoothing approaches.

The modern literature on these hybrid methods demonstrates many incremental refinements
in our capacity to solve uncertainty quantification problems. However, there is still much room for
improvement, for example if the system is chaotic or has wave-like behaviour. Nevertheless, very
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high-dimensional uncertainty quantification problems are solved routinely, albeit approximately,
in a way consistent with Bayesian principles.

6. Decision and control in the presence of uncertainty

(a) Guidelines for stochastic control
In practical situations, our theoretical aim is to define policy as functions of the potentially
available observational data. Optimal decisions at a particular time are made by setting control
variables to the values of the control policies evaluated using the data. In the previous section
concerned with data assimilation, it was assumed that the observations had been designed and
made and that any control variables in the dynamical system had specified values. In this section,
we consider the problems of (a) how we choose the values of the controls for the target system
and also (b) how to control the observations. The control of the observations involves (i) when
and where to make measurements, (ii) what measurements to make, and (iii) the accuracy with
which to make the measurements.

As most practical applications involve elements of uncertainty, the problem of making optimal
decisions is mathematically equivalent to an application of stochastic control theory.4

To determine an optimal policy we first need to define a function that measures the cost, in
some sense, of implementing any given policy. This is another situation that calls for mathematical
modelling: in this case driven by economic and statistical theory. The simplest measure of cost is
to sum the costs over the time horizon of interest and then take the expectation value with respect
to the stochastic quantities in the dynamics, the observations and the policies. This particular
expected cost is a basic risk-neutral cost and from now on we will assume that minimization of
the total expected cost is the stochastic control problem to be solved.5 We note that the length
of the time horizon enables the decision-maker to balance short-term with long-term costs in a
principled manner and that the choice of time horizon is an important factor in decision-making.

Let us suppose that we have designed a sequence of control policies where each policy is
parametrized by a vector of policy parameters. Thus, the policy function will be a function of
the past observations and the policy parameters. We can then sample the initial system state,
the deterministic and stochastic parameters and the observation noise. If the policy is to be a
stochastic policy we also need to sample the probabilities inherent in the policy. Then, using
the forward models for the system and the observations we can, for any selection of policy
parameters, by taking an average over the ensemble of simulations compute the expected cost for
those policy parameters. Note that, in the cost at each time step, the cost of operating the system
and making observations can be included. The problem is then to choose the policy parameters
so that the total expected cost is a minimum. This last problem is a problem in the numerical
optimization of functions and we say a little more about this in the later section on optimizing
measurement costs.

When making a decision it is best to follow, as closely as is practical, the guidelines:

— build a mathematical model of your system;
— choose the cost function to be minimized;
— choose the control variables in the system;
— choose the control variables for the observations you are going to make;
— use uncertainty quantification to estimate a probability density for the current state of the

system;

4However, once again, terminology is not standard, and the terms sequential decision theory (statistics), dynamic programming
(operational research), reinforcement learning (artificial intelligence), real options theory (mathematical finance) and recursive
economics (economics) are used to refer to stochastic control. Powell [25] discusses the problem of terminology in some detail.
5In practice, economic considerations relating to risk-aversion or risk-seeking predispositions require the use of disutility
functions [26] rather than basic costs. Disutility functions are closely related to utility functions [27], of which there is much
discussion in the literature on how to decide which utility functions to use and how to include discounting in the total utility
[28,29].
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— use forecast evaluation to quantify the quality of your forward models and priors; in
particular, look at the probabilistic forecasts of the costs that are to be controlled and
evaluate the accuracy of the forecast of the cost;

— evaluate forecasting scores and control policies using a variety of forward models and
priors in an exercise of model comparison, criticism and sensitivity analysis [13];

— assume that the decisions to be made at each time step are values of functions—the
control policies—of the relevant observations at that time and perhaps some randomness
(if probabilistic policies are to be used);

— choose the control policies that minimize the expected value of the total cost; in many
cases, this can be done efficiently using the adjoint method [18]; and

— work on improving models and priors in the light of poor forecasting scores or undue
sensitivity to subjective judgements of probability.

Any control policy that gives us the minimum possible expected cost is said to be optimal
and any other policy that leads to a higher expected cost than the minimum possible is
said to be suboptimal. Each possible policy will have an associated expected cost, so the
above exercise provides a ranking of the policies from which we can select the best. It thus
follows that the forecasts only need to be accurate enough to provide a useful ranking of the
possible policies.

Of outstanding importance in the decision-making workflow is the need to use imagination
and research to explore the range of control options available and to assess the costs and
consequences of each option [30]. In many applications, our understanding of the system is
sparse, and so the critical aspects of the decision-making workflow are crucial.

In practice, however, the procedure presented above is exceedingly difficult to follow. There
are several obstacles arising from (i) the generally high dimension of the state vectors, (ii) the
difficulty of parametrizing the control policies so that the number of parameters is relatively
low, (iii) the enormous quantity of observational data, and (iv) the enormous computational task
of estimating the expected costs for a given set of policy parameters. It is thus necessary for
us to employ heuristics in computing the control policies just as in modelling and uncertainty
quantification. Nevertheless, when the guidelines are translated into mathematical notation
the statement of the problem is succinct and clear [31,32]. It is evident, even from the
informal description above, that there will be an enormous variety of different heuristics for
making sequential decisions. Stochastic control theory is a rigorous mathematical theory, but in
applications we need to explore the performance of various families of heuristics in choosing
an algorithm for a particular application. The literature on the topic of stochastic control is vast.
However, there are some key ideas that dominate, and in the remainder of this section we will
describe one such idea—that of stochastic model predictive control (SMPC)—that is beginning to
be used in large-scale engineering applications such as oil reservoir engineering. We believe that
methods such as SMPC have wide applicability and relevance.

(b) Stochastic closed-loop model predictive control
Suppose that we are part of the way into a project, having already made a sequence of decisions
concerning the control of system operation and the control of observations. Suppose, too, that a
complete record of all decisions and all observations has been kept. Then at the time we need to
make our next decision we:

— perform data assimilation to construct an ensemble of current states conditioned on the
past observations;

— use one of the many numerical optimization methods [17] to find a sequence of future
control values that finds a local minimum, or, even better, a global minimum of the total
expected cost;

— implement the first of the future control values in the real system, discarding all of the
subsequent control values;
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— observe the system as the next time step unfolds;
— evaluate the forecast of the observations; and
— repeat the process.

Note that, in the above, the control policies appear to be specific numerical values and not
functions as in the ideal workflow. However, since the process takes into account the history of the
past observations and decisions it is a feedback control policy in that the decisions are influenced by
observations as they occur. Such a policy is known as a closed-loop policy. In other words, contrary
to first appearances, we have computed the value of a policy function without having an explicit
formula for the policy. Such a procedure takes into account our uncertainty about the present state
and any uncertainty in the future evolution arising from uncertainty in the system. The method
is, however, suboptimal, as it does not provide a method for controlling the cost of the future
measurements.

For completeness, we remark that sometimes we might not discard all of the subsequent
control values and thus not need to repeat the process. We might simply implement the controls
that were calculated at the initial time. Such a policy, known as an open-loop policy, is far from
optimal and ignores the future observations. However, in order to save on computing costs we
might consider using a mix of open-loop and closed-loop policies. This is how a multitude of
different approaches can be developed such as the simplest heuristic of deterministic model
predictive control, where uncertainty is ignored and the above procedure is used with an
ensemble of just one state vector. The importance of computing such closed-loop policies is that
they respond to the actual observations as they arrive and provide a degree of robustness to mis-
specification of the forward model. Thus, the emphasis in the industrial mathematics workflow
should be more on the accuracy of the relative rankings of the costs associated with the different
policies than on the detailed accuracy of forecasts of the observations.

(c) Optimizing measurement costs
If we have implemented a closed-loop model predictive control system we still need to make
decisions about where and when to make observations. Suppose you have decided on a
particular control policy for such decisions. For example, you might decide to make more
observations or fewer observations depending upon the posterior variance of your ensemble.
Such control policies might even be parametrized and the problem is then generalized to include
the observation control policies in the list of optimal policies to be determined. For any particular
value of the policy parameters the total expected cost of such a policy can be estimated. This could
be done by (i) sampling from the prior and (ii) using that sample as the ‘truth’ in a numerical
experiment where the observations are made using the ‘truth’ state, updated using our forward
model. Such an experiment can be repeated several times with different samples of the ‘truth’.
One can then estimate the expected cost or even the probability density of the total cost of
operating that particular policy.

In principle, this approach can be used as the basis of an optimization procedure. In this
case, the optimization might be far too difficult even for the adjoint method. However, if the
number of parameters can be chosen to be quite small we can use the method, sometimes
known as the method of optimization of expensive functions6 [33,34]. Here one uses one more
outer loop of Bayesian decision-making in order to choose the optimal parameters for the actual
observation controls. Indeed, the approach can in principle be used for choosing any feedback
control policy for the observations and the system, provided that the number of parameters in
the feedback policy is not too large. This has not, as far as the author is aware, been exploited
but is a possible addition to heuristic methods such as SMPC, enabling one to optimize the
control of the observations. An important application of such ideas could be to the problem of
designing inspection schedules for risk-based asset management [35]. Indeed, this application is

6Also known as optimization using surrogates or optimization using emulators.
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one of several occurring in the area of uncertainty quantification and management in high-value
manufacturing, where all elements of the mathematical workflow are present.7

7. The oil industry
As a further illustration of the mathematical workflow in action, we again cite the example of the
oil industry [4]. Oil and gas exploration begins with seismic surveys where, for example, at sea a
seismic boat sends pulses of sound into the sea and recordings are made of the small fraction
of sound energy reflected from the rocks below the seabed. The first task is to unravel these
reflected sound vibrations into a three-dimensional map of the rock properties. This is the first of
the uncertainty quantification problems that must be solved. The state vector for the propagation
of elastic waves in the subsurface is the first part of the state vector that must be inferred. The
controls in seismic exploration include the choice of the initiating sound source and the source
location. The measuring instruments, in the seismic case the geophones attached to long streamers
at the stern of the seismic boat, number in the thousands and their location is determined from
satellite global positioning.

In this particular inverse problem, a mathematical model is needed that describes how sound
energy propagates. A candidate model would be the classical theory of elasticity as developed
by mathematicians in the eighteenth and nineteenth centuries. To a first approximation, the
classical wave equation can be used. Generalizations have been developed in which the effect
of fluid in the pores is also modelled. However, whichever model is used, the procedure is
that one postulates a description of the spatially varying rock properties and then one makes
a forecast of what would be observed by the geophones. This forecast requires the use of massive
computing power in which the seismic components of the state vector are adjusted in an iterative
process until reasonable agreement with observations is achieved. The catch though, as with most
inverse problems, is that there are many possible state vectors that predict the observations with
equal accuracy, as was discussed in the section on deterministic summaries of posterior densities.
Traditionally, and even in the current state of the art, only one state vector is found. However,
there is a growing realization that more needs to be done in quantifying the uncertainty in the
seismic state by building an ensemble of possible state vectors [20,36] for input to other stages of
the workflow.

Given one or more solutions to the seismic inversion problem, the interpretation of the
state vectors requires the knowledge of petroleum geologists and reservoir engineers to identify
volumes that might contain commercial quantities of hydrocarbons.

The most basic recovery technology—known as primary recovery—involves wells from which
fluid can flow under the natural pressure in the reservoir. However, this is not an efficient recovery
method if the aim is to recover as much hydrocarbon as economically viable. In secondary recovery,
water or gas is injected in some wells, and the hydrocarbons are pushed towards other wells, the
production wells. This process maintains the reservoir pressure serving to (i) control the physical
chemistry of the reservoir fluids and (ii) prevent subsidence of the seabed. Tertiary recovery
techniques involve more exotic injection fluids such as surfactants, but these are not economic
unless the oil price on world markets is at a high level.

Once the decision is made to develop a field, the first well might be positioned to intersect
the largest connected volume of hydrocarbon so that some initial high production is possible
with potential to offset the huge costs already incurred in the oilfield development. Even while
drilling a well, many measurements of the rock properties are possible. After drilling, even more
measurements are possible, and if you can imagine a physical property, then the chances are that
it can be measured. This is the fascinating subject of well logging [37], which is a major industry
in its own right. Electrical, nuclear and direct fluid mechanical measurements are routine. Also
sampling of rock and fluids is possible even at depths of kilometres. Each type of measurement

7See the Uncertainty Quantification and Management Special Interest Group website (https://www.ktn-uk.co.uk/
interests/uncertainty-quantification-and-management).

https://www.ktn-uk.co.uk/interests/uncertainty-quantification-and-management
https://www.ktn-uk.co.uk/interests/uncertainty-quantification-and-management
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requires a mathematical model and some level of data assimilation. Once again mathematical
theory is an essential component of the workflow and the key to integrating multiple types of
measurement into a coherent whole for application in later decision-making. After some flow
in the wells is established, even more observations become available to be used in updating the
relevant components in the state vectors [18].

An oilfield-operating consortium has to decide on the position and well trajectories for
perhaps hundreds of wells over the life of an oilfield. This is a demanding example of a
decision and control problem where until recently the deterministic model predictive control
approach held sway. There is now more interest in SMPC [38]. The application of stochastic
control theory enables oil companies to balance short-term income against long-term income
while allowing for uncertainty. Indeed, by injecting water into a reservoir at higher rates, short-
term oil production can be increased, but this leads to lower than optimal recovery factors
as a result of earlier breakthrough of water in the production wells. This in turn means that
more drilling or more water injection over a longer period of time is needed to generate
the same total recovery that would have pertained had the earlier rate of recovery been
lower. This is of importance to the oil companies and perhaps of even more importance to
governments that wish to encourage oil companies to maximize the total recovery of oil from
an oilfield.

8. Conclusion
Now we know how mathematics is used, in general, and in the particular example of oilfield
management, we can see how the same ideas, albeit with differences of emphasis, occur in many
domains. One might speculate that mathematics has a role in any policy-making where numerical
quantification has been or should be used.

For example, in the practice of weather forecasting there are many sources of data, ranging
from satellite-based measurements, balloons, rockets, ground-based observations, ship-based
observations and floats in the oceans. Weather forecasting has driven the very idea of simulation
[39,40], a drive that continues to this day. Inverse problems have always been of central
concern [41] and the topic of forecast evaluation had its origins in weather forecasting. The topic
of decision and control is less prominent although the problem of choosing the density and/or
frequency of measurements has been studied [42,43].

The methods of precision agriculture where science and mathematics play a central role
in agricultural management are of increasing interest [44,45]. The problems where remote
measurements are made from instruments carried by drones, samples are taken from the
fields, simulators of crop growth are constructed and stochastic control problems about crop
rotation and the application of fertilizers and pesticides are solved are very similar to problems
encountered in oil recovery.

As a final example, we mention the topic of revenue management where the language of the
modelling is so different from that of oil recovery or agriculture. However, the mathematics
induces a one-to-one correspondence between any two of the different areas. In revenue
management, where the problem is to devise a control policy for setting prices and other control
variables in the sales process, we again see most of the different topics of modelling, forecasting
and control from the industrial mathematics workflow [46]. A specific example is that of how to
reduce prices when selling surplus inventory—sometimes called the ‘markdown problem’ [47].

One might suggest that, when a particular topic from the ideal mathematical workflow is
lacking development or exploitation in a particular domain, it is a signal for further investment
to strengthen that topic within the domain.

Mathematics is one of many factors in the provision of goods and services. Mathematics has
an irreplaceable role in the economy, where its value is partly from the software and services it
provides but is mainly from the added value to those industries that make use of such software
and services. Perhaps, too, mathematics as a key ingredient in decision-making has potential that
is yet to be fully exploited.
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In the previous sections, we have reviewed some of the background for concluding that

— Effective simulation needs mathematics. Making decisions and choosing control policies is
central to economic activity. Simulation plays an essential role in evaluating the effect
of choosing particular options, and mathematics is at the heart of useful and practical
simulation.

— Knowing the ideas of statistical decision theory is empowering. Everyone involved in decision-
making and in supporting decision-making should be aware of the basic principles
of uncertainty quantification and optimal decision-making. Knowledge of engineering
control theory is valuable too. Models and forecasts only need to be good enough for us
to rank our options. That is, we should emphasize policy evaluation rather than forecast
evaluation.

— Collaboration is essential. The formulation and solution of problems requires experience
and knowledge of several domains. By working collectively, through mechanisms such
as study groups8 and workshops [48], where particular practical problems are the focus,
we can benefit from the skills of others, and gain encouragement to develop our own
skills and knowledge.
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