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ORIGINAL ARTICLE

Assessing the presence of shared genetic architecture between
Alzheimer’s disease and major depressive disorder using

genome-wide association data

J Gibson', TC Russ'*3*, MJ Adams’, T-K Clarke', DM Howard', LS Hall', AM Fernandez-Pujals', EM Wigmore', C Hayward®, G Davies*®,
AD Murray’, BH Smith®, DJ Porteous®>, 1) Deary*® and AM McIntosh'*

Major depressive disorder (MDD) and Alzheimer’s disease (AD) are both common in older age and frequently co-occur. Numerous
phenotypic studies based on clinical diagnoses suggest that a history of depression increases risk of subsequent AD, although the
basis of this relationship is uncertain. Both illnesses are polygenic, and shared genetic risk factors could explain some of the
observed association. We used genotype data to test whether MDD and AD have an overlapping polygenic architecture in two
large population-based cohorts, Generation Scotland’s Scottish Family Health Study (GS:SFHS; N=19 889) and UK Biobank
(N=25 118), and whether age of depression onset influences any relationship. Using two complementary techniques, we found no
evidence that the disorders are influenced by common genetic variants. Using linkage disequilibrium score regression with
genome-wide association study (GWAS) summary statistics from the International Genomics of Alzheimer's Project, we report no
significant genetic correlation between AD and MDD (rg=-0.103, P=0.59). Polygenic risk scores (PRS) generated using summary
data from International Genomics of Alzheimer's Project (IGAP) and the Psychiatric Genomics Consortium were used to assess
potential pleiotropy between the disorders. PRS for MDD were nominally associated with participant-recalled AD family history in
GS:SFHS, although this association did not survive multiple comparison testing. AD PRS were not associated with depression status
or late-onset depression, and a survival analysis showed no association between age of depression onset and genetic risk for AD.
This study found no evidence to support a common polygenic structure for AD and MDD, suggesting that the comorbidity of these

disorders is not explained by common genetic variants.
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INTRODUCTION

Major depressive disorder (MDD) and Alzheimer’s disease (AD) are
among the leading causes of disability worldwide, affecting an
estimated 350 million and 44 million people respectively.'? They
are both common conditions in older age and are frequently
comorbid;®> however, their inter-relationship is complex and not
well understood. Depression may be a risk factor for dementia, or
part of the dementia prodrome,*” even when preceding dementia
onset by over 10 years.>’” Prior depression has been found to be
associated with increased risk of AD,%° with depressed patients 1.5
times as likely to develop AD." However, while this association
has been replicated in some studies®'"'? others find no
association,”'* or an association only in selected subgroups,
such as late-life depression.”"”

Both AD and MDD are influenced by genetic factors,
however few studies have examined the genetic overlap between
these illnesses. Candidate gene and genome-wide association
studies (GWAS) of AD have identified a number of variants
associated with risk of developing late-onset AD, which accounts
for over 95% of AD cases.’*?' Common single-nucleotide
polymorphisms (SNPs) explain 33% of the total phenotypic
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variance, with the strongest genetic risk factor being the APOE €4
allele®> MDD is a complex and phenotypically heterogeneous
disorder, influenced by both genetic and environmental factors.
GWAS of MDD have had limited success in identifying individual
causal variants, probably due to underpowered samples and disease
heterogeneity; however, two studies have identified some depres-
sion risk loci exceeding genome-wide significance.”*** Depression
has a polygenic pattern of inheritance, with common variants
estimated to explain 21% of the total phenotypic variance.?®
Shared genetic risk factors could explain some of the observed
association between these disorders. A number of studies
have suggested that the known AD risk genes APOE and CR1
are also associated with MDD,?*™?° although these were candi-
date gene studies with small sample sizes, and the findings
were inconsistent>®' However, both disorders are highly
polygenic,'®'® and any genetic overlap could extend well beyond
a few individual genes, although there is little evidence of this to
date. A recent study estimating genetic correlations between a
number of common disorders found no overlap in the genes
associated with MDD and AD.3? An analysis investigating
differences in shared genetic risk between early- and later-onset
MDD with frequently comorbid conditions also found no
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association between these disorders.>®* Here we sought to expand
on this work, investigating potential polygenic associations in two
large population cohorts, considering whether genetic risk for
depression is associated with having a family history of
Alzheimer’s disease, and focusing on whether age of depression
onset influences any relationship.

This study uses GWAS summary data and two complementary
techniques, linkage disequilibrium (LD) score regression and
polygenic profile scoring, to assess whether MDD and AD have
an overlapping polygenic architecture in two large, independent
UK-based population cohorts. These techniques are reliant on
different metrics for assessing pleiotropy between traits, although
both depend on the analyzed trait being polygenic in nature, with
many genetic variants of individually small effect contributing to
the overall phenotypic variation.

LD score regression*>** involves regressing summary statistics
from many genetic variants onto their ‘LD score’—a measure of
each variant's ability to tag local variants. For genetically influenced
traits, variants with higher LD scores are more likely to tag causal
variants and thus have higher test statistics on average than variants
with low LD scores. This can be distinguished from inflation of test
statistics due to population stratification and cryptic relatedness, as
inflation resulting from LD drops off in a predictable manner as LD
decreases, whereas that due to confounding does not. Thus the
level of polygenicity between traits can be quantified, and the size
and significance of genetic correlation estimated.

To test the extent to which shared genetic architecture is predic-
tive of phenotypic variation in the samples on an individual subject
basis, GWAS summary data can be used to calculate polygenic risk
scores (PRS) for the traits under investigation. Association test
statistics for each SNP in a ‘training’ data set are used to weight
alleles according to their association with disease risk, then these
weightings are applied to genotypes in an independent data set to
compute aggregate genomic PRS for each individual.3> Scores are
assessed for their association with case versus control status, and
PRS predictive of the trait can then be compared against observed
phenotypes in individuals from that sample.

A high genetic correlation between MDD and AD, or a
significant association between PRS for one disorder and case—
control status of the other, would provide evidence that the two
disorders may be influenced by overlapping genetic factors.

MATERIALS AND METHODS
Sample descriptions

This study used data from two large UK cohorts not previously utilized in
large-scale consortia studies of MDD and AD: Generation Scotland's
Scottish Family Health Study (GS:SFHS) and UK Biobank (UKB). These
studies were approved by the relevant research ethics committees; the
NHS Tayside Committee on Medical Research Ethics (Reference 05/
$1401/89) for GS:SFHS, and the North West Multicentre Research Ethics
Committee (Reference 11/NW/0382) for UKB. All individuals provided
written informed consent.

Generation Scotland: Scottish Family Health Study. GS:SFHS is a family- and
population-based cohort recruited through general medical practices
across Scotland; the recruitment protocol and sample characteristics are
described elsewhere.3%37 In brief, the cohort consists of 23 960 individuals
aged between 18 and 98 years, recruited if they had at least one other
family member willing to participate. Pedigree information was available
for all participants, detailed sociodemographic and clinical data were
collected, and biological samples were taken for DNA extraction and
genotyping. MDD status was determined by a screening questionnaire
followed by the Structured Clinical Interview for the Diagnostic and
Statistical Manual of Mental Disorders (SCID)*® for those who screened
positive. Individuals diagnosed with bipolar disorder were excluded from
this analysis.

UK Biobank. UKB is a health research resource, the sample characteristics
of which are described elsewhere 3% Briefly, this cohort consists of more
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than 500 000 individuals aged between 40 and 69 years, recruited from
across the UK. Detailed sociodemographic data were collected, extensive
baseline medical assessments carried out, and biological samples were
taken for DNA extraction and genotyping. The depression phenotype was
based on the putative definition of MDD established by Smith et al,*'
using responses to a touchscreen questionnaire, self-reported information,
and linked electronic health records. Exclusions were made based on
potentially confounding psychiatric disorders, related individuals in the
sample, and inclusion in the GS:SFHS sample.

Further information on sample collection, DNA extraction, genotyping,
quality control, and assessment of depression phenotype, for both
samples, are provided in the Supplementary Materials.

Polygenic risk scores for AD and MDD profiling

PRS for MDD and AD were created for all individuals with genotype data,
incorporating all autosomal SNPs which passed quality control (see
Supplementary Information for quality control parameters). PRS for AD
were estimated using summary statistics from an independent GWAS of
AD (17 008 AD cases, 37 154 controls), conducted by the International
Genomics of Alzheimer's Project (IGAP).'® PRS for MDD were created using
summary statistics from an independent GWAS data set from the Major
Depressive Disorder working group of the Psychiatric Genomics Con-
sortium (9240 MDD cases, 9519 controls).'® PRS were estimated using the
PRSice software package, according to previously described protocols,*?
with LD threshold and distance threshold for clumping of 0.2 and 300 kb
respectively. Five scores were created for each individual, using SNPs
selected according to the significance of their association with the
phenotype in the discovery GWAS, at nominal P-value thresholds of 0.01,
0.05, 0.1, 0.5 and 1.0 (all SNPs).

Any individuals overlapping with the Psychiatric Genomics Consortium
MDD GWAS sample were excluded from the study samples. Only GWAS
summary data, not full genotypes, were available for the IGAP sample, thus
we were unable to exclude the possibility of overlap between this sample
and our study samples. However, as most IGAP participants were not from
the UK,'® any overlap is likely to be very small.

Statistical analysis

Two separate techniques were used to look for evidence of shared genetic
architecture: LD score regression; and polygenic risk score analysis. PRS
were also used to assess whether genetic risk for AD is associated with
depression age of onset (AOO), or with ‘early-onset’ or ‘late-onset’
depression, via survival analyses and sub-setting the data by AOO.

Power calculations were implemented in AVENGEME, following the
method outlined by Palla and Dudbridge.”*** The proportions of trait
variance explained by SNPs on common GWAS arrays were taken from
published sources, 0.21 for MDD?* and 0.33 for AD.*> We assumed an
additive genetic covariance between the MDD training and target samples
of 0.15 (likely a conservative estimate, given Palla and Dudbridge’s
covariance estimates for MDD-bipolar disorder and MDD-schizophrenia of
0.13 and 0.17, respectively*®), and between MDD and AD of 0.05. The
proportion of null markers was estimated by summing the excess of SNPs
with lower than expected P-values under the assumption that P-values
have a uniform distribution.

Linkage disequilibrium score regression. Cross-trait LD score regression was
used to assess for any overlap in genetic architecture between MDD and
AD. The method was applied to data from GWAS analyses of MDD in the
study samples (GS:SFHS: N=19 809, 2648 cases, sample prevalence 13.4%,
UKB: N=24 048, 8152 cases, sample prevalence 33.9%), and summary
statistics from the AD GWAS by IGAP (sample prevalence 31.4%). As there
were only 26 self-reported AD cases in GS:SFHS, and five cases in UKB,
based on a combination of self-reported data and ICD diagnoses, we were
unable to perform GWAS of AD in these samples. We followed the protocol
outlined by Bulik-Sullivan et al;** full details of the methodology are
provided in the Supplementary Materials. Following diagnostic checks, the
GS:SFHS MDD data were found to have insufficient evidence of a clear
polygenic signal and was excluded from further LD score regression
analysis. LD score output was converted from the observed scale to the
liability scale by supplying sample and population prevalence estimates for
each trait (taken as 1.3% for AD? and 19% for depression®®); the different
MDD prevalence estimates in the GS:SFHS and UKB samples did not
substantially affect the correlation estimates.



Polygenic risk score analysis. PRS for MDD were assessed for their
association with depression case—control status. Corresponding analysis
was not possible for AD as the study sample age ranges did not include the
demographic group where AD is most prevalent, resulting in too few cases.
However, a proxy AD status was determined based on having a self-
reported positive family history of AD (father, mother, sibling or grand-
parent for GS:SFHS, N=3116; father, mother or sibling for UKB, N=4149).
After testing the prediction accuracy of AD PRS with the AD family history
variable in the full samples, this analysis was repeated on a sub-sample of
unrelated GS:SFHS participants, to ensure results were not confounded by
family structure. We then tested for associations between polygenic risk for
AD and MDD status, and between MDD PRS and AD family history. To
ensure that any genetic correlation between AD and MDD PRS was not
driven by a single locus, the analysis was repeated using MDD PRS
recalculated with a 1000 kb region centered on the APOE locus removed.

For GS:SFHS, generalized linear mixed models were implemented in the
ASReml-R (version 3.2.1) software package (www.vsni.co.uk/software/
asreml) in R, with MDD or AD family history status as the dependent
variable and PRS for MDD or AD, scaled to have a mean of 0 and standard
deviation of 1, fitted as the predictor variable. Sex, age, age2 and the first
four principal components from an ancestry-informative PC analysis were
fitted as covariates in all GS:SFHS analyses. As this cohort is family-based,
relatedness in the sample was controlled for by using pedigree kinship
information to fit an additive genetic relationship matrix as a random
effect. The dependent variable was a binary disease status, so a Taylor
series approximation was used to transform the fixed effects and standard
errors from the linear scale to the liability scale, according to previously
described methods.*® The significance of the PRS in predicting disease
outcome was estimated by the Wald F-statistic, conditional on the other
fixed and random effects. Significant effects are reported where they
survived Bonferroni correction for multiple testing, applied over the five
thresholds.

The UKB sample consisted of unrelated individuals, so logistic regression
was performed using generalized linear models in R, using a logit link
function to account for the binary response variable. Fifteen principal
components from a PC analysis, sex, age and age® were fitted as covariates
for all UKB analyses.

Age of depression onset. If late-life depression is an early indicator of
dementia, then genetic risk for AD could be related to age of depression
onset, such that individuals who become depressed later in life have
higher genetic risk of developing AD. We tested this theory via two
different approaches: MDD survival analysis and sub-setting the data by
depression AOO. While almost all MDD cases in GS:SFHS (97.2%) include
AOO data, equivalent data for the UKB sample was largely unavailable,
with only a small proportion (22.7%) of MDD cases providing self-reported
age of diagnosis information. In addition, the mean diagnosis age for UKB
was 42 years, significantly older than the typically reported mean AOO for
depression;*° this is likely due to the amount of missing data. Despite the
shortcomings of this variable, we decided to proceed with the age of onset
analysis in this sample, to replicate any findings in the better-informed GS:
SFHS analysis, but keeping these limitations in mind when interpreting
results.

We first conducted survival analyses using right censored data in Cox
proportional hazards models. MDD cases had age of depression onset (GS:
SFHS) or diagnosis (UKB) as the event time, while individuals without
depression had age at assessment as the censoring time. For GS:SFHS, the
unrelated sample was used in the survival analysis; 6932 individuals were
included, with 961 events. For UKB, the sample size was 18 063, with 2075
events.

We then investigated whether differences in shared genetic risk exist
between early- and later-onset MDD with AD. AD PRS were tested for
association with early-onset and late-onset MDD, where early- and late-
onset were defined firstly by using the first and last quartiles of AOO, and
secondly using subsets of MDD cases experiencing their first depressive
episode before or after the age of 40 years. While not ideal for isolating
‘late-onset’ cases, this age threshold has previously been used,*>' and is
certainly above the typical onset age for depression.”® In this instance, it
also maximized the number of late-onset cases; using a later cutoff, for
example, over 60 years, while more likely to reflect true late-onset
depression, reduced the number of late-onset cases (GS:SFHS N=22, UKB
N=132) below that required for adequately powered analysis. The late-
onset analysis was restricted to only participants over 40 years old.
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RESULTS

For the current study, the GS:SFHS sample consisted of 19 889
individuals (58.9% female, mean age 47.4 years, s.d.=15.0) for
whom both phenotype and genetic data were available. Of these,
2 654 (13.3%) had a lifetime diagnosis of MDD, with mean (s.d.)
age of onset 32.0 (13.0) years, and 17 235 (86.7%) were controls.
The UKB sample used here consisted of 25 118 individuals (50.3%
female, mean age 57.2 years, s.d.=7.9) with the relevant
phenotype and genetic data. Of these, 9130 (36.4%) were
assigned case status and 15988 (63.6%) were designated as
controls. The high prevalence of MDD in this sample is due to the
exclusion of large numbers of controls, owing to incomplete and
the missing data, and a lower threshold for case definition.*’ Two
thousand sevent five of the MDD cases had the data on self-
reported age of depression diagnosis, with the mean (s.d.)
diagnosis age being 42.1 (13.2) years.

LD score regression

Diagnostic tests on the AD summary statistics from IGAP, and
MDD GWAS summary statistics from the two study samples gave
mean x? estimates of 1.114 for the AD data and 1.046 for UKB
MDD data, indicating suitability for carrying out LD score
regression. However, a mean x* of 1.015 for GS:SFHS MDD data
indicated that these data were not suitable for this technique,
owing to limited polygenic signal for MDD in the sample. The
estimate of genetic correlation between the IGAP AD data and
UKB MDD data was not significantly different from zero (rg=
—0.103 (0.190), Z-score =—0.540, P-value =0.589), indicating little
overlap in their genetic architecture.

Polygenic risk score analysis

MDD PRS were positively associated with lifetime history of MDD
at all P-value thresholds in both samples; this association was
statistically significant at all thresholds in UKB, and four out of five
thresholds in GS:SFHS (Supplementary Table 1). All significant
results survived Bonferroni correction for multiple testing. The
non-significant association at the P<0.01 threshold in GS:SFHS
may reflect the reduced power at this threshold (41% power using
the parameter estimates outlined in the methods, compared to
76-98% power for the other P-value thresholds). The larger UKB
sample, with a higher prevalence of depression, had over 90%
power at all thresholds. Individuals carrying more MDD risk alleles
were significantly more likely to have a lifetime MDD diagnosis.
The greatest proportion of variance explained () was using a
P-value threshold of P< 1.0 (all SNPs) for both samples, although
in both cases this was less than 1% (GS:SFHS: z3=0.086 (0.045,
0.128), P=524x10">, r*=859x10"% UKB: zB=0.073 (0.046,
0.100), P=1.01x1077, #=892x10"%).

AD PRS showed a statistically significant positive association
with AD family history at all P-value thresholds in GS:SFHS (both
full sample and the subset of unrelated individuals) and UKB, with
all results surviving multiple testing correction (Supplementary
Table 2). Individuals carrying more AD risk alleles were more likely
to have a family member with AD. The greatest amount of
variance explained was using a P-value threshold of P<0.01 (GS:
SFHS full sample: zB=0.078 (0.041, 0.116), P=4.38x10"°,
P=127x10"3, UKB: z8=0.118 (0.084, 0.052), P=7.03x 10" '3,
?=2.15%10"3). However, we were unable to be certain that the
IGAP training sample and the two study samples were completely
independent, so the possibility remains that this effect may be
inflated if there is sample overlap.

PRS for MDD were positively associated with AD family history
in GS:SFHS; the association was nominally significant at three
P-value thresholds, although these did not survive multiple
testing correction (Table 1). The strongest association was found
using a P-value threshold of P<0.05, (z3=0.048 (0.009, 0.086),

Translational Psychiatry (2017), 1-8


www.vsni.co.uk/software/asreml
www.vsni.co.uk/software/asreml

Alzheimer's disease and major depressive disorder
J Gibson et al

Table 1. Associations between polygenic risk scores for MDD and family history of AD at five different P-value thresholds in the GS:SFHS and UKB
samples
MDD PGRS P-value threshold GS:SFHS UKB
Beta 95% CI P-value® Beta 95% CI P-value®
<0.01 0.023 —0.016, 0.062 255%x107" 0.003 —0.031, 0.036 8.83x107"
<0.05 0.048 0.009, 0.086 1.55x 102 0.000 —0.034, 0.034 9.86x 10"
<0.10 0.037 —-0.001, 0.076 6.04x10°2 0.010 —0.024, 0.044 559x107"
<0.50 0.040 0.002, 0.079 417%x10°2 0.017 —0.017, 0.051 330x107"
<1.00 0.039 0.000, 0.077 499%10°2 0.016 —-0.019, 0.050 3.66x 107"

correction for multiple testing.

Abbreviations: AD, Alzheimer’s disease; Cl, confidence interval; GS:SFHS, Generation Scotland's Scottish Family Health Study; MDD, major depressive disorder;
PGRS, polygenic risk scores; UKB, UK Biobank. ?P-values shown are uncorrected for multiple testing. None of the significant P-values shown survived Bonferroni

Table 2.
and UKB samples

Associations between polygenic risk scores for Alzheimer's disease and depression status at five different P-value thresholds in the GS:SFHS

AD PGRS P-value threshold GS:SFHS UKB

Beta 95% Cl P-value® Beta 95% Cl P-value®
<0.01 -0.012 —0.056, 0.031 5.84x 107" 0.025 —0.002, 0.051 6.64x 1072
<0.05 0.006 —0.037, 0.049 7.73x107" 0.015 —0.012, 0.041 277%107"
<0.10 0.009 —0.034, 0.052 6.92x 107" 0.022 —0.004, 0.049 9.60x 1072
<0.50 -0.010 —0.053, 0.033 6.62x 107" 0.011 -0.015, 0.038 3.96x 107"
<1.00 —0.011 —0.054, 0.032 6.30x107" 0.009 —-0.017, 0.036 486%107"

UK Biobank. ?P-values shown are uncorrected for multiple testing.

Abbreviations: AD, Alzheimer’s disease; Cl, confidence interval; GS:SFHS, Generation Scotland's Scottish Family Health Study; PGRS, polygenic risk scores; UKB,

Table 3.
hazards model. Results are shown at five different P-value thresholds

Survival analysis for age of depression onset (GS:SFHS) or diagnosis (UKB) and polygenic risk for Alzheimer's disease, from Cox proportional

AD PGRS P-value threshold GS:SFHS UKB

Hazard ratio 95% ClI P-value® Hazard ratio 95% Cl P-value®
<0.01 0.999 0.938, 1.063 9.75x 107" 1.014 0.972, 1.058 523x107"
<0.05 0.992 0.931, 1.056 791x107" 0.984 0.943, 1.028 473%x107"
<0.10 0.986 0.926, 1.049 6.49%107" 0.994 0.952, 1.037 7.70x 107"
<0.50 0.976 0.917, 1.038 439%107" 0.988 0.947, 1.032 591x107"
<1.00 0.969 0.910, 1.031 3.15x107" 0.986 0.945, 1.030 533x 107"

UK Biobank. #P-values shown are uncorrected for multiple testing.

Abbreviations: AD, Alzheimer’s disease; Cl, confidence interval; GS:SFHS, Generation Scotland's Scottish Family Health Study; PGRS, polygenic risk scores; UKB,

P=1.55x10"2). Repeating this analysis using MDD PRS with the
APOE region excluded produced similar results (Supplementary
Table 3). However, this association was not observed in UKB,
where MDD PRS were not associated at even nominal levels with
AD family history (Table 1).

Polygenic risk for AD was not associated with MDD status at
even nominal levels of significance at any P-value threshold in
either sample (Table 2).

Age of depression onset analysis

Survival analysis using Cox proportional hazards models indicated
that PRS for AD were not associated with age of depression onset/
diagnosis at any P-value threshold in either study sample (Table 3),
suggesting that genetic risk for AD does not influence the time to
development of depression.
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Sub-setting the data to consider associations between AD PRS
and early-onset or late-onset depression, where 'early-onset' was
defined as either the first quartile of AOO (GS:SFHS: 585 cases,
17 235 controls, UKB: 508 cases, 15 988 controls) or as depression
onset under the age of 40 years (GS:SFHS: 1933 cases, 17 235
controls, UKB: 817 cases, 15988 controls), and 'late-onset' was
defined as either the fourth quartile of AOO (GS:SFHS: 637 cases,
11561 controls, UKB: 508 cases, 12 135 controls) or as depression
onset over the age of 40 years (GS:SFHS: 637 cases, 11561
controls, UKB: 1215 cases, 15 794 controls) confirmed that neither
early-onset nor late-onset depression were associated with AD PRS
in these samples. There were no significant associations at any P-
value threshold for either the late-onset or early-onset depression
subgroups in either sample (Table 4).

Taking into account the number of LD pruned (and thus
assumed independent) SNPs in common between the IGAP AD
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Table 4. Associations between polygenic risk scores for AD and early-onset depression status, and AD PGRS and late-onset depression, at five
different P-value thresholds in the GS:SFHS and UKB samples
AD PGRS P-value threshold GS:SFHS UKB
Beta 95% CI P-value® Beta 95% Cl P-value®
First quartile of age of onset
<0.01 0.001 —-0.023, 0.024 9.16x107" 0.026 —-0.063, 0.115 564x10"
<0.05 0.001 —0.023, 0.024 9.38x107" 0.019 -0.070, 0.109 6.73x107"
<0.10 0.001 —0.023, 0.024 9.23x 107" 0.007 —0.083, 0.097 8.82x 107"
<0.50 -0.008 -0.032, 0.016 4.84x107" -0.021 -0.110, 0.069 6.54x107"
<1.00 -0.007 -0.031, 0.017 540%x107" -0.028 0.118, 0.062 537x107"
Fourth quartile of age of onset
<0.01 0.013 -0.022, 0.048 451%x107" 0.020 —-0.069, 0.109 6.56x 107"
<0.05 0.016 —0.019, 0.051 3.78x 107" —-0.039 —0.128, 0.051 400%x 107"
<0.10 0.008 -0.027, 0.043 6.49%x107" -0.025 —0.114, 0.065 591x107"
<0.50 —0.004 —0.039, 0.032 8.60x 107" 0.007 —0.082, 0.096 8.77x107"
<1.00 -0.006 -0.041, 0.029 7.40x107" 0.012 -0.077, 0.101 7.86x107"
MDD onset over 40 years
<0.01 0.013 -0.022, 0.048 451%x107" 0.002 -0.057, 0.061 9.53x107"
<0.05 0.016 -0.019, 0.051 3.78x107" -0.032 —-0.091, 0.027 291%x107"
<0.10 0.008 —-0.027, 0.043 6.49% 107" -0.013 —0.072, 0.046 6.62x 107"
<0.50 —0.004 —0.039, 0.032 8.60x10" -0.019 —0.078, 0.041 535x10""
<1.00 —-0.006 —0.041, 0.029 7.40x 107" -0.015 —0.074, 0.044 6.13x 107"
MDD onset under 41 years
<0.01 -0.020 —0.058, 0.019 3.20x 107" 0.0016 —0.056, 0.087 6.63x 107"
<0.05 0.001 -0.038, 0.039 9.55x107" -0.015 -0.087, 0.057 6.83x107"
<0.10 0.007 —0.031, 0.045 7.30x107" -0.019 —-0.091, 0.053 6.09x107"
<0.50 —0.004 —0.043, 0.034 8.16x 107" -0.031 —0.102, 0.041 406x107"
<1.00 —-0.004 —0.043, 0.034 825x107" —-0.039 —-0.111, 0.033 2.90x107"
Abbreviations: AD, Alzheimer’s disease; Cl, confidence interval; GS:SFHS, Generation Scotland's Scottish Family Health Study; MDD, major depressive disorder;
PGRS, polygenic risk scores; UKB, UK Biobank. ®P-values shown are uncorrected for multiple testing.

GWAS and our GS:SFHS and UKB samples, (134 152 and 227 830
respectively), and the assumptions outlined in the methods, this
analysis had sufficient power to detect associations between AD
PRS and depression status when the full data sets were used
(>80% for GS:SFHS, >90% for UKB). However, the power was
considerably reduced in the AOO analysis due to smaller sample
sizes and lower disease prevalence after sub-setting. The power
for these analyses ranged between 16 and 73% (Supplementary
Table 4).

DISCUSSION

This study provides little evidence for overlap in the polygenic
architecture of lifetime MDD and AD, based on either cross-trait
LD score regression or a polygenic profile score approach in two
large, independent population cohorts. The low and non-
significant point estimate of genetic correlation indicates that
the phenotypic correlations between the disorders are not largely
influenced by common genetic variants. PRS for AD were not
associated with lifetime history of MDD, late-onset MDD, or age of
depression onset. PRS for MDD were positively associated with a
family history of AD in GS:SFHS, but this association was not
statistically significant and was not replicated in UKB.

There is considerable evidence for the comorbidity between AD
and MDD, particularly late-onset depression, with many studies
suggesting it may be a prodrome of AD.'”?>* Depressive
symptoms are commonly found in AD, and a lifetime history of
depression appears to increase risk of developing AD, with greater
frequency and severity of depressive symptoms further increasing
this risk>>°® However, causality is difficult to establish; the

relationship remains controversial and findings are inconsistent
—perhaps not surprising given the heterogeneity of both
disorders, and the arbitrary threshold criteria applied to clinical
diagnosis, especially for depression.>’

Phenotypic correlations between the disorders have been
extensively researched, but far fewer studies have assessed the
potential contribution of shared genetics. While some previous
studies have found associations between the single, large-effect
AD risk genes APOE and CR1, and depression,>*™° other studies
failed to report this;>**' these small-sample, primarily candidate
gene studies do not provide convincing evidence. Here an
aggregate score of all genetic variants associated with AD was
not found to be associated with MDD, suggesting the genetic
overlap is restricted to a few genes, or that AD risk genes only
influence a subtype of depression which has not been isolated in
this investigation.

This study did find a nominally significant association between
polygenic risk for MDD and a family history of AD in GS:SFHS,
although this was not replicated in UKB, nor validated by LD score
regression. This anomalous result does not provide compelling
support for a shared genetic architecture; the association failed to
exceed statistical significance, and the AD family history variable
may also reflect non-genetic familial factors and is potentially
inaccurate, confounded by mood state and subject to recall bias.

In contrast to other psychiatric disorders, GWAS of MDD have
had limited success; despite evidence supporting its heritability, it
has proven difficult to establish associated genetic variants.'® The
scarcity of replicable causal variants detected by GWAS is probably
attributable to two main factors: underpowered sample sizes and
disease heterogeneity.’® % Simulations suggest that depression
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GWAS will need sample sizes up to five times larger than those of
schizophrenia or bipolar disorder to have comparable power,
owing to the disorder's higher prevalence, lower heritability, and
the smaller effect sizes involved.'®® However, increasingly large
samples and approaches to account for the multiple subtypes of
depression will increase the power of genetic studies. Two
recently published studies have revealed the first identified
depression risk loci: a GWAS of MDD in a phenotypically
homogeneous sample of female Han Chinese identified two loci
exceeding genome-wide significance,”® and a meta-analysis
combining 23andMe and PGC MDD GWAS data identified 17
significantly associated SNPs.>*

MDD is hugely heterogeneous—it is possible to meet DSM
diagnostic criteria for major depression through at least 227
different symptom combinations, some of which are opposites.®*
Aggregating these biologically different subtypes into a single
category could be contributing to the limited success of genetic
studies. If subtypes associate with differing pathophysiological
correlates, this could indicate that they may also have partially
distinct genetic liabilities. A recent study provides evidence of
different polygenic signatures for MDD subtypes: dissecting MDD
along typical and atypical symptom profiles, typical depression
was strongly associated with schizophrenia PRS, while atypical
depression was associated with PRS for body mass index and
triglycerides.®®

Age of depression onset is another well-documented source of
phenotypic variation, and early- and late-onset depression could
represent distinct subgroups. Different characteristics have been
reported between patients with varying AOO: increased familial
loading for MDD amongst patients with childhood depression,
higher prevalence of comorbid personality disorders and neuroti-
cism characterising early-adult onset, later adult onset associated
with environmental risk factors, and geriatric depression asso-
ciated with more vascular risk factors.?®” Literature regarding
how depression AOO influences risk of developing AD has been
inconsistent. Some studies suggest that even depression occur-
ring many years before dementia onset increases risk,%” while
others found that only late-life depression is associated with
dementia.'” If MDD subtypes representing more homogeneous
phenotypes are characterized by partially distinct genetic
liabilities, the genetic basis of early- and late-onset depression
may differ. Earlier-onset depression has been reported to have
greater genetic overlap with schizophrenia and bipolar disorder
than late-onset depression, suggesting that genetic susceptibility
to MDD may indeed differ with age of disease onset.>® In contrast,
this study, using AD PRS in a proportional hazards model, and
assessing the influence of AD PRS on both early- and later-onset
depression, reports no association between genetic risk of AD and
depression AOO, despite the well-documented comorbidity with
late-onset MDD. This result is consistent with the above-
mentioned study, which also found no association between
MDD status and genetic risk for AD, regardless of depression
A00.»

The main findings of this study suggest that the genetic basis of
the two disorders are largely distinct. This is consistent with the
small number of other studies using genotype data reported to
date,*33 and extends previous work to consider the influence of
MDD genetic risk on AD status, using family history of AD as proxy,
and further investigating the effect of age of depression onset.
Major strengths of this study include the use of two different
methods of detecting pleiotropy, in two large, independent
population samples, with results likely generalizable at least to UK
and other northern European populations.

This investigation has a number of limitations. A power analysis
using AVENGEME and based on plausible figures extracted from
the literature suggests that the study is adequately powered when
the full samples are used. However, having completed the
analysis, our effect sizes are very small, indicating that either we
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are correct in not rejecting a null hypothesis of no genetic
association between the disorders, or that the study is under-
powered to detect a significant effect of the size found here. The
AOO analysis, using subsets of cases with depression onset in
specific age ranges, is underpowered to detect associations, so the
results cannot be considered conclusive.

Arguably, the disparity in ascertainment of MDD status between
samples could be a limitation, although the consistency of
findings in spite of this is reassuring, indicating that the results
are robust to the diagnosis method used.

Using binary measures of depression may limit our power to
detect any association,®® as there is evidence from several
longitudinal studies that number of depressive symptoms at
baseline predicts development of AD with an approximately linear
relationship.”'° If even mild symptoms increase risk of developing
AD, defining MDD as a binary trait may underestimate any
association. The GWAS data used for this study simply examined
‘depressed’ cases versus controls, potentially combining multiple
disorder subtypes that vary in their genetic etiology, and
undermining the power of the genetic analyses to detect
associations.

The participants in the study samples, with mean ages of 47 and
57 years in GS:SFHS and UKB, respectively, were largely too young
to express clinical symptoms of AD. We were therefore unable to
carry out GWAS for AD in either sample, or to test whether the
estimated PRS for AD accurately predicted disease outcome.
However, the proxy AD family history variable was associated with
AD PRS, indicating that in genetic analyses family history of AD
can act as an acceptable substitute in non-clinical samples. A
recent study by Liu et al.%® using family history of a disease as a
phenotype to increase power to detect association further
demonstrates the validity of this approach.

While the survival analysis and AOO analyses carried out here
found no evidence for association between genetic risk for AD and
age of depression onset, the age ranges of sample participants
meant that there are unlikely to be many individuals with true
'late-onset’ depression which could precede dementia onset in
AD. Depression AOO has been suggested to have a bimodal
distribution, with most first episodes occurring around the age of
20 years, and a smaller, late-onset peak around 70-80 years.”® The
samples studied may be too young to determine whether an age-
dependent effect exists. In addition, both the quality and quantity
of depression AOO data for the UKB sample are poor. Nonetheless,
the UKB AOO results closely match those found for the GS:SFHS
sample, where the AOO data were more reliable.

Given the limited power of the AOO analysis, and the training
GWAS data defining lifetime depression only, the largely null
results of this investigation do not preclude the possibility of a
genetic association between Alzheimer's disease and a well-
defined subgroup of depression cases characterized by late-life
onset. Many studies indicate that late-life depression may be a
prodromal feature of AD, and it remains possible that a genetic
correlation exists between these two phenotypes, but the effect is
not detected in this or other analyses using lifetime depression
due to dilution.

The basis of the frequently observed comorbidity of MDD and
AD remains uncertain, however this investigation suggests that it
is not largely driven by genetic factors, at least when considering
lifetime, rather than specifically late-onset MDD. A number of
other hypotheses are possible, including common environmental
or epigenetic risk factors,”'™”3 depression compromising cognitive
reserve,’ insight of cognitive decline causing depressive
symptoms,*'* or depression contributing directly to cognitive
decline, perhaps via damage to neural systems.*’*’> These
hypotheses are not mutually exclusive, and multiple types of
interaction are likely to be involved.

It is clear that further research is needed to understand the
biological mechanisms that account for the complex relationship



between these disorders, including consideration of common
environmental factors or other non-genetic causes. Elucidating the
nature of this relationship could enable development of novel
interventions to reduce the considerable burden on those
affected, and allow better clinical outcomes.
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