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A national workgroup convened by the Centers for Disease Control and Prevention identified principles
and made recommendations for standardizing the description of sequence data contained within the
variant file generated during the course of clinical next-generation sequence analysis for diagnosing
human heritable conditions. The specifications for variant files were initially developed to be flexible
with regard to content representation to support a variety of research applications. This flexibility
permits variation with regard to how sequence findings are described and this depends, in part, on the
conventions used. For clinical laboratory testing, this poses a problem because these differences can
compromise the capability to compare sequence findings among laboratories to confirm results and to
query databases to identify clinically relevant variants. To provide for a more consistent representation
of sequence findings described within variant files, the workgroup made several recommendations that
considered alignment to a common reference sequence, variant caller settings, use of genomic co-
ordinates, and gene and variant naming conventions. These recommendations were considered with
regard to the existing variant file specifications presently used in the clinical setting. Adoption of these
recommendations is anticipated to reduce the potential for ambiguity in describing sequence findings
and facilitate the sharing of genomic data among clinical laboratories and other entities. (J Mol Diagn
2017, 19: 417—426; http://dx.doi.org/10.1016/j.jmoldx.2016.12.001)

Next-generation sequencing (NGS) has revolutionized the
analysis of the human genome. NGS has been widely
adopted in the clinical environment. Recent publications
have documented the utility of NGS for the diagnosis of rare
diseases and cancer and to inform decisions pertaining to
drug selection and dosing.'” Clinical laboratories are also
using NGS for human leukocyte antigen typing, pharma-
cogenetics, and infectious and chronic disease testing.” *
NGS fundamentally differs from Sanger sequencing in
both method and description of findings.” Sanger
sequencing is most effective for analysis of limited regions
of the genome, often targeted to specific genes or tran-
scripts. As a consequence, variant types and positions are
reported within the context of the targeted genes or tran-
scripts. The advent of NGS permits analysis at the genomic
level and as a consequence fostered the need to represent
sequence findings based on a genomic reference. The shift
from a gene/transcript to a genomic reference required
modification of existing methods for describing sequence
findings.

NGS depends on a number of file types to store data at
various stages of the analysis (Figure 1). The variant file
stores the calls made from the alignment of the patient’s
sequence to a reference. The identified variants are subse-
quently analyzed to determine which are clinically relevant
to the patient. The research community has developed
variant file specifications to support a broad range of
research applications. These file specifications have been
adopted by the clinical laboratory community, but their
inherent flexibility has resulted in variation among labora-
tories with respect to how content is represented. Such
flexibility is essential for research to accommodate different
types of studies. On the other hand, such flexibility gener-
ates challenges for clinical laboratories, especially when
standardized conventions for data descriptions have not
been uniformly adopted. For example, unless the reference
sequence used in assigning base positions is explicitly
described, the usefulness of the data returned from a
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database query made to identify clinically relevant variants
may be problematic because the base coordinate systems
may be different.

Principles and recommendations are presented, based on
the deliberations of a nonfederal, independent workgroup,
convened by the Centers for Disease Control and Preven-
tion, to promote standardization for the data content of
variant files that are initially generated after variant calling
(that are quality checked to remove entries deemed to be
artifacts and make other corrections). The intent is to pro-
mote consistency in the representation of sequence findings
to facilitate meaningful interlaboratory comparisons and to
provide a common format for data contained within the
variant file to facilitate downstream processing to ultimately
identify disease-associated variants, when present.

Materials and Methods

A 2012 national workgroup that developed guidance for the
design and optimization of a clinical NGS informatics
pipeline articulated the need for standardizing the content of
NGS variant files.'"” As a consequence, a new workgroup
was formed and tasked to identify principles and make
recommendations directed to improving the uniformity of
content contained within the variant call format (VCF) and
similar file formats. This new workgroup, the Clinical Grade
Variant-File Workgroup, was convened and facilitated by
the Centers for Disease Control and Prevention and other
federal partners (the National Center for Biotechnology In-
formation, The National Institute of Standards and Tech-
nology, and the Food and Drug Administration). Members
of this workgroup included informaticians, research and
clinical laboratory directors, and representatives from in-
dustry, accrediting bodies, the HL7 Clinical Genomics
workgroup, and federal agencies noted above and the Na-
tional Human Genome Research Institute. Participants were
chosen for their roles as leaders and contributors to the
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NGS Variant File
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: | variant call format (VCF)]. The data in the
——mm === variant file are further analyzed to determine
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i what findings are clinically relevant and
. . reportable to the physician to inform medical
Clinical Clinical Test Result decision making.
Annotation Assessment Report

advancement of the integration of NGS into clinical appli-
cations. The workgroup was formed in 2014 and completed
work in 2016. Discussions were had once or twice a month
by telephone and web conference. The workgroup initially
reviewed existing variant files, their uses and limitations,
before more focused discussions that led to the principles
and recommendations presented herein.

The workgroup considered both laboratory processes (eg,
selection and alignment to a reference sequence) and the
data presentation within variant files, both considered
important to arriving at recommendations targeted to stan-
dardizing content. This article provides the outcomes of the
workgroup’s discussions and recommendations. In some
instances, suggestions are given for consideration in lieu of
recommendations because workgroup members could not
arrive at consensus that certain practices were sufficiently
mature to warrant a formal recommendation. Recommen-
dations were based on workgroup member agreement
without dissension.

Results

The workgroup derived the following recommendations
from their discussions. The rationale for deriving these is
described after this listing.

Recommendations for Laboratory Processes before
Generation of the Variant File

Laboratory-selected reference sequences not available from
publically accessible databases (eg, RefSeq, LRG) should
be submitted to one or more of these databases for publi-
cation to allow for comparable cross mapping against the
human genome reference assembly.

Variant callers should be configured to output reference,
variant, and no-calls, together with local phasing informa-
tion at least for those regions likely to harbor clinically
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important variants. As a caveat, no-calls associated with
low-confidence sequence findings should be output for all
sequences targeted for analysis.

Recommendations for Standardizing the Content
within the Variant File

The variant file should include a description of both the
specification and the version used. The human genome
reference assembly should be used as the standard for
assignment of genomic coordinates derived from NGS
testing. The accession.version numbers of the sequences and
assembly used for alignment and position assignment
should be specified within the variant file to describe an
unambiguous reference from which the genomic coordinates
are derived. Variants should be described using Human
Genome Variation Society (HGVS) descriptions that follow
the published rules and that the use of abbreviated HGVS
descriptions be linked back to the full HGVS description.
When data sources are specified, their origin, build, version
number, or other relevant parameters should be included to
uniquely identify the source of the data elements. The
Human Genome Nomenclature Committee (HGNC) de-
scriptions should be used for specifying the targeted genes.

Variant File Formats

The workgroup discussions considered what could be learned
from existing variant files in use. Several variant file formats
have been established. These include the VCF (htps://github.
com/samtools/hts-specs, last accessed December 5, 2016),
genomeVCF  (htps://sites.google.com/site/gvcftools/home/
about-gvcf, last accessed December 5, 2016), and the
genome variation format (https://github.com/The-Sequence-
Ontology/Specifications/blob/master/gvf.md, last accessed
December 5, 2016) (Figure 2).""'* Since the completion of
the 1000 Genomes Project, stewardship of the VCF
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specification has been transferred to the Global Alliance for
Genomics and Health under the file formats task team of the
data working group. The genomeVCF specification builds on
the VCF with additional features. The genomeVCF allows for
the representation of both variant and nonvariant positions by
default. The genome variation format is another specification

A

Variant #1

Variant #2

dbSNP

rs5819844

rs5030860

Position

Chr17:26727722-
26727722

Chr12:103234252-
103234252

Nucleotide
Change

Deletion

SNV

Effect
Change

Frameshift Variant

Missense Variant

Genomic

NC_000017.10:
g:26727722delA

NC_000012.11:
9:10323452T>C

Transcript

NM_001242366.1:c
.1142delT
NM_080669.4:
c.1226delT

NM_000277.1:
c.1241A>G

Protein

NP_001229295.1:
p.11e381Thr

NP_000268.1:
p-Tyrd14Cys

and is based on the GFF3 format, a tool initially developed to
permit comparison of gene annotations among different
organisms.'? The evolution of the genome variation format
provides for a detailed annotation of a genome, and uses terms
from ontologies to describe the sequence alterations and the
expected effect on the gene product.'”

Figure 2 Variant representation in three common variant file
specifications. A: The two variants are listed from sample NA12878 from
the 1000Genomes database. Variant 1 is a deletion of A, and variant 2 is
a substitution of A to G. The dbSNP identifiers, chromosome number,
nucleotide change, and the predicted effect are shown. The Human
Genome Variation Society nomenclature for the change is shown rela-
tive to the genomic DNA, the mRNA, and protein RefSeq sequences. B:
Contrast the differences among the variant file specifications for each of
the two variants. The genome variant call format (gVCF) includes the
invariant regions, not typically reported by the VCF. The genome vari-
ation format (GVF) includes additional annotation of the effect of the
variant on the reference annotated features. SNV, single-nucleotide
variants.
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NA12878 deletion
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NM_1242366
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1041:PLILL250=461,0,648;PLILLCLIA=1160, 0, 1565:PLILLWG =444, 0,317 PLI1
1PCRFree =935, 0, 929:PLIonEx =1056, 0, 1338: PLPlatGen =3530, 0, 3431:PLX11 = 622,
0, 545:PLXPS0o1WG LS =225, 0, 370: : PLminaum =
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gVCF

Variant #2

12 103234229 . C . HighDepth END = 103234252: BLOCKAVG_min30p2a
GT:GQX:DP:DFF 0/0:114:39:0

12 103234252 . GA G 153  HighDepth SNVSB==13.7;
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polypeptide NM_000277 (Y:C) , gene variant 1 gene PAX, transcript_variant 1
mRNA NM_000277, missense_variant 1 mRNA NM_000277(TAC:TGC) ,
coding_sequence_variant 1 mRNA NM_000277: Variant_codon=TAC,

TGC:Reference_codon=TAC:Variant_aa=Y, C:Reference_aa=Y:Genotype=0:1;
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N

Reference GRCh37 1~ | (2356-2380)Genomic Coordinates

5__ GCGATTTTCCATATAT

N A

Figure 3 Origin of genomic coordinates.
Genomic coordinates of sequence contained within
the variant file are made in reference to a genomic
build/reference and assigned based on a 5’ to 3’
numbering of the positive strand. Genomic co-
ordinates can change during major updates to the

reference assembly, as illustrated in comparing
GRCh37 to GRCh38.

CGCGCGAC
3’
Sequence of Interest-
GCGATTTTCCATATATCGCGCGAC
?,eference GRCh38 A+~ ((2446-2470 Genomic Coordinates
GCGATTTTC
CATATATCGCGCGAC
3’

Specifications for these file formats were primarily
generated to support research rather than clinical applica-
tions, and were designed to either catalog population
variations (eg, VCF) or capture deep annotation of a single
personal genome (eg, genome variation format). These
formats were designed to provide a level of consistency with
respect to the data elements while allowing for flexibility in
content presentation to accommodate a broad range of
research applications. Variant files typically include anno-
tated sequence information and metadata. The annotated
sequence information describes the sequence and related
data important for understanding specific context such as the
position and type of variant. Metadata provides information
that typically refers to the complete data set.

The workgroup did not endorse a single file format
recognizing that specifications continue to evolve and
existing software enables translation among file specifica-
tions. However, the workgroup recognized that as of 2016
the VCF specification has the greatest adoption into clinical
practice as a consequence of its long history, evolving
specification, and the availability of a rich set of tools for
manipulating these types of files. Irrespective of the variant
file specification used in practice, changes are made as
the specification advances. As such, the workgroup
recommends that the variant file includes a description of
both the specification and the version used. Ideally, the most
current version will be adopted, but variation of versions
used in practice will likely continue to exist into the fore-
seeable future.

Using the Human Genome Reference Assembly

The workgroup endorses the recommendations made by
other standard/guideline setting bodies for use of the human
genome reference assembly as the standard for assignment
of genomic coordinates derived from NGS testing (http:/
www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human,
last accessed December 5, 2016).“"13'14

The Journal of Molecular Diagnostics m jmd.amjpathol.org

The reference assembly is meant to model genome
sequences across the global population. Initial models
developed by the Human Genome Project used a single
haploid assembly model.'” Subsequent analysis uncovered
highly polymorphic regions of the human genome that made
it impossible to describe a single sequence for that
region.'®'” The Genome Reference Consortium developed
an improved assembly model that allows for representation
of various sequences (termed alternate loci) at regions with
high diversity.'®'? Many of these regions contain medically
relevant genes, such as the human leukocyte antigen, KIR,
and CYP gene families. A genome build refers to a specific
version of the reference assembly. The most recent human
genome build GRCh38p9 was released in September 2016
by the Genome Reference Consortium. This assembly
represents a significant advance, with one of the most
important additions relevant for clinical testing being the
inclusion of 261 alternate loci across 178 regions. Only 72
alternate loci were available in the previous assembly.
Although this represents a significant advance in describing
the human genome, it has generated a challenge for clinical
laboratories because of the absence of validated tools that
are able to incorporate alternate assemblies into their ana-
lytic algorithm. The development of tools that can take
advantage of these new sequences will be critical for
improved genome analysis.'”

The human genome reference assembly is regularly
updated by the Genome Reference Consortium and sub-
mitted to GenBank to obtain stable, traceable identifiers,
accession, and versions, for both the sequences contained in
the assembly as well as the assembly itself. Major updates
are released infrequently and include corrections and addi-
tions to fill in existing gaps. Genomic coordinate assign-
ments are extensively revised in major updates and are
designated by different accession numbers (Figure 3). Minor
updates, called patch releases, occur quarterly and do not
affect the sequences released as part of the major release;
as a consequence, the genomic coordinate assignments
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do not change. The workgroup recommends that the
accession.version numbers of the sequences and assembly
used for alignment and position assignment should be
specified within the variant file to describe an unambiguous
reference from which the genomic coordinates are derived.

Clinical laboratories access databases that use one or a
combination of historical data (before the use of the
genomic reference assembly) and data based on the refer-
ence assembly in designating base coordinates. Attention to
the origin of the coordinate system used and mapping to the
appropriate reference assembly is required when querying
databases. The National Center for Biotechnology Infor-
mation and others have generated tools for remapping
different versions of the reference assembly to permit
comparisons of findings derived using a different acces-
sion.version of the reference assembly (http://www.nchi.
nlm.nih.gov/genome/tools/remap, last accessed December
5, 2016).

Alignment against the full genome during exome and
genome sequencing has been recommended as a means to
reduce forced alignments that can result in miscalls because
of the presence of homologous sequences.'” Other practices,
such as the use of decoy sequences, can minimize
misalignment of reads to homologous off-target sequences.

Many laboratories align reads from analysis of multigene
panels against laboratory-selected sequences that corre-
spond to genes included in the panel. This practice requires
mapping of sequence findings back to the human genome
reference sequence to establish the corresponding genomic
coordinates. Laboratory-selected sequences may be taken
from databases available through the National Center for
Biotechnology Information or European Informatics Insti-
tute [eg, RefSeq (http://www.ncbi.nlm.nih.gov/refseq, last
accessed December 5, 2016) and LRG (http://www.lrg-
sequence.org, last accessed December 5, 2016)] in which
cross mapping against the human reference assembly using
standardized methods is performed and results posted with
the database entry. This provides an unambiguous descrip-
tion and assignment of genomic coordinates for all entries.
The workgroup recommends that laboratory-selected refer-
ence sequences not available from publically accessible
databases (eg, RefSeq, LRG) should be submitted to one or
more of these databases for publication to allow for com-
parable cross mapping against the human genome reference
assembly. The workgroup discourages cross mapping
outside these methods because differences in software and
settings among laboratories raise the risk for incorrect
assignment of genomic coordinates.

The description and assignment of position for insertions
and deletions within a repeated sequence requires consid-
eration of the file specification and this is influenced by
whether genomic DNA or a transcript is being described.
The VCF and other variant file specifications designate the
starting position of an insertion or deletion variant using the
genomic coordinate associated with the left most (5") base
associated with the insertion or deletion (left justification).

422

Genomic coordinates are always assigned relative to the +
strand of the genome irrespective of transcript direction.
Position assignment within transcripts typically use the
HGYVS conventions. HGVS assigns coordinates with respect
to the 5’ to 3’ direction of the transcript. This is irrespective
of its genomic directionality (the 4+ or — strand of the
genome). HGVS specifies the transcript position assignment
for an insertion or duplication be the most 3’ (right) base
possible.”’ ?* The differences associated with position
assignments between genomic DNA and transcripts using
the conventions described require an understanding of how
variant file formats and HGVS assignments are made. This
requires laboratory professionals to be aware of when and
how these conventions are applied and take these issues into
account when making sequence comparisons and mapping
between transcript and the genomic sequences.

HGVS remains an evolving standard, and ambiguous
descriptions can result because of changing conventions.
There are also reports of incorrect application of the
nomenclature that has resulted in additional ambiguity.”"*
As such, the workgroup recommended that variants
should be described using HGVS descriptions that follow
the published rules and that the use of abbreviated
HGVS descriptions be linked back to the full HGVS
description.'”'*!*?%2* To minimize the possibility for
position ambiguity, sequences should be reported in
conjunction with unambiguous genomic coordinates. In
2013, HGVS adopted versioning that is helpful for resolving
differences that can result from modification of the rules
used to describe sequence findings.

Some current software programs are designed to promote
consistent HGVS assignment (eg, htips://mutalyzer.nl, last
accessed December 5, 2016).”>*° The workgroup empha-
sized that there remains variability in how these programs
develop HGVS descriptions and encouraged clinical labo-
ratories to be cautious in their use and to perform a
comprehensive validation targeted for the intended clinical
applications. Nonetheless, adoption of such tools may be
helpful to ensure consistent HGVS descriptions, including
position assignments.

Variant files often contain a data field for each sequence
entry that permits reference to a data source (eg, the ID field
corresponding to a sequence entry within the VCF data
section). For variant detection, corresponding dbSNP
(http://www.ncbi.nlm.nih.gov/SNP, last accessed September
17, 2016) entries are commonly cited and more recently the
ClinVar Variation ID (htp://www.ncbi.nlm.nih.gov/clinvar/
docs/variation_report, last accessed December 5, 2016).
The ClinVar database continues to develop and is designed
to report the relationships between variants and their
clinical relevance. For NGS somatic analysis, the COSMIC
database (http://cancer.sanger.ac.uk/cosmic, last accessed
December 5, 2016) is an important resource developed to
contain a listing of somatic variants found in human cancer.
For pharmacogenomic haplotypes, the Pharmacogenomics
knowledgebase can be referenced (https://www.pharmgkb.
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org, last accessed December 5, 2016). For human leukocyte
antigen, the International ImMunoGeneTics Project/human
leukocyte antigen database can be used.”’ The workgroup
recommends that when data sources are specified, their
origin, build, version number, or other relevant parameters
should be included to uniquely identify the source of the
data elements.

Considerations for Variant Calling and Sequence
Representation within the VCF and Similar Variant Files

We use the term local phasing to refer to the short-range
phasing information that is output by some variant callers
using information from the reads to determine whether
multiple (two or greater) variants are located on the same
chromosome (cis) or on different homologous chromosomes
(trans). Local phasing data allow for assembly of individual
and short sequences typically reported from variant callers
to fully define a haplotype. Early versions of the VCF
specification did not permit inclusion of reference calls, but
recent versions permit this, an adaption from the
genomeVCF specification (http://www.1000genomes.org/
wiki/Analysis/vcf4.0, last accessed December 5, 2016; the
most recent update can be found at https://samtools.github.
io/hts-specs, last accessed December 5, 2016). The chal-
lenge with inclusion of reference calls is the generation of
large files that many of the existing software tools are not
suited to manage. This limitation has been handled by tar-
geting hot spots, areas of the targeted regions likely to
contain clinically relevant variants, for the collection of the
full data set that includes reference calls.'”** This greatly
decreases the file size, especially when exome or genome
analysis is performed. The workgroup recommends that
variant callers should be configured to output reference,
variant, and no-calls, together with local phasing informa-
tion at least for those regions likely to harbor clinically
important variants. As a caveat, no-calls associated with
low-confidence sequence findings should be output for all
sequences targeted for analysis.

No-calls refers to one or more base positions that cannot be
precisely determined during the course of sequence anal-
ysis.”” This can include one or more base positions in which
the local sequence quality was not sufficient to permit a
confident diploid call, or in which there was a complex
variant with one or more unresolved bases. For the latter
example, in not identifying a no-call, the complex variant
may not be properly described. The VCF specification per-
mits the description of these types of findings. Failure to
identify no-calls can result in mistakes associated with
position or zygosity assignment. A no-call can also occur as a
consequence of an insertion of indeterminate length into a
known location. This occurs when sequence reads and/or
mate-paired reads are too short to span a repetitive region of
the genome. Failure to identify these can also result in
incorrect position assignment and misattribution of a
repetitive element. Describing no-call insertions presents a
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challenge because it can be difficult to determine whether the
number of copies of the repeated segment has changed
because of an insertion or deletion. Another example of a no-
call is a variant that occurs within a duplicated region but its
precise position cannot be determined. Additional esoteric
situations involving low complexity or repetitive regions, or
other undetectable balanced structural variants, can also lead
to no-calls. No-calls can influence the clinical interpretation
of test results. For example, an insertion within a trinucleotide
repeat region that is missed during sequence analysis can
result in the reporting of fewer repeats than are actually
present. Manual review of the data is typically necessary to
identify no-calls. Eventually, these problems will be miti-
gated as read lengths increase and better library preparation
and bioinformatics methods become available, but, as of
2016, they are inherent in NGS data sets and should be
considered when interpreting sequence results.’’' The
recommendation to include no-calls associated with low-
confidence reads is useful for identifying regions that may
require alternative methods for sequence determination and
understanding the limitations of the analysis.

The VCF and other variant files are designed to capture one
or a few variants within a minimal read length on each
sequence data line. The designation of complex variants as a
haplotype often requires the assembly of sequence from
multiple short sequences using local phasing (Figure 4). This
is important for knowing the phase (cis or trans) of two or
greater closely spaced variants in deriving a haplotype.’
Correctly describing complex variants has implications for
establishing or negating heterozygosity for two disease-
associated variants or making correlations with disease
severity.””** Findings also have implications for other family
members with respect to risk for or severity of disease.

As of 2016, there is no consensus in the community as to
whether variant callers should be set up to output longer
sequences requiring minimal phasing information or shorter
phased sequences (referred to as primitives). For the latter,
one proposal is for variant calls to span a genomic window
that is appropriate given the local distribution of variants
and the sequencing read length, which would typically
result in window sizes in the order of 50 bp.”> The work-
group recognized the validity of both approaches, suggest-
ing that complex variants be output either as phased
primitive single-nucleotide variants and insertions/deletions
or as a single complex event. Nearby heterozygous variants
should always be phased when possible in deriving an
accurate haplotype description.

Describing Genes within the Variant File

The workgroup recommends that the HGNC descriptions
should be used for specifying the targeted genes. This is
consistent with recommendations from other professional
groups.'>'**® HGNC assigns an identification number,
symbol, and name to each gene. For some genes, the symbol
and/or name will change over time, but the identification
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A

True Diplotype

Sequence Output from Variant Caller

Reference

C

Interpreted Diplotype

Phasing Data Available

Allele 1 Position
5 CCCTTAGGGA 3
4953810 CC
Allele 2
5 CGGTTAGCGA 3" 4953816 G

Figure 4

Phasing data are required to establish the cis or trans relationship of two
nonadjacent variants (bold and underlined). A: The true diplotype describing an individual
having one allele with two nonadjacent variants that are not found in the same allele of the

Alternate Allelel 5 CCCTTAGGGA3
GG

Allele2 5 CGGTTAGCGA3
C Correct

Phasing Data Not Available

Allelel 5'CCCTTAGCGAZ3

Allele 2 5CGGTTAGGGAYZ

Incorrect

homologous chromosome. B: Output from a variant caller. C: Interpretation of the output of
the variant caller. In the presence of phasing data, the correct haplotypes are established. In or
the absence of phasing data, the cis or trans association of the two variants cannot be

distinguished.

number remains unique. HGNC tracks use of these identi-
fiers over time. The workgroup decided not to advocate for
any one HGNC gene representation given that old and new
names and symbols are routinely used by many laboratories,
with the identification number used the least. However, the
benefit of using identification numbers was recognized and
the workgroup suggested that this parameter be included to
minimize the potential for ambiguity. Historically, human
genes have acquired more than one name. Many oncolo-
gists, physicians, molecular biologists, and genetic coun-
selors are most familiar with common or older gene names
and, as such, laboratories often include these in addition to
the HGNC descriptors, and they may be included as meta-
data within the variant file, but not to the exclusion of
HGNC designations.

Assessing the Quality of the Data

The VCF primarily contains quality data applicable to the
confidence of the sequence represented that often includes
the variant quality score. These scores are often used as a
metric to include or exclude variants in the final variant set
that is reviewed for clinical interpretation. Generation of
these measures is method specific, negating direct compar-
ison among different platforms.'*'* For methods developed
within the laboratory, validation established the perfor-
mance specifications of the method used.'” The absence
of standardized metrics applicable across platforms can lead
to variability of sequence calls among laboratories that
may influence what is called and the false-positive and
false-negative rates for the assay. As an area still in
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Allele 1 5CCCTTAGGGA3

Allele2 S CGGTTAGCGA3

Correct

development, the workgroup opted not to offer specific
recommendations related to this topic.

Additional Considerations for Downstream Analysis
and File Formats

As of 2016, both manual and automated processes are used to
analyze data within the variant file to derive clinical asser-
tions. Further automation of this process should greatly
reduce the analysis time and provide a high level of consis-
tency and quality among laboratories. The obstacles to
achieving such automation are the variation in the represen-
tation of content within the variant files used and the absence
of curated databases designed to serve medical applications.
Efforts are underway to address these gaps that include the
development of methods for querying the National Center for
Biotechnology Information ClinVar database with a VCF
file.””** One approach may be the adoption of a standard to
store variants within databases using genomic coordinates,
canonicalized using a common scheme that recognizes when
identical variants are defined differently. This is being
addressed through software development, but standard
methods have not yet been implemented.” Linking to Clin-
Var in this way advances the prospects for automating the
extraction of structured and standardized data useful to sup-
port downstream analyses used to make clinical assertions.
These assertions can then be described and reported using
accepted nomenclature, such as HGVS for variants, American
College of Medical Genetics—approved terms for clinical
significance,”’ and VariO (hrtp://variationontology.org, last
accessed December 5, 2016) and Sequence Ontology terms
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for variation type, molecular consequence, and functional
consequence. "’

Discussion

Properties of a Prototypic Clinical-Grade Variant File

Standardizing variant files is proposed to expedite a number
of functions important to advancing clinical laboratory
practice. These include data sharing among laboratories,
querying of databases, and streamlined processes for down-
stream data analysis to identify the clinically relevant vari-
ants. The workgroup recognized that certain steps, such as
uniform assignment of genomic coordinates, need to be taken
before generation of the variant file to promote content uni-
formity and enable effective data sharing and management.

Future Directions

Use of a uniform representation of sequence data within
variant files derived from genome, exome, or panel analysis
will be needed to advance the exchange of data among
laboratories, databases, and, in time, patient records. This is
envisioned as the primary incentive to begin the process of
adopting standards for variant file content among clinical
laboratories and software developers and implementers.
Uniformity in data representation is important for several
critical functions. These include the comparison of derived
data among laboratories as a quality assurance process and
for proficiency testing. Uniform representation of sequence
data also provides for a common input to downstream
algorithms that may minimize variation in downstream
results that can occur as a consequence of how sequence
data are presented within the variant file. This is particularly
relevant for the detection of variants that were not targeted
during the test validation.

The principles and recommendations presented are not
comprehensive but provide a context for what the work-
group believed could be addressed from a clinical testing
perspective as of 2016. For example, the workgroup dis-
cussed the potential need to include more robust identifiers
within the variant file that links to a patient or sample. The
workgroup was not able to agree to a specific recommen-
dation regarding this topic. From a regulatory perspective,
the Food and Drug Administration published a draft guid-
ance document addressing the use of NGS in vitro di-
agnostics for germline analysis (http://www.fda.gov/
downloads/MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/UCM509838.pdf, last accessed Decem-
ber 5, 2016). Although the final guidance has yet to be
published as of September 2016, the draft document does
emphasize the need to describe and document data
processes and analyses relevant to the validation of the
bioinformatics pipeline.

Although specifications will continue to advance, variant
files are expected to remain a standard tool in the coming
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years. Nonetheless, new technologies and techniques, such
as work underway to advance the use of graph theory that
provides a statistical and visual representation of sequence
findings, may fundamentally displace use of variant files to
provide a more useful means for describing genomic
sequences.'’

Ultimately, the expectation is that an electronic health re-
cord will contain structured sequence data. The focus today is
to work toward inclusion of clinically relevant findings that
would typically be reported in the patient’s test result report.
How these data are captured, displayed, and used is the subject
of use cases and guidance that are being developed by several
groups that include the HL7 Clinical Genomics Workgroup
(http://www.hl7.org/special/committees/clingenomics, last
accessed December 5, 2016) and the Health and Medicine
Division of the Academies (http://iom.nationalacademies.
org/Activities/Research/GenomicBasedResearch/Innovation-
Collaboratives/EHR.aspx?page = I#sthash.Bta487hi.dpuf, last
accessed December 5, 2016). The capability to provide
patient exome or genome sequence data in a structured
format able to support clinical decision making is an exciting
prospect for the future. This will support the capability to
query larger data sets, such as ClinVar, using automated
processes to expedite the identification of clinically impor-
tant variants.
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