
A unified model of human semantic knowledge and its disorders

Lang Chen1,3,*, Matthew A. Lambon Ralph2,*, and Timothy T. Rogers1,*

1Department of Psychology, University of Wisconsin-Madison, 1202 West Johnson Street, 
Madison, WI 53705, USA

2Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental 
Psychology, School of Biological Sciences, University of Manchester, M13 9PL, UK

3Stanford Cognitive and Systems Neuroscience Laboratory, 1070 Arastradero Rd. Suite 220, Palo 
Alto, CA 94304, USA

Summary

How is knowledge about the meanings of words and objects represented in the human brain? 

Current theories embrace two radically different proposals: either distinct cortical systems have 

evolved to represent different kinds of things, or knowledge for all kinds is encoded within a single 

domain-general network. Neither view explains the full scope of relevant evidence from 

neuroimaging and neuropsychology. Here we propose that graded category-specificity emerges in 

some components of the semantic network through joint effects of learning and network 

connectivity. We test the proposal by measuring connectivity amongst cortical regions implicated 

in semantic representation, then simulating healthy and disordered semantic processing in a deep 

neural network whose architecture mirrors this structure. The resulting neuro-computational model 

explains the full complement of neuroimaging and patient evidence adduced in support of both 

domain-specific and domain-general approaches, reconciling long-standing disputes about the 

nature and origins of this uniquely human cognitive faculty.

Semantic memory supports the human ability to infer important but unobserved states of 

affairs in the world, such as object names (“that’s a mushroom”), properties (“it is 

poisonous”), predictions (“it appears in autumn”), and the meaning of statements (“it is 

edible after cooking”). Such inferences are generated within a cross-modal cortical network 

that encodes relationships amongst perceptual, motor, and linguistic representations of 

objects, actions, and statements (henceforth surface representations1). The large-scale 

architecture and organizational principles of the semantic network remain poorly 

understood, however. Theories about the nature and structure of this network have long been 

caught between two proposals: (a) the system is modular and domain-specific, with 
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components that have evolved to support different knowledge domains2,3, e.g. animals, 

tools, people, etc., or (b) it is interactive and domain-general, with all components 

contributing to all knowledge domains4–6. Despite profoundly different implications about 

the nature and roots of human cognition, these views have proven difficult to adjudicate3,7.

We consider a third proposal which arises from a general approach to functional 

specialization in the brain that we call connectivity-constrained cognition - C3 for 

convenience. This view proposes that functional specialization in the cortex is jointly caused 

by (1) learning/experience, (2) perceptual, linguistic, and motor structures in the 

environment and (3) anatomical connectivity in the brain. Connectivity is important because, 

within a given neuro-cognitive network, robustly connected components exert strong mutual 

influences and so, following learning, come to respond similarly to various inputs. In the 

case of semantic representation, these factors suggest a new approach that reconciles 

domain-specific and domain-general views. Specifically, learning, environmental structure, 

and connectivity together produce graded domain-specificity in some network components 

because conceptual domains differ in the surface representations they engage8–10. For 

instance, tools engage praxis more than animals11 so regions that interact with action 

systems come to respond more to tool stimuli. Yet such effects emerge through domain-

general learning of environmental structure, and centrally-connected network components 

contribute critically to all semantic domains12,13.

This C3 proposal coheres with those of several other groups8,14–17, but its potential to 

reconcile divergent views remains unclear because prior studies have focused on fairly 

specific questions about local network organization. The current paper tests the proposal by 

first measuring the anatomical connectivity of a broad cortical semantic network, and then 

assessing the consequences of that connectivity for healthy and disordered network behavior 

using simulations with a deep neural network model. Specifically, from a new literature 

review and meta-analysis of functional brain imaging studies we delineated cortical regions 

involved in semantic representation of words and visually-presented objects and identified 

those showing systematic semantic category effects. We then measured white-matter tracts 

connecting these regions using probabilistic diffusion-weighted tractography, resulting in a 

new characterization of cortical semantic network connectivity. From these results we 

constructed a deep neural network model and trained it to associate surface representations 

of objects: their visual structure, associated functions and praxis, and words used to name or 

describe them. The resulting model is able to explain evidence adduced in support of both 

domain-specific and domain-general theories, including (a) patterns of functional activation 

in brain imaging studies, (b) impairments observed in the primary disorders of semantic 

representation, and (c) the anatomical bases of these disorders.

Activation likelihood estimate (ALE) analysis

Prior empirical, modeling, and neuroimaging work (SI-Discussion 1) has identified several 

cortical regions that contribute to semantic processing and their respective functional roles, 

including: (1) the posterior fusiform gyrus (pFG), which encodes visual representations of 

objects18,19; (2) the superior temporal gyrus (STG), which encodes auditory representations 

of speech20; (3) lateral parietal cortex, which encodes representations of object function and 
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praxis19,21,22; and (4) the ventral anterior temporal lobe (ATL), thought to serve as a cross-

modal hub that encodes semantic similarity structure23,24. To assess which of these regions 

show reliable semantic category sensitivity, and to identify additional category-sensitive 

regions not included among these, we conducted an ALE meta-analysis of functional 

imaging studies seeking semantic category effects. ALE provides a way of statistically 

assessing which category effects are reliably observed in the same location across studies. 

Like a prior meta-analysis25, we included studies of activations generated by words or 

pictures denoting animals or artifacts (manmade objects). We identified 49 

studies9,19,21,26–71 with 73 independent experiments and 270 foci, making this the largest 

such analysis to date (details in Methods). Using recently updated ALE methods72, we 

tested for cortical regions showing systematically different patterns for animals versus 

artifacts, or systematically elevated responses for both domains relative to baseline (see 

Table S1). Results are shown in Figure 1 and Figure S1.

Regions identified in prior work

Medial pFG is activated more for artifacts than animals bilaterally. Lateral pFG is activated 

above baseline for animals but not artifacts in both hemispheres, though the animal vs. 

artifact contrast was only significant in the right, possibly because the homologous left-

hemisphere region is “sandwiched” between two areas showing the reverse pattern (pMTG 

and medial pFG; see Fig. S2). The differential engagement of lateral/medial pFG by animal/

artifact is well documented and typically thought to be bilateral73.

STG did not show reliable category effects, consistent with the view from prior 

models4,12,74 that it processes spoken word input and so should be equally engaged by 

animals and artifacts.

Ventral ATL did not exhibit activations above baseline for either domain, though this is not 

surprising for methodological reasons established in prior work4,75. Converging evidence 

from patient studies76, brain imaging with appropriate methodology4,75, transcranial 

magnetic stimulation23, electro-corticography77, and lesion-symptom mapping78 have 

established the importance of ventral ATL for domain-general semantic processing. Prior 

models5,12,79 included ventral ATL as a cross-modal semantic hub (see SI-Discussion 1.4 

and 2.3).

Regions not specified or included in prior work

In the left parietal lobe, artifacts produced more activations than animals, consistent with the 

proposal that this region encodes representations of object-directed action19,80. One prior 

model incorporated function representations in the lateral parietal cortex12. The cluster 

spanned inferior and superior parietal lobes (IPL and SPL), which patient and imaging 

literatures suggest encode different aspects of action knowledge80. Thus we included both 

as separate regions of interest in the connectivity analysis and the model.

Posterior middle temporal gyrus (pMTG) exhibited more activations for artifacts than 

animals consistent with the literature implicating this region in the semantic representation 

of tools25,73. Accordingly, we included pMTG as a region of interest in the connectivity 

analysis and the model.
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Lateral occipital complex (LOC) activated more often for animals than artifacts, which 

probably reflects domain differences in visual structure including greater complexity and 

more overlap among animals relative to manmade objects81. We thus identify LOC as a 

source of visual input to inferotemporal cortex, and assume that animals generate more 

activation here because they have richer and more overlapping visual representations.

Semantic network connectivity

We next measured white-matter connectivity amongst all temporal regions of interest, and 

between temporal and parietal regions, using probabilistic diffusion-weighted tractography. 

We did not investigate intra-lobe connectivity within the parietal cortex82,83, since these 

areas contribute to other non-semantic cognitive and perceptual abilities beyond the scope of 

this study. Diffusion-weighted images were collected from 24 participants using methods 

optimized to reduce the susceptibility artifact in entral ATL84. Seeds were placed in the 

white matter underlying the regions of interest from the ALE analysis or the literature (Fig. 

1 and 2; for ROI definition, see Methods), mapped back to native space for each subject85. 

STG and LOC were excluded from the analysis since their connectivity is well-studied86,87 

and they are posited to provide spoken-word and visual input, respectively, to the semantic 

network. Results are shown in Figure 2.

Intratemporal connections

Both lateral and medial pFG projected into ATL (> 5% in more than two thirds of the 

participants) and to one another (Fig.2A and Table S2; for thresholding, see Methods). ATL 

also projected to both pFG regions and to the pMTG (>2.5% in more than half participants). 

Streamlines from pMTG terminated in the ATL neighbourhood (yellow stream in Fig.2B) 

and projected to lateral pFG with high probability and to medial pFG with moderate 

probability (> 1% in more than half participants).

Temporo-parietal connections

Streamlines from the ATL did not extend into parietal cortex as also found previously83,88. 

Streamlines from pMTG, however, projected both to ATL and to IPL, providing an indirect 

route from IPL to the ATL via pMTG (Fig.2B). Likewise, the IPL streamlines projected to 

pMTG but not to ATL. Medial pFG did not stream to IPL, but did project more superiorly 

within the parietal lobe. Recent neuroanatomical studies from MR tractography and tracing 

studies in non-human primates have suggested that the inferior longitudinal fasciculus (ILF), 

which connects ventral aspects of ATL, occipito-temporal, and occipital cortex, also 

branches dorsally in its posterior extent to terminate in dorsoparietal regions89,90—

potentially connecting ATL to SPL indirectly via the medial pFG. To test this possibility, we 

assessed the posterior trajectory of a seed more anteriorly along the ILF. The streamline 

passed through the medial pFG neighborhood and branched superiorly into SPL (Fig.2C). 

Likewise, SPL streamlines descended to intersect the ILF streamline. A waypoint seed 

placed at this junction streamed to SPL, the anterior ILF seed and medial pFG. Thus the 

tractography reveals two pathways from temporal to parietal regions of the network: one that 

connects ATL to IPL via the pMTG (Fig.2D), and a second connecting ATL to the SPL via 
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the medial pFG (Fig.2E). This provides an in-vivo demonstration of the dorsal-projecting 

ILF branch in humans.

An anatomically-constrained computational model

Figure 3A shows a schematic of the ALE and connectivity results. We next constructed a 

neurocomputational model whose architecture mirrors these results, shown in Figure 3B. 

The model is a deep recurrent neural network that computes mappings amongst visual 

representations of objects (coded in LOC), verbal descriptors (STG), and functional (IPL) 

and praxic (SPL) action representations85. The model was trained with predictive error-

driven learning to generate an item’s full complement of visual, verbal, function and praxic 

properties, given a subset of these as input. Surface representations were generated to 

capture three well-documented aspects of environmental structure: (a) hierarchical similarity 

with few properties shared across domains, more shared within domains, and many shared 

within basic categories11; (b) many more praxic and functional features for artifacts and 

somewhat more visual features for animals10,11; and (c) more feature overlap amongst 

animals than artifacts5 (see SI-Methods 5 and Table S3)

We used the model to assess whether connectivity and learning jointly explain the category-

specific patterns observed in the ALE meta-analysis. Fifteen models with different initial 

random weights were trained, providing analogs of fifteen subjects in a brain imaging study. 

Models were tested with simulations of both word and picture comprehension. The 

activation patterns generated by these inputs were treated as analogs of the BOLD response 

and analyzed to identify model regions showing systematic category effects12 (see 

Methods).

Results are shown in Figure 3C. All category effects observed in the ALE analysis emerged 

in the corresponding model layers for both words and pictures. Medial pFG, pMTG, IPL and 

SPL responded more to artifacts because they strongly interact with function or praxis 

representations. Lateral pFG responded more to animals because the medial units had 

partially “specialized” to represent artifacts. Thus model connectivity, learning and 

environmental structure together produced the category-sensitive activations observed in the 

ALE analysis.

Category-specific activations have also been observed during word comprehension in 

congenitally blind participants, providing important support for domain-specific views since 

such results cannot arise from domain differences in visual structure9,63,91. To assess 

whether learning and connectivity also explain such patterns, we replicated the simulations 

in models trained without visual inputs or targets. The animal advantage in lateral pFG 

disappeared, presumably because these units no longer communicate activation from early 

vision12. Artifacts, however, continued to elicit greater activation in medial pFG, posterior 

pMTG, IPL, and SPL, because these units continue to participate in generating function and 

praxis representations for object-directed action. The absence of a category effect in lateral 

pFG and tool/praxis-specific activation patterns in pMTG, IPL, and SPL have all been 

reported in this population9,63,91.
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Disorders of semantic representation

We next considered whether learning and connectivity explain the primary disorders of 

semantic representation and their anatomical basis. By primary we mean acquired disorders 

that (a) reflect degraded semantic representation rather than access/retrieval deficits92,93 

and (b) have been shown in case-series studies to manifest predictable patterns of 

impairment. These include: (a) semantic dementia (SD), where progressive bilateral ATL 

atrophy produces a category-general semantic impairment79; (b) herpes simplex viral 

encephalitis (HSVE), where acute bilateral ATL pathology produces chronic impairments 

disproportionately affecting animals94; (c) temporo-parietal tumor resection (TPT), which 

produces greater impairment for artifacts95; and (d) forms of visual agnosia (VA) producing 

slower and less accurate recognition for animals81,96.

Both SD and HSVE were simulated by removing increasing proportions of ATL 

connections. To capture the progressive nature of SD, performance was assessed without 

relearning after connections were removed. For HSVE we considered two damage models. 

In the homogeneous variant (HSVE), damage was identical to SD but the network was then 

retrained to simulate acute injury with recovery. In the asymmetric variant (HSVE+), lateral 

connections between ATL and pFG were more likely to be removed than medial 

connections, consistent with a possible difference noted in a direct comparison of white-

matter pathology in SD vs. HSVE94 (see SI-Discussion 3.2). The damaged model was again 

retrained. TPT was simulated by removing a proportion of connections within/between 

pMTG and IPL layers, while VA was simulated by removing weights between LOC and 

pFG layers. At each level of damage for each disorder, we simulated picture naming for all 

animal and artifact items85.

Results are shown in Figure 4. The model captures the direction and magnitude of several 

key phenomena including: (a) no category effect in SD, (b) a substantial animal 

disadvantage in both HSVE variants (results of HSVE+ in Fig. S5), (c) a modest artifact 

disadvantage in TPT, (d) an animal disadvantage in response time in VA, (e) worse anomia 

in SD than HSVE, and (f) a smaller and opposite category effect in TPT compared to HSVE.

The pattern of network connectivity transparently explains the key results for two patient 

groups: TPT, where disrupted interactions with function representations in IPL 

disproportionately affect artifacts, and SD, where ATL damage produces a domain-general 

impairment. In VA the category effect arises from “visual crowding”81: because animals 

overlap more in their visual properties5,11, they are more difficult to discriminate (and 

hence to name) when inputs from vision are impoverished97. In HSVE, the model pathology 

is identical to SD—the category effect thus arises through re-learning, via two mechanisms. 

First, intact functional and praxic layers can support new learning for items with these 

properties, that is, for artifacts. Second, because animals share more properties than artifacts 

their ATL representations are also “conceptually crowded,” compromising relearning of 

inter-item differences when ATL representations are damaged79. In HSVE+, the effect is 

magnified when lateral ATL-pFG connections are disproportionately removed, since these 

connections provide more support for animal knowledge as shown in the simulation of 

imaging results (see Figs. S4 and S5).
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The simulation suggests a novel resolution to the long-standing puzzle of why patients with 

HSVE and SD show qualitatively distinct impairments despite largely overlapping 

pathology79. Category-specific deficits may arise when white-matter pathology is 

distributed asymmetrically in the ATL, but even when pathology is identical they may 

emerge through relearning following the acute injury (see SI-Discussion 3.2 and 4). To 

assess this hypothesis, we first evaluated model predictions by regressing the magnitude of 

the category effect (artifact accuracy – animal accuracy) on the total amount of damage, the 

amount of relearning and their interaction, in the simulation of both HSVE and HSVE+ (see 

details in SI-Methods 6). In both cases the two factors interacted reliably: when damage was 

severe, relearning produced a larger category effect, but when damage was mild, relearning 

shrunk the category effect (Fig. S7A&B; interaction for HSVE t = 2.501, p = .014; 

interaction term for HSVE+ t = 2.137, p = .035). We then assessed whether the same pattern 

is observed in the literature. Across 19 previously-reported HSVE cases of category-specific 

impairment (Table S6), we regressed the reported category effect on the overall severity of 

the impairment, the amount of relearning (assessed as the time elapsed between injury and 

test), and their interaction term. Consistent with model predictions, these factors interacted 

reliably [t = 3.298, p < .01]: relearning produced larger effects when deficits were severe but 

smaller effects when deficits were mild (Fig. S7C). The same pattern was also observed 

longitudinally in 4 patients with HSVE98,99 (Fig. S7D). By contrast, this pattern was not 

found in the non-HSVE cases (for full results, see Table S7). Thus the model’s account of 

category-specific impairment is consistent with the existing literature.

Finally, we considered classic lesion-symptom mapping results suggesting that animal-

selective deficits occur with ventro-temporal damage while artifact-selective deficits occur 

with temporo-parietal pathology100. We conducted a model lesion-symptom analysis by 

grouping simulated patients across all four disorders into a single dataset. We quantified 

regional pathology in every model patient as the proportion of connections removed from 

each layer and measured category selectivity as the difference in accuracy naming artifacts 

vs animals. We then computed, across all patients at each layer, the correlation between 

pathology and category selectivity.

Figure 4B shows the results. Damage in ventral temporal model regions (ATL, pFG and 

LOC) significantly predicted greater impairment for animals than artifacts, while damage in 

pMTG and IPL regions predicted the reverse pattern (Fig.4B-left). Importantly, the ATL 

effect was only carried by the HSVE simulations: SD simulations alone showed no 

relationship between lesion severity and category effect (Fig.4B-middle). The same pattern 

is observed in case-series studies of the corresponding syndromes for which data is available 

(Fig.4B-right). Thus the model explains both the canonical lesion-symptom results and their 

puzzling discrepancy with SD.

Discussion

We have proposed a new neurocomputational model for the neural bases of semantic 

representation which, in building on contributions from several groups19,95,101, unifies 

domain-specific and domain-general approaches. The core and critical theoretical 

contribution is that initial connectivity, domain-general learning, and environmental 
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structure all jointly shape functional activation within the cortical semantic network, leading 

to graded category-specificity in some network components but domain-general processing 

in the ATL hub, within a network whose principal function is to support cross-modal 

inference. The model explains the neuroimaging and patient phenomena central to both 

domain-specific and domain-general theories, including (a) category-specific patterns of 

functional activation in sighted and congenitally-blind individuals, (b) patterns of 

impairment observed across four different neuropsychological syndromes, and (c) the 

anatomical bases of these patterns. It also exemplifies a general approach to functional 

specialization in cortex that we have termed connectivity-constrained cognition or C3.

Our model reconciles and extends several competing perspectives in the literature. Like the 

sensory-functional hypothesis, category sensitivity arises from domain differences in the 

recruitment of action versus visual representations10,102; but we show that learning and 

connectivity can produce domain differences even in the absence of visual experience, and 

outside canonical action areas, addressing key criticisms of the sensory-functional view3. 

Like the distributed domain-specific hypothesis, category-sensitivity reflects network 

connectivity, with temporo-parietal pathways initially configured to facilitate vision-action 

relationships important for tool knowledge9. The model reconciles this perspective with the 

extensive evidence for domain-general representation in the ATL. An important account of 

optic aphasia relied on graded functional specialization arising from constraints on local 

connectivity8; our model extends this idea to incorporate long-range connectivity 

constraints. Like the correlated-structure view, category-selectivity arises partly from 

different patterns of overlap among animal versus artifact properties6, but in our model 

network connectivity also plays a critical role. Finally, this work extends the hub-and-spoke 

model under which the ATL constitutes a domain-general semantic hub for computing 

mappings amongst all surface modalities4. The model illustrates how domain-specific 

patterns can arise within the “spokes” of such a network, even while the ATL plays a critical 

domain-general role in semantic representation13 (see SI-Discussion 2 for relationship to 

other models).

In emphasizing semantic representation we have not considered the fronto-parietal systems 

involved in semantic control103, nor does the model address open questions about 

lateralization, abstract and social concepts, or other conceptual distinctions amongst 

concrete objects. We therefore view the proposed model as establishing a crucial foundation 

rather than an end point. Nevertheless, the current work is unique in developing a 

neurocognitive model whose architecture is fully constrained, a priori, by systems-level 

neural data. The project illustrates how simulation models at this level of abstraction can 

provide an important conceptual bridge for relating structural and functional brain imaging 

and healthy and disordered cognitive functioning74. While interest in neural networks has 

recently rekindled in machine learning104, their original promise as tools for bridging minds 

and brains105 has remained largely untested. We have shown that the convergent use of 

network simulation models with the other tools of cognitive neuroscience can produce new 

insights with the potential to resolve otherwise pernicious theoretical disputes. We further 

believe the C3 approach we have sketched, in which network models are used to illuminate 

how connectivity, learning, and environmental structure give joint rise to cognitive function, 

can be similarly useful in other cognitive domains.
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Methods

ALE analysis

We followed the standard literature search procedure from previous ALE studies25,106 and 

found 49 papers describing 73 independent studies (31 for animal and 42 for artifact; for 

study selection, see SI-Methods 1) up to July, 2013 and reporting a total of 270 foci (103 for 

animal and 167 for artifact). The ALE meta-analysis was carried out with the software 

package gingerALE v2.3107,108. The ALE analysis strictly followed the steps proposed by 

Price et al.106 and Eickhoff et al.72,107,108, and coordinates in MNI space were used for 

ALE analysis and reports. Main effects of animal and artefact concepts (concordance of foci 

showing greater activations for animal vs. baseline and artefact vs. baseline) are reported in 

Table S1. Next we combined the resulting ALE animal and artifact maps and tested for brain 

regions commonly activated by both categories (conjunction analysis) and showing reliably 

different activations for the two categories of interest (contrast analysis) as reported in the 

main text.

Connectivity analysis

Diffusion-weighted images were collected from 24 right-handed healthy subjects (11 

female; mean age = 25.9) at University of Manchester, UK88. All participants are right-

handed as determined by the Edinburgh Handness Inventory109. Inclusion and exclusion 

criteria were stated in previous studies88,110, and no randomization or blinding was needed. 

Informed consents were obtained for all subjects.

Image acquisition—Imaging data were acquired on a 3T Philips Achieva scanner (Philips 

Medical Systems, Best, Netherlands), using an 8 element SENSE head coil. Diffusion 

weighted imaging was performed using a pulsed gradient spin echo echo-planar sequence 

with TE=59 ms, TR≈1500 ms (cardiac gated), G=62 mTm−1, half scan factor=0.679, 

112×112 image matrix reconstructed to 128×128 using zero padding, reconstructed 

resolution 1.875×1.875 mm, slice thickness 2.1 mm, 60 contiguous slices, 61 non-collinear 

diffusion sensitization directions at b=1200 smm−2 (Δ=29.8ms, δ=13.1ms), 1 at b=0, and 

SENSE acceleration factor=2.5. A high-resolution T1-weighted 3D turbo field echo 

inversion recovery scan (TR≈2000 ms, TE=3.9 ms, TI=1150ms, flip angle 8°, 256×205 

matrix reconstructed to 256×256, reconstructed resolution 0.938×0.938 mm, slice thickness 

0.9 mm, 160 slices, SENSE factor=2.5), was also acquired for the purpose of high precision 

anatomical localization of seed regions for tracking. Distortion correction to remediate 

signal loss in ventral ATL was applied using the same method reported in other 

studies88,110.

ROI definition—The ROIs were chosen to reside in the white-matter underlying the peaks 

identified in the ALE-meta analysis, or from regions reported in the relevant literature. 

Specifically, ROIs in lateral pFG, medial pFG, MOG, pMTG, IPL (IPL_1) and SPL (SPL_1) 

in the left hemisphere were chosen from the ALE meta-analysis as regions showing reliable 

category-specific activation patterns. The ATL ROI was chosen from an fMRI study111 that 

reported cross-modal activation for conceptual processing in the ATL. Due to the uncertainty 

of tempo-parietal connectivity, we also included a second IPL seed (IPL_2) whose 
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coordinates were chosen from a study in which TMS to this region slowed naming of tools 

but not animals112. Likewise we included a second SPL ROI (SPL_2) reported by Mahon et 

al.63 as a peak showing preferential activation for artifact stimuli in both sighted and 

congenitally blind participants. To assess the caudal-going trajectory of the ILF, we placed 

an additional seed in the inferior temporal white matter at the anterior-most extent of the 

artifact peak revealed by the ALE meta-analysis. As reported in the main text, this 

streamline branched superiorly up into parietal cortex, intersecting the streamline from the 

SPL seeds. To determine whether a single tract might connect SPL, medial pFG and ATL, 

we placed a final waypoint seed at this intersection. For more details about ROI definitions, 

see SI-Methods 2.

Probabilistic tracking procedure—We restricted our analysis to the left hemisphere, 

and following similar procedure of previous study110, a sphere with a diameter of 6mm 

centered on the seed coordinate for each ROI was then drawn in the MNI template (see 

Table S2 for the exact coordinates; details in SI). Finally, the ROIs defined in a common 

space were converted into the native brain space of each individual.

For each voxel within a seed ROI sphere, 15,000 streamlines were initiated for 

unconstrained probabilistic tractography using the PICo (Probabilistic Index of 

Connectivity) method110,113. Step size was set to 0.50 mm. Stopping criteria for the 

streamlines were set so that tracking terminated if pathway curvature over a voxel was 

greater than 180, or the streamline reached a physical path limit of 500 mm. In the native-

space tracking data from each seed region for each individual, ROI masks were overlaid and 

a maximum connectivity value (ranging from 0 to 15,000) was obtained for the seed region 

and each of the other ROIs, resulting in a matrix of streamline-based connectivity. A 

standard two-level threshold approach was applied to determine high likelihood of 

connection in this matrix110. At each individual level, three thresholds, 1% (lenient), 2.5% 

(standard), and 5% (stringent) were used to investigate the probable tracts in a wider range. 

At the group level, only connections present in at least half (>=12) subjects were considered 

highly probable across subjects (for more details of thresholding, see in SI-Methods 3). A 

group-averaged tractography image was then obtained by averaging the normalized 

individual data110.

Computer simulations of fMRI data

The model architecture shown in Figure 3B (main text) was implemented using the Light 

Efficient Network Simulator (LENS) software114. The model included four visible layers 

directly encoding model analogs of visual, verbal (names and descriptions), praxic, and 

functional properties of objects. Each visible layer was reciprocally connected with its own 

modality-specific hidden layer, providing model analogs to the posterior fusiform (pFG, 

visual hidden units), superior temporal gyrus (STG, verbal hidden units), inferior parietal 

lobule (IPL, function hidden units), and superior parietal lobule (SPL, praxic hidden units). 

The model also included two further hidden layers corresponding to the ventral ATL and the 

posterior MTG. Hidden layers were connected with bidirectional connections matching the 

results of the tractography analysis, as shown in Figure 3B. A spatial gradient of learning 

rate on visuo-praxic connections of units in the pFG layer along an anatomical lateral-to-
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medial axis was implemented12 (details see SI-Methods 4), to capture the observation that 

medial pFG is more strongly connected to parietal regions than is lateral pFG19. All units 

employed a sigmoidal activation function and were given a fixed bias of -2 so that, in the 

absence of input from other units, they tended to adopt a low activation state. Units updated 

their activation states continuously using a time integration constant of 30. Model 

implementation and training environment files can be downloaded online (see Data 

Availability).

Training environment—A model environment was constructed to contain visual, verbal, 

function/action and praxic representations for 24 different exemplars of animals and 24 

different exemplars of tools, with each domain organized into 4 basic categories, each 

containing 6 exemplars (for representational schemes of training exemplars, see Table S3 

and SI-Methods 5). In total, there were 48 training exemplars. Visual and verbal 

representations for each item in this set were generated stochastically in accordance with the 

constraints identified by Rogers et al.5 in their analysis of verbal attribute-listing norms and 

line drawings of objects. Thus (a) items in different domains shared few properties; (b) items 

within the same category shared many properties; (c) animals from different categories 

shared more properties than did artifacts from different categories; and (d) animals had more 

properties overall than did artifacts. Each item was also given a unique name as a well as a 

label common to all items in the same category.

Praxis representations were also constructed for each item, taking the form of distributed 

patterns over the 10 units in the visible praxic layer12. For all animal items, these units were 

turned off. For artifacts, distributed patterns were created that covaried with, but were not 

identical to, the item’s corresponding visual pattern, as a model analog of vision-to-action 

affordances. Function representations simply duplicated the praxic patterns across the 10 

visible units for function features.

Model training procedures—The model was trained to generate, given partial 

information about an item as input, all of the item’s associated properties, including its 

name, verbal description, visual, function and praxic features, similar to our previous 

work12 (details see SI-Methods 5). Weights were updated using a variant of the 

backpropagation learning algorithm suited to recurrent neural networks, using a base 

learning rate of 0.01 and a weight decay of 0.0005 without momentum115. ‘Congenitally 

blind’ model variants were trained with the same parameters on the same patterns, but 

without visual experience: visual inputs were never applied to the model, and visual units 

were never given targets. All models were trained exhaustively for 100k epochs at which 

point they generated correct output (details, see SI-Methods 5) across all visible units for the 

great majority (>94%) of inputs. For each model population (sighted/blind), 15 different 

subjects were simulated with different model training runs, each initialized with a different 

set of weights sampled from a uniform random distribution with mean 0 and range ± 0.1 (for 

model performance after training, see Table S4).

Simulating functional brain imaging studies—The brain imaging studies simulated 

involved two tasks: picture viewing, in which participants made a semantic judgment from a 

picture of a familiar item, and name comprehension, in which they made a semantic 
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judgment from the spoken name of a familiar item. To simulate the picture viewing task in 

sighted model variants, the visual feature pattern corresponding to a familiar item was 

applied to visual input units and the trained model cycled until it reached a steady state. To 

simulate name comprehension in both sighted and congenitally blind variants, a single unit 

corresponding to the item’s name was given excitatory external input, and the model again 

cycled until it reached a steady state. In both tasks, after settling, the activation of each 

model unit was recorded and taken as an analog of the mean activity difference from 

baseline for a population of neurons at a single voxel. This value was then distorted with 

Gaussian noise (μ = 0, σ2 = 0.1) to reflect the error in signal estimation intrinsic to brain 

imaging methods. The response of each unit was then averaged across items in each 

condition (Animal vs. Artifact) and then spatially smoothed with a Gaussian kernel (μ = 0, σ
2 = 1) encompassing two adjacent units. A group-level contrast was performed to find the 

peak activation for both Animal and Artifacts concepts using the averaged data across the 15 

model subjects. An ROI analysis was then performed on activation value of the peak unit 

averaged together with two neighboring units on either side.

Computer simulations of patient data

Following simulation of functional imaging data, we assessed whether the model could 

explain patterns of impaired semantic cognition and their neuroanatomical basis in four 

disorders of semantic representation. Here, we provide basic information of the phenotype of 

each disorder and model simulation procedure (details of pathology and motivation in SI-

Discussion 3). The model architecture and training environment were the same as in the 

simulations of brain imaging data, except that pattern frequencies were adapted to ensure 

that the names of animal and artifact items appeared as inputs and targets with equal 

frequency (see Fig. S3).

(1) Semantic dementia (SD) is a neurodegenerative disorder associated with gradual thinning 

of cortical grey matter and associated white-matter fibers, centered in the ATL78, and 

produces a robust, progressive and yet selective deterioration of semantic knowledge for all 

kinds of concepts, across all modalities of reception and expression76,5,116. We simulated 

SD by removing an increasing proportion of all weights entering, leaving, or internal to the 

ATL hidden layer uniformly from 0.1 to 1.0 with an increment of 0.1. At each level of 

damage, the model was tested without allowing it to relearn/reorganize.

(2) Herpes Simplex Viral Encephalitis (HSVE) is a disease that produces rapid bilateral 

necrosis of gray and white matter, generally encompassing the same regions affected in SD, 

but patients with semantic impairments from HSVE, has been found with greater damage in 

temporal white matter especially in the lateral axis94. HSVE patients often show less 

semantic impairment overall, with greater deficits of knowledge for animals than for 

manmade objects79,94. The main paper considers two potential explanations, each 

associated with a different model of HSVE pathology. The model first captures differences 

in the time-course of SD vs. HSVE: whereas the former progresses slowly over a course of 

years, the latter develops rapidly and is then halted by anti-viral medication after which 

patients often show at least some recovery of function. Weights were removed from the ATL 

layer as in the SD simulation, but the damaged model was then retrained before assessment 
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on the naming task (for motivation, see SI-Discussion 3.2). Retraining employed the same 

parameters used in the last cycle of the initial training, namely, learning rate = 10-3 and 

weight decay = 10-6. The main text reports data following 3k epochs of retraining when the 

model performance had largely stabilized (see Fig. S4 for recovery trajectory). The second 

further assessed the potential contribution of differential white-matter damage across the 

lateral/medial axis of the ATL in HSVE94. To simulate this, a proportion of ATL 

connections selecting uniformly with probability p were removed in a first pass (as in the SD 

simulation), then a second removal of connections was applied to weights between ATL and 

lateral pFG units (units 0-9). In a 30% lesion, for instance, 30% of all ATL connections 

entering or leaving each ATL unit were removed, and then 30 % of the original connections 

between ATL and lateral pFG units were additionally removed. Thus, when the global lesion 

severity equaled or exceeded 50%, all connections between ATL and lateral pFG were 

removed. Finally, the model was retrained as in the homogeneous variant of HSVE and 

performance on the retrained model was assessed (see Fig. S5). We also demonstrated that 

without relearning, the HSVE variant showed little evidence for category-specific 

impairment (just as with SD simulations), but the HSVE+ variant showed more severe 

impairment in the animal category (see Fig. S6).

(3) Temporo-parietal tumor resection (TPT). Campanella and colleagues95 presented the 

first relatively large-scale case-series study of artifact-category impairment in a group of 30 

patients who had undergone surgical removal of temporal-lobe tumors. The group exhibited 

significantly worse knowledge of nonliving things compared to animals, with difference 

scores in naming accuracy ranging from 2%-21%. Voxel-based lesion-symptom mapping 

(VLSM) revealed that the magnitude of the category effect was predicted by pathology in 

posterior MTG, inferior parietal cortex, and the underlying white matter. To simulate this 

pathology in the model we removed connections between and within IPL and MTG model 

regions uniformly from 0.1 to 1.0 with an increment of 0.1.

(4) Category-specific visual agnosia (VA). Finally, a long tradition of research suggests that 

forms of associative visual agnosia arising from damage to occipitotemporal regions can 

have a greater impact on recognition of living than nonliving things117,118. The deficit is 

specific to vision, and more evident in naming latency rather than accuracy at milder 

impairment96. To capture disordered visual perception, we removed a proportion of the 

weights projecting from the visual input layer (LOC) to the visual hidden layer (pFG). We 

used a smaller range from 0.025 to 0.25 in increments of 0.025 in order to preserve sufficient 

visual inputs to the system.

Assessment of model performance—For each disorder, model performance was 

assessed on simulated picture naming. For each item, the corresponding visual features were 

given positive input, and the activations subsequently generated over units encoding basic-

level names were inspected to assess performance. Naming performance was scored as 

correct if the target name unit was (a) the most active of all basic name units and (b) was 

activated above 0.5; otherwise it was scored as incorrect. In visual agnosia at mild 

impairment, the category-specific impairment can be observed in response time so that we 

computed naming latency as the number of update cycles (ticks) required for the target unit 

to reach an activation of 0.5 (for correct naming trials only). For comparison to standardized 
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human latency data in VA, the model latency was standardized by computing (Nj – N0)/N0, 

where Nj is the number of ticks used for the model to produce a response at the jth level of 

lesion severity and N0 was the number of ticks for naming without any lesion in the 

model119. Therefore, the raw latency measure is adjusted by baseline response latency 

differences between categories that exist in the performance of the intact models. Note that 

in figures of the main text, the severity was recomputed as the overall naming accuracy 

collapsing animal and artifact categories. See Table S5 for naming accuracy and latency at 

different levels of lesion severity measured as percentage of affected connections.

Data availability

Program scripts and source data that support the data analysis of this project are available in 

online public repositories, and more details are available upon request. See https://

github.com/halleycl/ChenETAL_NatHumanBehav_SI-Online-materials and https://

app.box.com/v/ChenETAL-NatHumanBehav-SI.

Supplementary Information

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ALE analysis showing regions that systematically respond more to animals than artifacts 

(orange), more to artifacts than animals (blue), or equally to both (green). Red dots indicate 

seed points from activation likelihood estimation (ALE) analysis and literature review. IPL = 

inferior parietal lobe, SPL = superior parietal lobe, pFG = posterior fusiform gyrus, pMTG = 

posterior middle temporal gyrus, LOC = lateral occipital complex.
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Figure 2. 
Tractography results. Red spheres indicate seed points from activation likelihood estimation 

(ALE) analysis and literature review. (A). Streams from medial (blue) and lateral (pink) pFG 

project to ATL. (B). Streams from pMTG (yellow) project to ATL and IPL, while IPL 

streams (green) project to pMTG but not ATL. (C). Streams from inferior ATL white matter 

(blue) pass by medial pFG and branch superiorly, where they intersect SPL streamlines 

(green). The waypoint seed was placed at this intersection. (D-E). Matrices showing 

significant connectivity of temporal regions with IPL regions via the pMTG and with SPL 

regions via the tract identified by the waypoint seed. Numbers indicate group-averaged 

probability estimates (0-1) from seed (column) to target (row) regions.
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Figure 3. 
Model architecture and fMRI data simulations. (A). Schematic showing ALE and 

connectivity results. Red arrows indicate significant connectivity in tractography while 

colors indicate semantic category effects in the ALE analysis. The dotted arrow indicates 

that connectivity diminishes from medial to lateral pFG. (B). Architecture of the 

corresponding neural network model. Boxes indicate layers that directly encode features of 

objects (visible units) and circles indicate model analogs of cortical regions of interest where 

representations are learned (hidden units). For visible units, blue indicates more active 

features for animals than artifacts while orange indicates the reverse. For hidden units, circle 

color indicates expected category effects using the same scheme as panel A. Red arrows 

indicate model connections that correspond to tractography results; gray arrows indicate 

connections that mediate activation between visible and hidden units. (C). Mean unit 

activation for animals or artifacts in each model region of interest, for visual and word inputs 

of the “sighted” model (left and middle) and for word inputs in the “blind” model (right).
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Figure 4. 
Results of patient simulations. (A). Line plots show model naming accuracy for animals and 

artifacts at ten increasing levels of damage for each disorder plotted against overall accuracy 

(all items). Dashed vertical lines indicate the damage level that most closely matches mean 

overall accuracy in the corresponding patient group. HSVE data are for the homogeneous 

damage model (HSVE); data for the asymmetric damage model (HSVE+) appear in 

Supplementary Figure S5. Barplots show accuracy by category for the model at this level 

compared to patient means/standard errors reported in 79,95,96. (B). Lesion-symptom 
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mapping results. Left: Layers/connections where lesion size predicts increasing artifact 

(blue) or animal (orange) disadvantage. Middle: Correlation between lesion size and 

category effect in each simulated patient group. Right: Category effect size in naming 

plotted against overall impairment as measured by word comprehension (SD and HSVE) or 

overall naming (TPT) in case-series studies of real patients.
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