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Abstract

High-throughput in vitro methods have been extensively applied to identify linear information
that encodes peptide recognition. However, these methods are limited in number of pep-
tides, sequence variation, and length of peptides that can be explored, and often produce
solutions that are not found in the cell. Despite the large number of methods developed to
attempt addressing these issues, the exhaustive search of linear information encoding pro-
tein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy,
called DALEL, for the exhaustive search of linear sequence information encoded in proteins
that bind to a common partner. We applied DALEL to explore binding specificity of SH3
domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide
sequences of SH3 domain binding proteins, we succeeded in identifying the majority of
known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we dis-
covered a number of sites with both non-canonical sequences and distinct properties that
may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-
of-the-art algorithms in the blind identification of known binding sites of the human Grb2
SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the
ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs.
Our strategy can be applied in conjunction with experimental data of proteins interacting
with a common partner to identify binding sites among them. Yet, our strategy can also be
applied to any group of proteins of interest to identify enriched linear motifs or to exhaus-
tively explore the space of linear information encoded in a polypeptide sequence. Finally,
we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering
user-friendly interface and providing different scenarios utilizing DALEL.

Author summary

Here we describe the first strategy for the exhaustive search of the linear information
encoding protein-peptide recognition; an approach that has previously been physically
unfeasible because the combinatorial space of polypeptide sequences is too vast. The
search covers the entire space of sequences with no restriction on motif length or
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Introduction

The notion that the information encoding molecular recognition could be linearly encoded in
peptides has changed the way we have approached the study of protein-protein interactions
both experimentally and computationally [1]. Linear information encoding recognition is typi-
cally represented using consensus sequences, i.e. motifs, which define positions and composi-
tions of the residues contributing to both specificity and affinity of recognition [2]. There is a
pressing need and great interest in deciphering the linear information encoding recognition
for increasingly diverse families of domains involved in all cellular processes [3]. This informa-
tion is essential to constructing both empirical and quantitative models of biochemical net-
works [4]. Constructing such models has broad applications to both predicting behaviors of
pathways, synthesizing novel pathways to create novel biochemical processes or designing
inhibitors of specific cellular processes [5].

For two decades, high-throughput in vitro screening methods based on combinatorial pep-
tide chemistry have been utilized to explore the linear amino acid sequence information
encoding recognition of linear peptides and to reveal principles that underlie their selective
binding to individual domains [6]. These methods involve in vitro screening of target domains
against peptide libraries to obtain large number of hits, which are then aligned to find posi-
tions and compositions of the residues involved in recognition. However, the observation of a
protein binding to a peptide in vitro does not guarantee binding in vivo of the same protein to
all proteins encoding the same peptide. There is also the risk of finding peptides that are not
found in the cell [4, 7]. Several factors can cause binding to differ between in vitro and in vivo
measurements: in vitro detection of domain-peptide interactions are outside of their biological
context; that is, binding peptides within a protein are often optimized to bind in vivo with con-
comitant contributions of additional contacts, cooperativity or post-translational modifications
[8-10]. There is, thus, always the possibility that contextual information about the binding of a
particular linear peptide to a protein is missing from in vitro binding data [6]. Moreover, in
vitro methods are limited in the complexity of libraries, i.e. number and length of peptides that
can be screened, thus limiting the space of linear information that can be explored. For instance,
we curated the literature for experimentally validated SH3 domain interactions in yeast, and we
found that more than half of the binding sites determined in vivo were not currently predicted
from in vitro experiments [11].

During the past two decades, different classes of methods have been developed in attempts
to address these issues. The first class of methods were designed to search specifically for anno-
tated motifs, like those derived from the Eukaryotic Linear Motif (ELM) database [12-16]. For
example, Stein and Aloy identified instances of peptide-mediated protein interactions of
known 3D structure based on the collection of motifs in the ELM database [16] and explored
individual contribution of motifs and context to global binding energy [14], while Mooney
et al. applied machine learning techniques to predict motifs based on annotated instances
from the ELM database [12]. Another class of methods were designed to search for motifs
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displaying properties previously observed in linear binding peptides, including three-dimen-
sional structures, intrinsic disorder, sequence conservation, and solvent accessibility [17-22].
For example, Stein and Aloy used available structures of known protein-peptide interactions
and scanned protein complexes of known 3D structures to identify new peptide-mediated
interactions [17]. In another example, Davey et al. used the statistical significance of sequence
conservation of small stretches of residues within intrinsically disordered regions to identify
putative functional motifs [18]. Another class of methods relies on statistical models, such as
hidden Markov model, Gibbs sampling and Nested sampling [23-26]. For example, Bailey

and Elkan used Gibbs sampling and Expectation Maximization to fit a two-component finite
mixture model to describe the sequences of interest, then predicted motifs by fitting the statisti-
cal model. In another example, Dogruel et al. used a Monte Carlo inference strategy, called
Nested Sampling, to build a multi-class sequence background model to find non-motif parts of
sequences, then build a set of position-weight matrices to represent motifs overrepresented in
the sequences considered [25]. In a different example, Nguyen et al. used hidden Markov mod-
els to include insertion/deletion/substitution events within protein sequences, then applied the
model to identify short linear motifs in the budding yeast Saccharomyces cerevisiae [23]. The last
class of methods were designed to search overrepresented linear motifs in proteins. For exam-
ple, Edwards et al. used a probabilistic method for identifying overrepresented and evolutionary
convergent motifs in proteins [19]. In another example, Kelil et al. explored motifs of any length
and composition and scored their enrichment using the hypergeometric distribution [27].

Crucial to computational prediction of linear binding sites is the selection of appropriate
reference sequences from which statistical inference of discovered binding sites are made. A
key advance of the method we describe here are improvements in the selection of such refer-
ence sequences. Among existing methods, DILIMOT [21] developed by Neduva and Russell,
and FIREPRO [22] developed by Lieber et al. score motif enrichment in sequences of interest
relative to a set of reference sequences. For DILIMOT, reference sequences are taken arbi-
trarily from the SWISS-PROT database, while in our method the reference sequences are
carefully selected from non-binding negative control proteins. These include the sequences of
all proteins that are experimentally shown to bind to one or more members of a family of pro-
teins or protein domains but not to the specific member being tested. Use of such reference
sequences should enable us to distinguish between enriched functional motifs and randomly
recurring ones. For FIREPRO, reference sequences are also selected from negative control pro-
teins. However, motif enrichment is scored using mutual information, while in our method
motif enrichment is scored using the cumulative hypergeometric distribution. This approach
offers a significant advantage over the mutual information in that it provides a direct and exact
evaluation (i.e. based on Fisher’s demonstration [28]) of the statistical significance of the en-
richment of a motif within the sequences of interest over the reference sequences.

Despite the large number of methods available to date, including all of those cited above,
the exhaustive search of motifs in groups of proteins has been so far physically unfeasible.

In other words, no method to date allows one to exhaustively explore the entirety of possible
linear binding motifs, including flexible residues, i.e. positions with preference for multiple
amino acids, within a set of proteins of interest and for each motif, calculate a score that evalu-
ates its enrichment relative to a background model.

To address these issues, we have devised a strategy to exhaustively search for linear seq-
uence motifs shared among proteins that form direct interactions with other proteins or folded
protein domains, e.g. from yeast two-hybrid screens. Our strategy can also be applied to any
group of proteins of interest to identify enriched linear sequences, or to exhaustively explore
the space of linear information. Our method is designed to exhaustively search the entire space
of all possible motifs. The search covers all possible sequences of any length and composition
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within the proteins of interest. Our strategy does not require any prior knowledge about
sequence or structural consensus signatures of recognition peptides and can be applied to any
group of proteins expected to share sequence motifs (e.g. because they bind to the same part-
ner). The strategy presented builds on previous work [27] with several notable improvements.
DALEL indeed explores preferences for multiple amino acids at each position of a motif,
allows combining the background dataset with a dataset of “negative sequences”, and uses a
parallel suffix tree to enable the exhaustive search of variations in motifs, which was previously
unfeasible due to the associated combinatorial explosion.

To test DALEL we used the SH3 domains of budding yeast Saccharomyces cerevisiae as a
test system because there are numerous sources of data on SH3 domains’ interactions, both in
vivo with full-length proteins and in vitro with linear peptides. In total, we manually curated
890 protein-protein interactions from the literature, between the 25 yeast SH3 domains and
361 proteins encoding a total of 1073 experimentally verified SH3 binding sites (i.e. linear pep-
tide segments within the proteins), henceforth called “known SH3 binding sites” [11] (S1 Table).

Using DALEL we were able to identify the majority of previously discovered SH3 binding
sites. We have also identified previously unreported sites with non-canonical sequences and
properties that may bind to SH3 domains in distinct ways or serve indirect ancillary roles in
peptide recognition and binding. Finally, in an application of DALEL, we have discovered a
remarkable relationship between SH3 domain binding motif thermodynamic, evolutionary
properties and functional specificity of the proteins that have given motifs [11]. Application of
our approach to other domain-linear peptide interactions may reveal similar relationships,
establishing a framework for predicting functional organization of protein interactomes.

Results

A generalized definition of binding specificity of proteins for a family of
proteins or protein domains

Before describing the methodology for enumerating linear motifs, we first summarize how bind-
ing specificity of the motifs for a family of proteins or protein domains is assessed. Our strategy
is based on the premise that proteins known to bind to a common target domain are enriched
in peptides encoding the linear information necessary to recognize that domain, while all other
proteins within a cell or organism do not exhibit such enrichment. In our strategy, we exhaus-
tively enumerate all possible consensus motifs within a set of proteins that bind to one or more
types of proteins or protein domains. Our approach is closest to DILIMOT and FIREPRO, and
part of its originality comes from the way we define the background model. For each target (one
member of a protein or protein domain family), we partition the proteome into three distinct
sets. The “positives” are proteins that bind to the target. The “negatives” are proteins that do not
bind to the target but do bind to at least one other member of the same family (e.g. a different
SH3 domain). The “background” consists of all other proteins in the proteome that bind neither
to the target nor to any of the other members of its family. We calculate then two p-values for
each motif using the cumulative hypergeometric distribution (Methods): (i) pnrg quantifies
motif enrichment in the positives over the negatives, and (ii) ppax quantifies motif enrichment
in the positives over the background. In other words, pngg reflects specificity of the motifs for
the target domain relative to other domains of the same family, while pp,x reflects specificity for
the target domain relative to motifs found in the background. Thus, a motif with strong pxec
and ppax means high specificity for the target domain. The significance of pyrc and ppax are
evaluated by calculating their z-scores, and the less significant of both z-scores is assigned to the
motif (Methods). Consequently, when there are not enough (e.g. < 20) well-defined positives
and/or negatives, the z-scores will inherently be weak and the utility of DALEL will be limited.
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Fig 1. Parallel strategy for exhaustive search of linear motifs in protein sequences. (A) A sliding window is used to enumerate sequence motifs among
proteins that bind to a protein or protein domain (positives); (B), the scan is performed for all linear peptides of a specified sequence length. (C) Sequences
obtained are passed through a set of masks, each representing one of the possible combinations of wildcard (variable amino acid) positions. (D) Each mask is
used to find all possible motifs present in the positives and matching wildcard configuration defined by the masks. (E) A suffix tree is constructed for each set
of motifs. (F) The size of each tree is reduced by removing branches corresponding to motifs that occur among the positives less than a specified number of
times. (G) Finally, a sliding window is used to scan each protein in the proteome for peptides of the desired length. (H) Peptides are matched to each suffix
tree to obtain the number of occurrences of each motif among the negatives (proteins that do not bind to a specified protein or protein domain but bind to one
or more members of same family) and the background (all other proteins in the proteome).

https://doi.org/10.1371/journal.pchi.1005499.9001

Exhaustive search for linear sequence motifs in proteins

Our strategy exploits suffix trees, which allows for enumerating motifs in sequences in time
that is linear with their length and number [29]. Our algorithm searches for all possible motifs
comprising any number and combination of wildcards e.g. X in consensus motif PXXP. Theo-
retically, the number of possible combinations of wildcards in a motif of length [ equals 2’ (e.g.
each position is a wildcard or not, I-times), hence, the number of motifs of length / in a set of
protein sequences is proportional to 2', which require a suffix tree with size O(2') to represent
them all. The exponential growth of the suffix tree with motif length makes exhaustive search
for motifs unfeasible. For instance, in S. cerevisiae, the suffix tree required to represent all pos-
sible motifs present in SH3 binding proteins rapidly exceeds physical memory (S1 Fig). To
address this problem, we devised an algorithm to exhaustively search for motifs by dividing
the O(2") suffix tree into 2’ smaller suffix trees that can be explored sequentially, resulting in a
linear increase in memory usage with motif length (S2 Fig). Such an approach also allows for
faster and parallelizable searches.

The first step of the algorithm consists of using a sliding window to scan the sequences of
all positives for linear peptides of a desired length (Fig 1A). The obtained peptides (Fig 1B) are
passed through a set of masks, each one representing one of the possible combinations of wild-
cards (Fig 1C). Each mask is used to find all possible motifs present in the positives and match-
ing wildcard conformation defined by the mask (Fig 1D). Then we build the suffix tree of each
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set of motifs (Fig 1E). The number of occurrences in the positives of each motif is immediately
available after the completion of the construction of the tree, making it possible to further
reduce the size of the tree by removing branches corresponding to motifs with occurrences
less than a desired minimum (Fig 1F). This optimization contributes significantly to accelerat-
ing the next step, which is the slowest in the algorithm. Finally, we use a sliding window to
scan each protein in the proteome for peptides of a desired length (Fig 1G) and we match the
peptides with each suffix tree to obtain the number of occurrences of each motif in the nega-
tives and the background (Fig 1H).

Exhaustive search of flexible residues required in peptide recognition

Among peptides known to bind to a common domain, only about one-third of the residues
are typically essential for recognition [30, 31], e.g. “P” in the motif PXXP binding to SH3
domains [32]. Other residue positions can be any (X) or a small number ([. ..]) of amino acids,
e.g. [RK] in [RK]XXPXXP and PXXPX[RK] motifs binding to diverse SH3 domains [33]. They
also often display correlated preferences for amino acids at distinct positions, i.e. dependence
between distinct positions for their amino acids preferences [34], e.g. [ST] in R[ST][ST]SL pep-
tides binding to Fus1 SH3 domain [35].

The strategy for exhaustive search for linear consensus motifs consists of finding all possible
variants of each motif found in the suffix tree analysis by substituting wildcards by brackets,
including all possible combinations of amino acids, e.g. [IVL] or [DE]. However, exhaustive
search for variations in motifs is physically unfeasible because the combinatorial space is too
vast. For instance, the number of possible combinations for a single motif with 4 wildcards is
on the order of 10**. Theoretically, the number of ways of picking k amino acids is C2* =
20!/k!(20 — k)! (i.e. all combinations of 1, 2, 3, . . ., and 20 amino acids), and then the number
of ways of picking all combinations of 1 to 20 amino acidsis 3 ;- C (e.g. PXXXP has 1 x C?
x C’ x C x 1 possible variations). Consequently, the total number of all possible combina-

tions of amino acids for a motif including n wildcards is [, ", C. Thus, with each addi-
tional wildcard the upper bound of the number of possible combinations is multiplied by

20 C ~ 10°. For this reason, we devised a strategy where we exhaustively search for all pos-
sible variants of each motif that improve its p-values (i.e. pyeg and/or pgax), by iteratively
substituting each wildcard by all combinations from 1 to 20 amino acids and testing for
improvement of the motif p-value with each iteration of amino acid substitution (Fig 2).

The substitution of a wildcard starts with a first iteration (Fig 2B) in which a wildcard is
substituted by each single amino acid, and substitutions that improve the p-value are retained
for the next iteration (Fig 2B.1). At the next iteration, for each substitution retained, we add each
remaining amino acid one by one and new substitutions that improve p-values are retained for
the next iteration (Fig 2B.ii). Similarly, we continue at each iteration, to add remaining amino
acids to each substitution that improves the p-value (Fig 2B.iii). In addition, throughout the iter-
ations, for any substitution that improves the p-value, the other wildcards in the motif are
substituted in their turn in the same way (Fig 2C). The goal is to exhaustively explore all possible
variants of a motif that improve its p-values and that present correlated preferences for specific
groups of amino acids at distinct positions. Finally, when there is no further improvement in p-
value with further substitutions, the variable amino acids at a position are retained.

The method predicts both canonical and unforeseen recognition peptides

To benchmark the method, we measured how well it could recapitulate known protein bind-
ing motifs and unforeseen motifs. Unforeseen motifs are evaluated by comparing general
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Fig 2. A strategy to exhaustively search for variable residues in linear motifs. The algorithm first exhaustively searches for variants of a motif by
substituting each wildcard by all combinations from 1 to 20 amino acids iteratively and test for improvement of p-values. (A) Given the motif “Pxxx1L”, the
strategy substitutes all combinations of amino acids at each wildcard (orange boxes). When a substitution at a given wildcard improves the p-value, the
algorithm switches to substitutions of the other wildcards (green boxes). (B) The wildcard is iteratively substituted by all combinations from 1 to 20 amino acids
until there is no further improvement of the p-value. (i) At the first step, the wildcard is substituted by each of 20 individual amino acids. Substitutions that
improve the p-value are retained, i.e. “P [N] . . L”; (ii) for each substitution retained we add, one by one, each of the other amino acids and new substitutions
that improve the p-values are retained, i.e. “P [NS] . . L7 (iii) step (ii) is repeated for remaining amino acids, i.e. “P [NSI] . .L". (C) The process described in
(B) is simultaneously performed at all other wildcard positions in the motif.

https://doi.org/10.1371/journal.pchi.1005499.9002

sequence characteristics to those of known SH3 binding sites, i.e. sequence conservation,
intrinsic disorder, solvent accessibility, and predicted binding energy. For each SH3 domain,
we thus selected from each of the sequences of positives, those motifs that we discovered with
the best z-scores and that covered a total length comparable to that of known SH3 binding
sites. The procedure yielded 377 motifs from the positives for all SH3 domains except for that
of the protein Cdc25, for which the available experimental data was insufficient (S2 Table). We
then calculated the overlap between these motifs and known SH3 binding sites. We found that
on average, 70% of the amino acids covered by the motifs we discovered were within known
SH3 binding sites, and 88% were within 10 amino acids from these sites (Fig 3).

Among the 377 selected motifs, 163 (~ 43%) matched the canonical SH3 binding consen-
sus motif PXXP, and 52 (~ 14%) had sequences longer than 10 amino acids. This latter result
is consistent with observations showing that peptides must be longer than the consensus motif
for optimal binding affinity and specificity [36]. Further, 307 motifs include positions with var-
iable residues, among which 134 include correlated residues, supporting that cooperativity
among residues in binding motifs is common [34]. We found also that on average, ~35% of
the amino acid positions in consensus motifs are wildcards, which is consistent with previous
observations on SH3 binding sites [30, 31].
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Fig 3. Overlap between discovered motifs and experimentally determined SH3 binding sites. For each
SH3 domain, the overlap between discovered motifs and known SH3 binding sites was measured by the
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amino acids obtained for a different SH3 domain.

https://doi.org/10.1371/journal.pcbi.1005499.9003

We further analyzed four properties of each of the 377 selected SH3 domain binding motifs,
including their binding energy, solvent accessibility, sequence conservation, and intrinsic disor-
der. We found that 153 of the motifs had similar properties to known SH3 binding sites for the
four properties considered, but only 8 had properties that were significantly different (Table 1).
We categorized the motifs we discovered into three distinct classes: class I motifs exhibit proper-
ties similar to known SH3 binding sites in terms of the four properties and have high overlap
(> 80%); class IT motifs are highly similar to known SH3 binding sites for the four properties
but with less than 20% overlap. These appear to be bona-fide SH3 binding sites that may have
been missed by previous studies. Finally, class III motifs cover sequences outside of known SH3
binding sites and display markedly different structural and evolutionary conservation properties
(Table 1). Nevertheless, motifs in class III exhibit high specificity for their corresponding SH3
domains, suggesting that they may represent non-canonical binding sites or may be indirectly
involved in binding. We verified if class III represents coincidental motifs that are enriched
in the positives but involved in binding to other domains, as proposed by Edwards et al. [37].
For this, we searched whether the motifs we discovered matched known ELM motifs [16]. We
searched also instances of these motifs in protein-protein interaction databases (domain-pep-
tide interactions involving binding sites matching our motifs), e.g. yeastgenome.org, uniprot.
org, ncbinlm.nih.gov, and thebiogrid.org. We did not find any instance or similarity for the
motifs in class III. This result suggests that there exist peptides with distinct properties that may
serve ancillary roles in determining SH3 domain binding to proteins. In addition, these motifs
may predict interactions that to date could not be determined with existing methods.

Prediction of non-standard peptides recognized by Fus1 SH3 domain

Several studies have demonstrated the existence of non-standard SH3 binding sites [38-48].
For instance, the SH3 domain of the yeast protein Fusl has been shown to recognize peptides
belonging to the consensus motif R[ST][ST]SL [35]. To date, 25 SH3 binding sites for the Fusl
SH3 domain, including members of the R[ST][ST]SL motif and others that are not members
of any consensus, have been experimentally detected in 22 different proteins. We compared
our discovered motifs to standard motifs, those already reported in the literature [4], in the
prediction of binding sites recognized by the Fusl SH3 domain (Fig 4, Table 2).
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Table 1. Three classes of discovered motifs. A selection of three classes of discovered motifs. Each row shows DOM: SH3 domain for which the selected
motif was discovered; MOTIF: motifs discovered in this study; LEN: motif length; pgax: p-value scoring motif overrepresentation in positives relative to back-
ground (the proteome); pneg: p-value for motif overrepresentation in positives compared to negatives; z-score: the z-score that corresponds to the least sig-
nificant of pgax and pyeg; ENR: binding energy; SOL: solvent accessibility; CON: sequence conservation; DIS: intrinsic disorder; OVR: overlap between
discovered motifs and SH3 binding motifs of the SH3 domain. Symbols “+” and “-” mean respectively that, the average of the property (column) for regions in
the positives covered by the discovered motif (row) is highly “similar’ to or “different’ from the average of the property (column) for known SH3 binding sites;
the averages were compared with Student’s t-test. We describe in material and methods how each property is obtained.

# DOM MOTIF LEN PBAak PNEG z-score ENR SOL CON DIS OVR
CLASS I: motifs covering experimentally identified SH3 binding sites
1 | RVS167 RPxxP 5 2.93E-14 1.20E-12 5.88 + + + + 93.67%
2 | ABP1 Pxx [ PV] xKP 7 5.30E-16 3.53E-13 6.64 + + + + 85.00%
3 | ABP1 PxxxxKPXxXL 10 1.19E-12 1.15E-10 5.18 + + + + 92.86%
4 | HSE1 Px [LV] PxK 6 1.92E-21 1.92E-21 9.46 + + + + 82.61%
5 |PIN3 PPL[PS]xR 6 1.12E-08 2.74E-10 4.15 + + + + 100.00%
6 | PIN3 P[LF]xxR 6 1.13E-07 1.37E-08 3.42 + + + + 91.67%
7 | FUS1 x[ST]S 5 1.77E-10 1.10E-10 4.33 + + + + 82.50%
8 |FUS1 RxxRx [ST]S 7 2.74E-08 1.40E-07 3.29 + + + + 90.00%
9 |BOI1 % [RK] SxxR 7 7.01E-15 7.01E-15 6.15 + + + + 86.67%
CLASS II: motifs covering de-novo SH3 binding sites
1 |YSC84 Px [RMT] xxxxP 8 1.61E-11 1.23E-10 12.13 + + + + 19.63%
2 |YSC84 Px [RP] xxxxXP 8 1.67E-12 1.58E-10 12.09 + + + + 19.65%
3 |HSE1 P[QP] [PV]L 4 8.83E-09 2.73E-08 9.26 + + + + 18.18%
4 | CYK3 M[EHFP] [PSW]K 4 6.68E-07 3.18E-08 9.18 + + + + 0.00%
5 |CYKS KxP[PT]P 5 6.93E-10 1.06E-07 9.43 + + + + 10.00%
CLASS llI: motifs covering non-canonical SH3 binding sites or peptides that are indirectly involved in SH3 interactions

1 | NBP2 M[AP] [PS]E 4 6.78E-11 2.97E-11 7.93 - - - - 0.00%
2 | HSE1 F[AEH] [FSTIL 4 1.34E-07 2.34E-08 5.75 - - - - 0.00%
3 |FUS1 Sxxxx [NDCQGLY ] x [NDSY]C 9 3.24E-07 5.01E-07 5.06 - - - - 6.48%
4 | BOI L[MPS] [NDES]S 4 5.34E-09 2.94E-08 6.45 - - - - 0.00%
5 | BOI S [NQE] % [AHLWY ] xL 6 3.06E-09 5.76E-09 6.64 - - - - 0.00%
6 | CYK3 I [DELMP]x [NCQLMP]N 5 3.78E-07 5.48E-07 5.01 - - - - 0.00%
7 | CYK3 S[EMPV] [LMPWY]VS 5 3.48E-07 7.14E-08 5.38 - - - - 0.00%

https://doi.org/10.1371/journal.pcbi.1005499.t001

To perform the comparison, we first selected 2 motifs, R[ST]X[SW]L and RX[ST]SL, on the
basis of their z-scores and because they covered a total length in the 22 target proteins at most
equal to the total length of the 25 known binding sites. In fact, the goal here was to limit the
number of selected motifs to the minimum, then assess our ability to predict the 25 known
SH3 binding sites of FUS1 SH3 domain (Fig 4). The experimentally characterized motifs

protein . overlap |

T

i 1 known binding site

predicted binding site

Fig 4. Prediction of non-standard peptides recognized by Fus1 SH3 domain. We compared the motifs
we discovered to standard motifs (i.e. curated from the literature) in the prediction of non-standard binding
sites of Fus1 SH3 domain. To this end, we found in the 22 target proteins of Fus1 SH3 domain the peptides
belonging to each motif (i.e. predicted binding sites), then we calculated the overlap with the 25 known binding
sites of Fus1 SH3 domain. We found that on average, 70% of the amino acid sequences covered by the
motifs we discovered were found within known SH3 binding sites.

https://doi.org/10.1371/journal.pchi.1005499.9004
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Table 2. Discovered motifs for Fus1 SH3 domain. The table shows for each motif; LEN: motif length; POS: motif frequency in positives; NEG: motif fre-
quency in negatives, PRO: motif frequency in the proteome; the total number of proteins in each of positives, negatives, and proteome is indicated below;
Psak: p-value scoring motif overrepresentation in positives relative to the background (the proteome); pgax: p-value scoring motif overrepresentation in the
positives relative to the negatives; ENR: binding energy; SOL: solvent accessibility; CON: sequence conservation; DIS: intrinsic disorder; % POS: the total
length in sequences of the positives that are covered by discovered motifs; % SH3: the total length of SH3 binding sites that are covered by discovered motifs;
(only standard motifs with POS > 0 are shown in the table). Same explanation for symbols “+” and “-” as in Table 1.

# MOTIF LEN | POS | NEG | BAK | pgak | pPneg | zZ-score | ENR | SOL | CON | DIS Coverage
22 571 | 5356 °% POS | % SH3
Discovered motifs
R[ST]x[SW]L 5 15 33 | 134 | 1E-18 | 1E-13 9.52 + 0.52% | 21.08%
2 |Rx[ST]SL 13 28 | 131 | 5E-15 | 1E-11 7.87 0.45% | 17.89%
OVERALL 22 40 | 274 + 1.26% | 37.65%
Standard motifs
1 | [RK]xxPxxP (canonical class1) 7 3 93 464 | 3E-01 | 1E+00 0.00 + + - + 0.14% | 0.00%
2 | PxxPx[RK] (canonical class 2) 6 3 135 | 500 | 3E-01 | 1E+00 0.00 - + - + 0.12% | 1.81%
3 | Rxx [FLIYM] x [FLIYM] P 7 2 51 253 | 3E-01 | 9E-01 0.03 + - - | 0.19% | 0.00%
4 | Px [ILMVPYAFTR] Px [RKW] 6 2 104 | 303 | 4E-01 | 1E+00 | 0.00 + + - 0.19% | 0.00%
5 | [FPLWA] x [WYLMFHP]x [AVLIMFHPR] PxxP 9 2 51 194 | 2E-01 | 9E-O1 0.03 - + + 0.19% | 0.00%
6 | [RK]x [AVLIMFHRTP]PxxP 7 2 78 285 | 3E-01 | 1E+00 0.00 + + - + 0.19% | 0.90%
7 | [GP]1Px[IVL]XP[FWY] 7 1 2 11 | 4E-02 | 2E-01 0.50 + - - + | 0.10% | 0.00%
8 | [KRP]xxxxPxxx[KR]P 11 1 24 | 111 | 4E-01 | 8E-01 0.07 - + + + | 0.10% | 0.00%
9 | [FPLWA]xx[WYLMFHP] x [AVLIMFHP] PxxP | 10 1 40 186 | 5E-01 | 9E-01 0.03 - + + + | 0.10% | 0.00%
10 | RP[AS] xxxxY 8 2 3 16 | 2E-03 | 3E-02 1.09 - + + 0.19% | 0.00%
11 |R[ST] [ST]SL 5 11 5 27 | 3E-21 | 1E-11 7.87 + + + + 0.36% | 16.57%
OVERALL 14 | 271 | 1862 - - - - 1.66% | 18.98%

https://doi.org/10.1371/journal.pcbi.1005499.t002

included R[ST][ST]SL, [RK]XXPXXP and PXXPX[RK] and 15 other motifs determined by
phage display screening [4].

We found that the two selected motifs are present in all 22 binding proteins of Fus1 SH3
domain but standard motifs were present in only 14. These two motifs were more statistically
significant than all experimentally characterized motifs. Importantly, our motifs matched to
37.65% of the total length of known SH3 binding sites of the Fus1 SH3 domain, while the stan-
dard motifs, matched to only 18.98%. Furthermore, the proportion of our motifs found in the
entire proteome and negative reference proteins was lower than that of standard motifs. Our
motifs were indeed found in only 40 among the 571 negative reference proteins and in 274
among 5356 sequences from the proteome, while the standard motifs were found in 271 of the
negatives and 1862 proteins in of the rest of the proteome.

Thus, the motifs we discovered, R[ST]X[SW]L and RX[ST]SL, match the known motif R
[ST][ST]SL, but suggest a broader range of substitutions for recognition by the Fusl SH3
domain, which is consistent with what has been previously proposed [35].

These results suggest that our strategy has helped in redefining a standard motif involved in
binding to the Fusl SH3 domain, without any prior knowledge of their positions or signatures
in proteins or what they should look like.

Prediction of both in vivo and in vitro experimentally determined SH3
binding sites
The largest number of SH3 domain interactions have been determined in high-throughput

screening studies [4, 49, 50]. Among the 922 unique (i.e. one instance) SH3 binding sites that
we found in the literature (Fig 5), 904 (~98%) were identified in vitro, while only 40 (~ 4%)
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Fig 5. Discovered motifs versus experimentally determined SH3 binding sites both in vitro and in
vivo.

https://doi.org/10.1371/journal.pcbi.1005499.9005

were identified in vivo among which only 18 (~45%) were also verified in vitro. Despite the
large spectrum of binding sites discovered in vitro, they cover less than half of the peptides that
we discovered based on all interactions determined in vivo, which suggests that we are still
missing a significant number of SH3 binding sites in the yeast proteome. Lack of complete
coverage of in vitro peptide binding data may be due to, for example, lack of adjacent sequence
or of additional interactions that are required for a given peptide within a protein to bind to an
SH3 domain [51]. In contrast, the 377 motifs we discovered captured 724 (~80%) SH3 bind-
ing sites among the 904 determined in vitro and of among the 40 SH3 binding sites determined
in vivo, they captured 35 (~87%). This result highlights the strength of our approach, which
discovers equally well both types of sites (Fig 5).

Prediction of typical properties of peptides recognized by SH3 domains

The degenerate nature of binding peptides makes them hard to detect because they are
immersed in a background of mostly irrelevant peptides. For this reason, many approaches
reduce the search space using a priori knowledge such as canonical motifs. For SH3 binding
sites, this includes polyproline peptides that encompass the PXXP core motif or the canonical
[RK]XXPXXP and PXXPX[RK] motifs [52, 53]. Additional properties of a given sequence may
be taken into account; for example, tertiary structures conforming to predefined structural
templates [14, 54, 55] or their presence in regions that are conserved, solvent accessible, or
intrinsically disordered [56, 57]. Here we saw that with our strategy, we could accurately detect
recognition peptides without using any such knowledge a priori. This enabled us to identify
peptides such as the structured beta-sheet ubiquitin-like domain of UBI4 recognized by SLA1-
3 SH3 domain [48], non-canonical peptides recognized by the Fusl SH3 domain [35], and
additional non-canonical sequences [38-438].

The absence of any predefined model for the motifs we discovered enabled us to describe, a
posteriori, the biological properties of corresponding peptides within proteins. We refer here
to peptide sequences within proteins that correspond to the 377 discovered motifs predicted to
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be involved in SH3 binding. Among predicted and known SH3 binding sites, we found that
~20% of both of them do not belong to the PXXP core motif. Moreover, among known SH3
binding sites, ~30% of those determined in vivo and ~ 50% of those determined in vitro do
not fall into any of the two canonical motifs [RK]XXPXXP and PXXPX[RK] (Fig 6C). Consis-
tent with these results, ~75% of the SH3 binding sites that we predicted also do not match
these canonical motifs.

We also found that >30% of all peptides belonging to our discovered motifs do not fall in
intrinsically disordered regions (Fig 6E). In addition, as expected, both predicted and known
sites exhibit higher sequence conservation (Fig 6D), solvent accessibility (Fig 6F) and binding
energy (Fig 6G) than expected. Interestingly, we found that, in comparison to their flanking
regions, like predicted binding sites, known binding sites exhibit stronger contrast in sequence
conservation and binding energy and weaker contrast in solvent accessibility, while protein
disorder in flanking regions is found to be as high as known binding sites. The contrast
between SH3 binding sites and their background is in agreement with known model of SH3
domain recognition [42, 51]. However, these trends vary greatly among binding sites, making
it hard to discriminate between binding sites and the rest of the proteins based solely on these
general properties. Interestingly, when we used our motifs, we found better contrast than that
obtained with general properties between known binding sites and their background (Fig 6B).
To assess the power of the different properties in the prediction of SH3 binding sites, we tested
each property as a discriminative feature in the identification of known SH3 binding sites
(Fig 6A). The prediction results showed that canonical motifs are the best to discriminate
SH3 binding sites compared to binding energy, intrinsic disorder, solvent accessibility, and
sequence conservation (in decreasing order of their discriminatory power).

Opverall, our results highlight three essentials points: (i) SH3 binding sites exhibit common
physical properties and sequence conservation, however, these properties are not exclusive to
these sites; (ii), although SH3 binding sites exhibit common properties, we have discovered a
notable number of sites that have distinct properties; (iii), consequently, as utilized in other
methods to search for binding sites in protein sequences, physical properties can be used as a
constraint on such searches, but will bias and limit a search and could result in false predic-
tions; for example, of sites that have the right physical properties, but sequences that are not
consistent with binding to a domain. In contrast, our exhaustive and unconstrained search
strategy should not likely result in any bias, limitations or false-positive results in identifying
known or unforeseen linear binding motifs (Fig 6A). This is because our approach takes
advantage of the most representative property of the SH3 binding sites: their linear informa-
tion, i.e. linear signatures.

These results imply that the number of motifs involved in SH3 domain sequence recogni-
tion is larger than generally appreciated. These results highlight that there has been and
remains a pressing need for new methods to explore the full complexity of this range of possi-
ble binding sites for any given family of protein or peptide binding protein domains. The
exhaustive search of linear information in groups of related proteins has been so far physically
unfeasible by classic approaches [12-14, 17-26], henceforth this is made possible by the
approach we presented here. The approach we applied here, demonstrates prediction perfor-
mance of SH3 binding sites that is better than approaches that use constrains such as physical
properties, sequence conservation, and motifs enrichment. By capturing this large breadth of
sequence properties, we were able to discover extensive correlations of physical properties and
conservation of motifs and binding specificity, but most strikingly, a correlation of functional
and binding specificity that links functional diversity to the chemical and thermodynamic
characteristics of SH3 domain-protein interactions [11]. With extensive application of DALEL
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Fig 6. Properties of predicted vs. known SH3 binding sites in contrast with background. A comparison of the different properties of predicted and
known (i.e. experimentally determined) SH3 binding sites, and assessment of the power of each property in the identification of SH3 binding sites among
their background. The background is defined as the full length sequences of proteins in which SH3 domain binding sites were discovered. (A). Properties
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generally observed in SH3 binding sites are used separately as discriminative features for the identification of known SH3 binding sites. The quality of the
prediction of each property is evaluated according to the area under the ROC curve (auc). (B). The P-value average and standard deviation of the
peptides we discovered in known SH3 binding sites in comparison to peptides that we predicted to be SH3 binding sites, compared to peptides we
discovered versus the background. (C). The abundance of PXXP and canonical peptides (i.e. [RK]XXPXXP and PXXPX[RK]) in predicted and known
SH3 binding sites, compared to the background. (D). The average and standard deviation of sequence conservation in predicted and known SH3 binding
sites in contrast to their flanking regions, and compared to their background. (E). The content of protein disorder among predicted and known SH3 binding
sites in contrast with their flanking regions and compared to their background. (F). The average and standard deviation of solvent accessibility in predicted
and known SH3 binding sites in contrast to their flanking regions and compared to their background. (G). The average and standard deviation of binding
energy in predicted and known SH3 binding sites in contrast to their flanking regions and compared to their background. Throughout this figure, the
statistics obtained on predicted peptides are calculated based on their occurrences in the proteins.

https://doi.org/10.1371/journal.pchi.1005499.g006

to other binding domain-protein interactions, we may be able to establish a quantitative
framework for predicting functional organization of protein interactomes.

Our strategy should prove an important complement to future efforts to identify linear pep-
tide binding sites within proteins based on simple binary in vivo protein-protein interaction
measurements, i.e. a critical step forward in reconstructing protein interaction networks. In
addition, while DALEL does not consider motifs with wildcards of variable length, this feature
could be developed in the future.

Comparison of DALEL to other well-established linear motif prediction
algorithms

We compared the results of DALEL to those of well-established algorithms on the identifica-
tion of experimentally determined SH3 binding sites of the protein Grb2. The algorithms
tested include iELM [58] that identifies linear binding peptides specifically in the human pro-
teome; MEME [24] detects ungapped linear motifs of fixed-length using finite mixture model;
GLAM2 [59] detects gapped linear motifs of variable-length using local sequence alignment
allowing insertions and deletions; PRATT [60] finds conserved linear motifs; DRIMUST [61],
qPMS?7 [26], NESTEDMICA [25], FIRE-PRO [62], DILIMOT [21], SLIMFINDER [63], and
MOTIFHOUND ([27] find enriched linear motifs in proteins (details in S3 Table).

The Grb2 protein is among recognition domain proteins in human that attract the most
interest (http://thebiogrid.org), mostly because of its implication in a large number of protein
complexes and canonical cell surface receptor signalling pathways associated with normal cell
growth, proliferation and differentiation, and whose component proteins are mutated in a
number of cancers (www.proteinatlas.org; www.uniprot.org). The great interest in this protein
has helped produce abundance of validated experimental data (http://mint.bio.uniroma2.it),
which makes this case “gold standard” to evaluate the prediction power of our algorithm, and
other algorithms.

The Grb2 protein consists of a central SH2 domain flanked by two SH3 domains (www.
rcsb.org). The binding specificity of the Grb2 N-terminal SH3 (N-SH3) domain have been
studied in detail and a consensus canonical binding motif “PXXPXR” has been identified [64].
A total of 72 binding sites within 61 different proteins were experimentally determined to bind
to the Grb2 SH3-N domain (S4 Table). Here, we compared our algorithm and other algo-
rithms on the identification of the 72 binding sites of the Grb2 N-SH3 domain.

For each algorithm we selected the top scoring predicted sites such that they cover about
3% of the total length of the 61 Grb2 binding proteins, a coverage that is equivalent to that of
the 72 known binding sites. The coverage could, however, be smaller than 3% if the algorithm
did not return enough sites. For each algorithm, we show the percentage of the total length of
the 61 proteins covered by the sites identified (Fig 7, blue bars), as well as the percentage of
the total length of known SH3 binding sites covered (Fig 7, orange bars). We found that the
sites identified by SLIMFINDER, DILIMOT, GLAM2, iELM, MOTIFHOUND, and DALEL,
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Fig 7. Identification of known binding sites of Grb2 SH3 N-terminal domain. The GRB2 SH3 N-terminal domain is known to bind to 61
proteins, through 72 binding sites that cover 2.45% of their total sequence lengths. We blindly submitted the 61 protein sequences to several
algorithms to evaluate their ability to identify these binding sites. We considered the top predicted sites returned for each algorithm, such that
they covered at most 3.00% of sequence’s length. For each algorithm, we plot the coverage of the sites identified (red bars), as well as the
corresponding coverage of known SH3 binding sites identified (blue bars).

https://doi.org/10.1371/journal.pchi.1005499.g007

exhibit the largest overlap with experimentally characterized binding sites, ranging from about
24% to 38%, among which DALEL obtained the highest overlap of 38.19%.

It is interesting to note that iELM performed well, possibly because it integrates properties
of binding motifs specifically observed in the human proteome. Also, MEME, that detects
ungapped motifs in proteins did not perform well, while its modified version GLAM?2 that
allows gaps performed much better, because it is better suited for finding degenerate motifs, a
property that is present in the binding sites of the Grb2 SH3-N domain. PRATT, however, per-
formed poorly on this example, suggesting that we cannot rely solely on sequence conservation
to find linear binding peptides in proteins. In addition, among the algorithms that find
enriched linear motifs in proteins only DILIMOT, SLIMFINDER, and MOTIFHOUND
obtained satisfactory results.

It is important to highlight the difference between the results obtained by DALEL and
MOTIFHOUND, because both find the same motifs. In DALEL, however, the wildcards are
degenerated in each motif to find positions with preferences for multiple amino acids, and also
positions with correlated preferences. As a result, DALEL identified 38% but MOTIFHOUND
only 28% of Grb2 SH3-N binding motifs. This difference proves the discriminative power of
our approach because of our strategy for exhaustive search of sequence degeneracy in motifs.

Interestingly, the class I canonical motif “PXXPXR” that was reported as recognized by the
GRB2 SH3-N domain was identified by DALEL with the significant z-score of 4.92 and p-
value of 1.79x10""”. We found the motif “PXXPXR” present in just 29 among the 72 known
binding sites of Grb2 SH3-N domain, thus, about 60% did not contain the motif “PXXPXR”
(S5 Table). Surprisingly, DALEL, identified the class II canonical motif “PXXPXK” with the
very significant z-score of 5.35 and p-value of 2.02x10™'®, This is surprising because this motif
was reported to be recognized by the Grb2 C-terminal SH3 domain [65, 66]. We found this
motif present in 22 among the 72 known binding sites of the Grb2 SH3-N domain. More inter-
esting, all of the 22 known binding sites that contain the “PXXPXK” motif did not contain the
“PXXPXR” motif. We thus suggest a novel binding preference of the Grb2 SH3-N domain and
a possible cross-reactivity between the two SH3 domains of Grb2 protein. In addition, it shows
that the binding preference of the Grb2 SH3-N domain is larger and more complex than what
was previously reported, because neither the “PXXPXR” or “PXXPXK” motifs explain the bind-
ing preference of the Grb2 SH3-N domain to all the 72 known binding sites. DALEL also
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identified the motif “PXX [ PV ] XXK” with a significant z-score of 5.93 and a p-value of
1.08x10™"°. This motif was present in 42 known binding sites (compared to 22 for “PXXPXK”),
This result illustrates the power of our algorithm in allowing preferences for multiple amino
acids at specific motif positions.

Benchmarking the discovery of planted motifs with ambiguous positions

We analyzed the performance of DALEL on the identification of motifs exhibiting ambiguous
positions using a benchmark. The benchmark relied on 8 biological motifs from the ELM
database [16], which we planted in protein sequences of the S. cerevisiae yeast proteome. The
advantage of this approach is that there is no simulated data beyond the replacement of amino
acids from the original sequence. Thus, sequence features such as tandem-repeats or low com-
plexity regions were preserved.

Degenerate forms of the 8 consensus motifs were planted in 20 protein sets, using 5, 10, 15
or 20 occurrences, with at most one occurrence being inserted per sequence. This gave a total
of 640 sets (8 motifs x 20 sets x 4 planted occurrences), in which we subsequently searched for
the planted motif. The search in a sequence set was considered successful when the top motif
(s) matched the planted sequences with a precision and recall both above 0.7 (Fig 8A). For
each motif and each number of occurrences, the fraction of successful searches over twenty
sets composed of different sequences was calculated and represented in bar-plots (Fig 8B,
Material and Methods).

We compared the performance of DALEL to two algorithms: MotifHound and SLiMFin-
der. We used MotifHound because it is the closest method to DALEL that does not take into
account ambiguous positions, and SLiMFinder because it exhibited the highest accuracy in a
previous benchmark [27]. We tested several parameter configurations for SLiMFinder and
kept that yielding the best overall results (see Methods). In the best configuration, SLiMFinder
successfully identified six of eight motifs present in 15 occurrences and two motifs present in
10 occurrences. MotifHound detected seven out of the eight motifs inserted in 15 occurrences,
and three motifs present in 10 occurrences. DALEL, however, showed a significant improve-
ment, as all motifs were correctly identified when 15 occurrences were inserted, and seven
were identified when present in only 10 occurrences. Generally, all algorithms had difficulties
identifying motifs when only 5 occurrences were planted, although DALEL showed the best
results with 3 motifs identified out of the eight investigated (SLiMFinder and MotifHound
both only identified one out of the eight).

Our benchmark shows that DALEL performs well in the discovery of motifs with ambigu-
ous positions. Datasets used for this benchmark are available as supplementary material for
comparing future improvements of existing algorithms as well as new algorithms.

Despite our efforts to produce bias-free datasets for the benchmark, we cannot ignore the
possibility that additional unknown biases may not be addressed, perhaps impeding the perfor-
mances measured here. Our benchmark largely serves the purpose of testing algorithms that were
designed with similar objectives under the same controlled conditions. The artificial nature of the
benchmark does, however, have advantages, e.g. it allows exploring the impact of specific parame-
ters such as overrepresentation of a motif. On the other hand, it also limits our ability to interpret
the results in the context of biological motifs discovery. Future work will address these issues.

Materials and methods
Calculation of p-values and z-scores

The p-values were calculated using the cumulative hypergeometric distribution, which esti-
mates the probability to see at least k successes in a sample of size n picked from a population
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Fig 8. Comparative analysis of three algorithms in the discovery of linear motifs with ambiguous positions. A. For all amino acids
covered by a top-ranked motif, we assigned one of the possible prediction outcomes (TP True Positive, FP False Positive) depending on
whether the positions matched the positions at which we planted the motifs: TP (number of positions correctly detected), FP (number of
positions incorrectly detected). Top-ranked motifs were considered and matched until their sequence coverage (number of TP+FP) reached
the number of positions to be discovered. B. The benchmark results for three state-of-the-art algorithms (MotifHound in red, SLiMFinder in
grey, DALEL in blue) in the blind discovery of each ELM motif were represented by bar charts. The y-axis reports the global “discovery
accuracy” for each number of occurrence (x-axis). The global accuracy is obtained by calculating the fraction of sets in which the planted motif
was identified with a precision (TP / (TP+FP)) above 0.7, i.e. an overlap of at least 70% between the positions covered by the top-ranked motifs
with respect to the positions of the planted motif. The regular expression of the consensus ELM moitif with their key parameters (size S, defined
positions D, ambiguous positions A, wildcard positions W) are displayed above each graph.

https://doi.org/10.1371/journal.pcbi.1005499.g008

of size N including a total of m successes, and defined as follows:

m N —m
H(KN, mm) =3 AT W
ym,n) = -— N
n
a al
ith - % 2
v b) bl — bl @)

Above, N is the size of the proteome, n the number of positives, p the number of negatives,
and by defining a success as a protein comprising the motif; m, k, and q are respectively the
number of successes in the proteome, the positives and the negatives. We then calculate ppro
and pngc as follows:

Pero = H(kIN, m,n) and Pnec =H(k|n—|—p,k—|—q7n) (3)

We evaluate the significance of each p-value by calculating its z-score, which provides the
number of standard deviations from the average of the p-values distribution, as follows:

Zppo = Z(—10g,(Pero)) and Zyge = Z(—10g1,(Prc)) (4)

with Z(x) = (5)

The transformation here converts the p-values from a linear to logarithmic scale, which
makes it possible to distinguish between extremely small p-values. The z-score shows whether
a p-value is typical or atypical relative to its distribution with respect to its average, ¥, and stan-
dard deviation, o(x).

To summarise, the p-values are evaluating the probability of each motif to be enriched in
the positives given its presence/absence in the negatives/background, while the z-scores are
scoring the enrichment of each motif with respect to all others present in the positives. How-
ever, in cases where either the negatives set or the background set is not available, we calculate
for each motif one p-value, pygg Or ppax> and one z-score, zygg and zgax, depending on which
set is available. These cases have been considered in the development of DALEL webserver,
http://michnick.bcm.umontreal.ca/dalel/Server, to let the user decide which reference set to
use, the negatives and/or the background.
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Binding energy

Binding energy was obtained using position-weight scoring matrices developed by Fernandez-
Ballester et al. [67], and available in the ADAN database [68]. For each SH3 domain in S. cere-
visiae, the ADAN database provides position-weight matrices predicting the contribution of
each amino acid in terms of binding and stability energy between an SH3 domain and a target
motif.

Solvent accessibility

Protein solvent accessibility was obtained by using SABLE version 2 [69], a program used for
predicting relative solvent accessibilities of amino acid residues in proteins. In our experi-
ments, only residues with highest confidence level (CI = 9) of solvent accessibility were consid-
ered in the analysis.

Sequence conservation

For an input protein sequence, highly homologous sequences are collected from a proteome
reference (i.e. here fungi proteome) using PSI-BLAST [70] with 35% minimum homology.
After that, highly similar sequences among collected homologous are filtered using CD-HIT
with 95% maximum homology. After which, remaining homologous sequences including the
input protein sequence are aligned using MUSCLE algorithm [71]. Finally, Rate4Site program
[72] is applied on the multiple sequence alignment to compute position-specific conservation
scores of the input protein sequence across diverse species.

Intrinsic disorder

Protein disorder was determined using DISOPRED version 2 [73]. Only residues with the
highest confidence level of disorder (CI = 9) were considered as disordered.

Benchmark design for motifs with ambiguous positions

To carry out the benchmark, we planted curated motifs from the ELM database [16] into pro-
tein sequences from S. cerevisiae, and proceeded with their blind discovery using DALEL,
SLiMFinder and MotifHound.

We utilized the proteome of S. cerevisiae as background in our benchmark. We filtered out
homologous sequences by choosing 1 000 sequences of 100 to 500 residues length that showed
less than 50% pairwise identity over alignment of at least 50 residues. Among these 1,000
sequences, the average length is 270+117 amino acids and the total number of amino acids is
269,941. We then randomly created 20 sets of 50 sequences within which motifs were planted.

We selected 8 motifs from the ELM database, containing between 4 and 11 residues (S4 to
S11) and 1 to 6 ambiguous positions (A1 to A6, ¢f. Table 3). First, for each ELM motif (i.e.
referred as “regular expression”, Table 3, Fig 9A), we generated the exhaustive list of amino
acid combinations at all ambiguous positions, totalling N combinations:

A

N = H aa,
i=1

In the formulas above, aa; corresponds to the number of amino acids at the i ambiguous
position, while A corresponds to the number of ambiguous positions (Fig 9B). Thus, each
combination samples a unique arrangement of the amino acids inside the square brackets of
the corresponding regular expression.
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Table 3. Properties of selected ELM motifs with ambiguous positions in benchmark design.

Accession Pattern S D AW Description
ELMEO000170 [FY][DEP]WM 41220 The YPWM motif confers binding to the PBX homeobox domain
ELMEO000141 | PIMVLIRWY]VIMVLIAS] | 5 |2 |3 |0 Ligand to interface formed by dimerization of two chromoshadow domains in HP1 proteins.
[LM]
ELMEO00099 XP[TS]APx 63|12 PTAP motif binds the N-terminal UEV domain of Tsg101.
ELMEO000175 GCM[GS][CL][KP]C 714130 Class 2 Palmitoylation motif

ELMEO00097 | xRxx[PGAVJ[DEIP]Gx | 8 |2 |2 | 4 The Tankyrase binding motif interacts with the ankyrin repeat domain region in Tankyrase-1
and Tankyrase-2 to facilitate the PARsylation of the target proteins.

ELMEO00013 [TADJ[EAIxQY[QE]x 9 |2 |5| 2 | Members of the non-receptor tyrosine kinase Csk family phosphorylate the C-terminal tyrosine

[GQAJ[PEDLS] residues of the Src family.
ELMEO00022 | [FHYMxA[AV]x[VAC]L (102 |5 3 Moitif interacts with PAH2 domain in the Sin3 scaffold protein
[MVIx[MI]

—_

ELMEO00021 | [LIVIxx[LM]LXAAX[FY][LI] | 11 |3 | 4 | 4 Motif interacts with PAH2 domain in the Sin3 scaffold protein

x corresponds to a wildcard character.
S = Size, D = Number of Defined positions, A = Number of Ambiguous positions, W = Number of Wildcard positions.

https://doi.org/10.1371/journal.pcbi.1005499.t003

Second, we sampled n degenerate combinations of each motif and planted them randomly
either 5, 10, 15, or 20 times in a set of 50 sequences, with at most one motif planted per
sequence (Fig 9C). When a motif is planted, wildcard positions take the identity of amino
acids already present in the sequence. Each motif was planted into 20 independent sets of 50
sequences (Fig 9D), and this process was carried out for different numbers of occurrences.
Altogether, the complete benchmark dataset was composed of 640 sets of 50 sequences (8 ELM
motifs x 20 sets of sequences x 4 planted occurrences).

To evaluate the performance of each method, we considered the positions of the sequence
dataset matched by the top-ranked (most significant) motifs found by each algorithm (Fig 8A).

. Generate all amino acid . . .
Select ELM motifs Sample n combinations for insertion

A B combinations (N) at C .
as a mask . L in a set of 50 sequences
ambiguous positions

4 [FY][DEP]WM GCM[GS][CL][KP]C A=3

= 5 P[MVLIRWY]V[MVLIAS][LM]
5 - [EchEEEe
jo o 2
3 6 xP[TS]APx .% : 8 8 %8%%8
= cC 4
5 7 GCMI[GS][CL][KP]C SlédcmeeRrCE
= : EslGCMSCPC n=20
S7/GCMSLKC
=38 GCMSLPC
: N—ﬁaa- D Replicate 20 times with a set
11 LVELMILAAXFY]ILI] A of 50 different sequences

Fig 9. Design of the benchmark datasets. The benchmark is composed of 640 sets of 50 sequences, each set containing a specific planted motif. The
planted motifs vary in their size (S4 to S11), number of ambiguous positions (A1 to A6) and number of occurrences (5, 10, 15, 20). We created 20 replicates
varying in the motif being planted. Altogether, 160 motifs were created for the benchmark (20 replicates x 8 ELM motifs), resulting in 640 sets of 50
sequences (160 motifs x 4 number of occurrences). A. We first selected 8 motifs from the ELM database with fixed-size of from 4 to 11 residues and with
several ambiguous positions. The amino acids within brackets indicate ambiguous positions and x corresponds to wildcard positions with unrestricted amino
acid identity. B. In the second step, we derived all N possible combinations of amino acids at ambiguous positions for each motif. In this example, N = 8
unique motifs are generated from a motif containing A = 3 ambiguous positions. C. Finally, each unique motif so obtained is planted in a set of 50 protein
sequences selected randomly. In this example, the motif has been inserted 5, 10, 15 or 20 times in the same dataset of 50 sequences. We minimized the
level of homology between sequences so that pairwise identity is below 50% for any aligned region of at least 50 residues in length. The white rectangles
symbolize the motifs planted, and the blue lines represent protein sequences.

https://doi.org/10.1371/journal.pcbi.1005499.g009
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Therefore, for each amino acid covered by a top-ranked motif, we assigned one of four possible
prediction outcome (TP True Positive, FP False Positive, TN True Negative, FN False Nega-
tive) depending on whether the positions were matching the positions at which we planted the
motifs: TP (number of positions correctly detected), FP (number of positions incorrectly
detected), TN (number of incorrect positions not detected), FN (number of correct positions
not detected). Note that here, the terms “Positive” and “Negative” used here are not related to
the same terms utilized earlier in the manuscript to define binding and non-binding proteins.

Top-ranked motifs were considered and matched until their sequence coverage (number of
TP+FP) reached the number of positions to be discovered (TP + FN). We then evaluated the pre-
cision of the discovery as: TP / (TP+FP)), which we required to be above 0.7. Thus, we consid-
ered a motif to be successfully identified when there was an overlap of at least 70% between the
positions covered by the top-ranked motifs with respect to the positions of the planted motif.

We finally calculated a global “discovery accuracy” (Fig 8B) per motif and for each number
of occurrence, by the fraction of sets in which the planted motif was successfully identified, i.e.
Number of identifications divided by 20.

Supporting information

S1 Table. We manually curated 890 protein-protein interactions from the literature,
between 25 yeast SH3 domains and 361 proteins encoding a total of 1073 experimentally
verified SH3 binding sites, i.e. linear peptide segments within the proteins. Each row in the
table gives the interacting SH3 domain protein (columns: ORF and GENE); the cognate SH3
domain binding protein (columns: ORF and GENE); the coordinates in the SH3 binding pro-
tein of the SH3 binding site (columns: BEG and END); whether the interaction was identified
in vivo or in vitro (columns: IN VITRO and INVIVO); and the publication in which the inter-
action have been identified (column: PUBMID).

(XLSX)

$2 Table. For each SH3 domain, we selected from each of the sequences of positives, those
motifs that we discovered with the best z-scores and that covered a total length comparable
to that of known SH3 binding sites. The procedure yielded 377 motifs from the positives for
all SH3 domains except for that of the protein Cdc25, for which the available experimental
data was insufficient. The table gives for each of the 377 motifs (column: SH3 BINDING
MOTIF); the corresponding SH3 domain (column: SH3 DOM); the length of the motif (col-
umn: LEN); the total number of proteins in the positives, the negatives and the background
(columns: TOT); and the number of occurrences of the motifs in the positives, the negatives
and the background (columns: NBR); the p-values pypc and ppax, the total length in the prote-
ome covered by the motif (column: OVR1), the total length of the SH3 binding sites covered
by the motif (column: OVR2), the total length of the instances of the motif in the positives
covered by the SH3 binding sites (column: OVR3), ENR: binding energy; SOL: solvent acces-
sibility; CON: sequence conservation; DIS: intrinsic disorder. Symbols “+” and “-” mean
respectively that, the average of the property (column) for regions in the positives covered by
the discovered motif (row) is highly “similar” to or “different” from the average of the property
(column) for known SH3 binding sites; the averages were compared with Student’s t-test. We
describe in material and methods how each property is obtained.

(XLSX)

$3 Table. The table includes the algorithms that have been considered for the identifica-
tion of known binding sites of GRB2-N domain. For each algorithm we provide the link to
the webserver or the implementation. For each algorithm we include the input parameters that
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whenever a custom value was used. The last column indicates whether the algorithm was
tested, or if it was disconnected (was not available at the time we wanted to utilize it) and has
not been tested.

(DOCX)

$4 Table. We manually curated the literature for 72 binding sites within 61 proteins that
have been experimentally determined to bind to the Grb2 SH3-N domain. The table gives
in each row, the identification and description of the cognate binding protein (columns:
UPID, GENE, and Protein); the coordinates in the binding protein of the interacting binding
site (column: BEG and END); the method by which the interaction has been determined (col-
umn: Method); and the publication in which the interaction have been identified (column:
PUBMID).

(XLSX)

S5 Table. The table gives the motif we discovered for each of the 72 experimentally deter-
mined binding sites of Grb2 SH3-N domain. Each row gives the cognate interacting protein
(column: Binding protein); the sequence of the interacting binding site (column: Binding
site); the coordinates in the interacting protein of the binding site (columns: BEG and END);
the motif we discovered representing the binding site (column MOT); the z-score and the p-
value we obtained for the motif we discovered (columns ZS1 and PV1); and whether the bind-
ing site fall into any of the two canonical motifs (columns: PxxPxP and PxxPxK), or both (col-
umn: ALL), that were reported as recognized by the Grb2 SH3 domain.

(XLSX)

S1 Fig. The figure shows that, in S. cerevisiae, the suffix tree (red curve) required to represent
all possible motifs (blue line) present in SH3 binding proteins rapidly exceeds physical mem-
ory. To simplify, if we consider that every node in the suffix tree requires a single byte in the
physical memory (in reality we need more bytes by node), we will need 10*'* bytes in the physi-
cal memory to store the suffix tree that represents all possible motifs of length 10, which equals
10** gigabyte. The size of required physical memory is increasing exponentially with the length.
(EPS)

S2 Fig. The figure compares the nonparallel and the parallel strategy in their maximum
physical memory requirement to store all possible motifs present in the SH3 binding pro-
teins in S. cerevisiae.

(EPS)

S1 File. The compressed file benchmark. 7z contains the 640 protein datasets utilized to
benchmark DALEL and the other algorithms. The file README.txt contains a detailed
description of the files and directories included.

(72)
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