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Duchenne muscular dystrophy (DMD) has been a major target
for gene therapy development for nearly 30 years. DMD is
among the most common genetic diseases, and isolation of the
defective gene (DMD, or dystrophin) was a landmark discovery,
as it was the first time a human disease gene had been cloned
without knowledge of the protein product. Despite tremendous
obstacles, including the enormous size of the gene and the large
volume of muscle tissue in the human body, efforts to devise a
treatment based on gene replacement have advanced steadily
through the combined efforts of dozens of labs andpatient advo-
cacy groups. Progress in the development of DMD gene therapy
has beenwell documented inMolecular Therapy over the past 20
years andwill be reviewed here to highlight prospects for success
in the imminent human clinical trials plannedby several groups.

Background

Duchenne muscular dystrophy (DMD) was identified as a genetic dis-
order by several groups in the mid-19th century.1 The disease is in-
herited in an X-linked recessive pattern, and in-line with Haldane’s
hypothesis, one-third of all cases arise from spontaneous, new muta-
tions. Accordingly, genetic counseling or even curing all current cases
will not greatly reduce the incidence. Individuals with DMD display
a progressive loss of skeletal muscle mass, increasing weakness, and
a later-onset cardiomyopathy. Approximately one-third of patients
display varying degrees of cognitive dysfunction, and in some cases,
smooth muscle manifestations lead to gastrointestinal issues.1 A
milder and more slowly progressing variant of the disorder is termed
Becker muscular dystrophy (BMD).While DMD typically arises from
genetic null allele mutations, BMD generally results from mutations
that allow production of lower levels of, or partially functional, dys-
trophin protein. Patients from families without a prior history of
the disorder are typically diagnosed between the ages of 2 and 6 years,
but a family history enables early diagnosis, with the possibility for
carrier testing and prenatal diagnosis. Increasing use of respiratory
and cardiac support has extended lifespans over the past 20 years
from the late teens up to the mid-30s, but these interventions do
not by themselves significantly improve muscle function. The one
treatment to date that has slowed muscle loss and extended ambula-
tion is the use of corticosteroids, such as prednisone and deflazacort.2

DMD is among the most common single-gene disorders in humans,
affecting�1 in 5,000 newborn males.3 Despite this relatively low inci-
dence in the general population, it is one of the most well-known
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genetic disorders and has attracted enormous interest in the scientific
and patient advocate communities. Much of this interest grew from
early work by the Muscular Dystrophy Association (USA) (MDA)
and a high-profile telethon (the first of its kind) that raised money un-
der the leadership of the entertainer Jerry Lewis. The interest in DMD
led the MDA to direct significant funding in the 1980s to finding the
gene responsible for DMD. Funding efforts were an enormous success
and, in a seminal series of publications by the laboratory of Louis
Kunkel, resulted in the identification of the gene in 1986.4 That
work enabled highly accurate prenatal diagnosis and carrier detec-
tion, an understanding of the tissue-specific effect of mutations,
and delineated the differences between DMD and BMD. Cloning of
the DMD gene arguably represents the beginning of the human
genome project, as the gene was isolated based on genetic studies
that identified its chromosomal location on Xp21. The availability
of the gene and the cDNA for themuscle isoformmade DMD an early
candidate for gene therapy.5

The DMD Gene

Despite early enthusiasm for the development of genetic therapies,
many features of DMD presented important obstacles to develop-
ment of a therapy. The gene is 2.2 Mb in size, and numerous isoforms
are expressed in muscle and non-muscle tissues from seven different
promoters and via alternative splicing. The enormous size of the locus
is likely amajor reason that the gene displays the highest known spon-
taneous mutation frequency of any human gene. Fortunately, a num-
ber of discoveries suggested approaches to gene therapy that were
simpler than initially envisioned. One was the identification of rare
patients with large deletions within the gene, in one case encom-
passing almost half the gene, that were associated with extremely
mild cases of BMD.6 A second came from isolation of the muscle
cDNA, which was 14 kb but had an 11.2-kb open reading frame.
These initial observations led to a series of studies establishing trans-
genic mouse lines on themdx background, a model for DMD. In one
transgenic line it was found that expression of the full-length dystro-
phin cDNA in a muscle-specific manner eliminated virtually all
known muscle aspects of the disorder.7 From these studies, it became
clear that an effective therapy could be developed if a synthetic gene
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Figure 1. Domain Structure of Dystrophin

Comparative domain structures of full-length dystrophin (top), the mini-dystrophin expressed in a very mildly affected Becker muscular dystrophy (BMD) patient carrying a

genomic deletion that removed exons 17–486 (middle) and the structure of amicro-dystrophin protein10 (bottom). Domains within dystrophin are abbreviated as follows: ABD,

actin-binding domain; R, spectrin-like repeats; H, hinge domains; CR, cysteine-rich domain; CT, carboxy-terminal domain. Note that the exon 17–48 genomic deletion

removes approximately two-thirds of the spectrin-like repeat 19 coding region. Numerous variants of micro-dystrophin structures have been described by different labs.
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derived from the muscle cDNA could be delivered to striated muscle,
thus avoiding the need to deliver the entire gene, multiple isoforms, or
to target tissues that expressed many of the smaller dystrophin
isoforms. Truncated versions of the cDNA (�6 kb in size) based on
genetic deletions in mildly affected BMD patients were subsequently
shown to almost completely prevent disease in the mdx mouse
models, which was accompanied by intensive efforts to understand
the overall structure and function of the dystrophin protein.8,9 Such
studies enabled the design of smaller but highly functional mini-
and micro-dystrophin cDNAs as short as 3.6 kb (Figure 1).10–14

The next and enormously challenging task was finding a means to
deliver the synthetic gene to the striated muscles that make up nearly
40% of human body mass.

Development of Vectors for Dystrophin Gene Delivery

While transgenic animal studies led to important insights into dystro-
phin protein structure and function that informed the design of dys-
trophin expression cassettes needed for therapy, such technology is
not directly applicable to human use without a way to administer
the cassettes to patients. How could dystrophin mini-genes be deliv-
ered bodywide such that all muscles are rescued? The advent of mini-
genes with a size of less than 7 kb allowed early studies of direct intra-
muscular gene transfer using retroviral and adenoviral vectors.14–17

However, this route of administration resulted in localized, not sys-
temic, gene delivery and did not appear amenable to whole-body
therapy. Development of improved, helper-dependent adenoviral
vectors overcamemany immune-system-related barriers to vector de-
livery and allowed for delivery of cassettes expressing the full-length
dystrophin protein, but these studies were also largely limited to
administration via intramuscular injection.18–21 A major advance
came in 1997, when the lab of Hansell Stedman showed that the
musculature of an entire limb could be transduced by infusing large
quantities of adenoviral vectors into hindlimb blood vessels under
elevated pressure.22 While this approach did not target muscles
outside of the limb, such as the heart and respiratory muscles, it sug-
gested that vasculature delivery of vectors might be adapted for body-
wide gene delivery. Further testing of adenoviral vectors revealed
numerous disadvantages for muscle gene transfer, including residual
induction of an immune response, slow loss of gene expression, and
difficulties targeting widespread muscles due to the large vector size
and its high tropism for liver.18,23 Many labs thus embarked on
studies to identify more effective vectors, and several studies showed
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that recombinant vectors derived from adeno-associated virus (AAV)
could lead to long-term expression following intramuscular
injection.13,24,25

Adapting AAV vector technology for DMD still required significant
work. AAV vectors have a carrying capacity of �5 kb, and the early
studies all used vectors derived from serotype 2, which poorly trans-
duced striated muscles and could only be administered by intramus-
cular injection. However, studies in transgenic mice had revealed that
highly functional “micro-dystrophin” cassettes could be generated
with a size less than 4 kb.10–12,26 A major breakthrough occurred
when it was discovered that improved vectors could be generated
from newly discovered AAV serotypes (such as AAV6, 8 and 9)
which, when injected into the vasculature at high dose (in the range
of 1014 vector genomes [vg] per kilogram) could transduce all the stri-
ated muscles in adult mice.27 This led to the demonstration that dys-
trophy could be almost entirely halted and largely reversed in an adult
mammal via systemic deliver of AAV/micro-dystrophin vectors
(Figure 2).27,28 Refinement of the gene delivery cassette throughmini-
aturization of muscle-restricted gene regulatory cassettes provided
greater vector functionality.29,30

Large Animal Studies

Since the murine studies showed significant promise, AAV/micro-
dystrophin studies moved to testing in the larger canine model for
DMD (CXMD). The dystrophic dogmodels not only allowed for eval-
uating scalability in a larger animal, but also enabled more sensitive
assessment of potential immune responses against the vector. Several
early studies using AAV6 suggested that T cell immune responses
against the vector were limiting in this model, but other studies
with AAV8 and 9 revealed minimal immune reactivity.31–35 It re-
mains unclear whether this reflected differences in vector properties,
vector formulation, or lab protocols. However, following extensive
testing using various AAV vectors carrying reporter genes or variants
of microdystrophin, systemic delivery protocols have been established
in canine models that support the potential for whole-body gene de-
livery to human muscle.35–41

These encouraging results have led to considerable interest in devel-
oping clinical gene therapy protocols involving administration of
AAV/micro-dystrophin vectors for DMD. To date only one clinical
trial has been completed, involving intramuscular injection of an
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Figure 2. Systemic Delivery of AAV/Micro-dystrophin to Adult Mouse

Muscles

Shown are images of muscle cryosections immunostained using an N-terminal

antibody against dystrophin. Control quadriceps cryosections from wild-type

(C57BL/6) or mdx4cv mice (top). Representative cryosections (heart, quadriceps,

and diaphragm muscle) from mdx4cv mice infused with 4 � 1014 vector genomes

per kilogram of AAV6/CK8-microdystrophin (bottom). Vector was administered via

retro-orbital injection at �2 months of age, and mice were analyzed at 6 months.
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AAV2.5 vector. This study, performed collaboratively between the
laboratories of Jerry Mendell and R. Jude Samulski, involved six pa-
tients, and while the vector injection proved safe, none of the patients
expressed significant levels of micro-dystrophin (only two had any
detectable exogenous dystrophin).42 Two of the six patients displayed
a low-level T cell immune response (assayed by ELISpot) against dys-
trophin, and one other patient displayed a clear T cell response
against the AAV vector (defined as greater than 3� background on
the ELISpot assay).42,43 These results indicated that immune re-
sponses against dystrophin and/or the AAV capsid were responsible
for the poor transduction, but given the limited data available and the
relative insensitivity of ELISpot assays, it is difficult to make firm con-
clusions. All the patients developed high-titer neutralizing antibodies
against the vector, and two had pre-existing neutralizing antibodies.43

This, combined with a potential suboptimal vector serotype could
have led to poor vector uptake by the injected muscle. In this study
dystrophin expression was regulated by the ubiquitously active cyto-
megalovirus (CMV) immediate early enhancer plus promoter, which
could have facilitated an immune response against dystrophin
(through expression in immune effector cells) and/or resulted in
loss of expression due to promoter shutdown. Finally, intramuscular
injection tends to induce more inflammation and is better able to
elicit a T cell immune response than is a vascular delivery method.
These results suggested that better vectors (especially alternate capsid
serotypes) coupled with a vascular delivery system and a gene regula-
tory cassette that is inactive in immune cells might lead to improved
expression. Consequently, most current efforts to develop human
clinical trials revolve around the use of AAV8 or 9 and a muscle-spe-
cific promoter/enhancer.

Systemic Delivery Clinical Trials for DMD

With considerable advances in the types of AAV vectors available,
muscle-specific gene regulatory cassettes, and production/purifica-
tion protocols, several groups are now planning human clinical trials
involving vascular delivery of AAV/micro-dystrophin to patients.
These plans are supported by extensive new data involving large-
scale vector delivery to CXMD dogs and, for safety studies, to
wild-type non-human primates.44–46 While most of these new data
remain unpublished or proprietary, several trends are emerging
that are being used to support upcoming clinical trial applications
to the US Food and Drug Administration (FDA) or the European
Medicines Agency (EMA). Planned trials have many similarities
but differ in details including vector serotype, micro-dystrophin
design, gene regulatory cassette usage, and the age of the patients.
Depending on regulatory agency approval, some of these trials could
begin within the next year.
Molecular Therapy Vol. 25 No 5 May 2017 1127
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These impending phase 1 clinical trials will answer several critical
questions about the long-term feasibility of AAV/micro-dystrophin
gene therapy for DMD. While safety will be the primary focus, the
systemic gene delivery approaches will also enable important data
to be gathered on efficacy. Outcome measurements should provide
initial data on the functional capacity of the different micro-dystro-
phin designs. For example, will such miniaturized proteins improve
muscle physiology similarly to what has been observed in mice and
dogs? If improvement is obtained, how soon can this be observed
and will the effect be sustained? Will DMD patients tolerate high-
dose vector delivery as has been observed in canine and non-human
primate studies? Will age and disease progression be a factor in trans-
duction efficiency? Will T and/or B cell immune responses be
observed against either dystrophin or the vector capsid proteins?
Finally, can these immune responses be avoided or controlled, such
that vector could be readministered years later if dystrophin expres-
sion drops below the threshold needed for therapy (see below)?

A difficulty with conducting these studies involves measuring vector
distribution and dystrophin expression in widespread muscles
throughout the body. The only direct method to measure dystrophin
expression requires analysis of a muscle biopsy, and due to the inva-
sive nature of obtaining biopsy specimens, very few can be obtained
from any patient, limiting information on expression in multiple
muscles or in one muscle over extended periods of time. Conse-
quently, there is enormous interest in developing serum biomarkers
that can be monitored non-invasively, and using imaging techniques,
such as magnetic resonance imaging (MRI), to follow muscle struc-
ture over time.47–50 The clearest indication of benefit will come
from functional measurements, many of which have been developed
for other DMD trials such as the 6-min walk test or newer, more
informative tests.51

The potential for vector readministration is an important issue.
Without some form of transient immune suppression, high-dose
administration of AAV vectors can elicit production of neutralizing
antibodies that preclude the ability to administer a second dose of vec-
tor.52 If the results from animal studies translate well to humans, it
may be possible to obtain sufficient levels of dystrophin expression
from a single dose to stabilize all striated muscles. However, the
half-life of this expression is unknown in human muscles. Studies
in dogs and non-human primates suggest that the episomal AAV vec-
tor genome is fairly stable over a period of at least 5 years in normal
skeletal muscle, but a shorter half-life is likely in treated dystrophic
muscles that might display a partially mosaic pattern of micro-dystro-
phin expression.53 Even moderate exercise can cause focal damage
that would presumably be accompanied by partial vector loss. If
immune responses against the vector can be avoided, such as with a
transient immune suppression protocol, then readministration might
be possible.37,54,55

Future Prospects

It has been 31 years since the dystrophin gene was cloned, 24 years
since muscle-specific dystrophin expression was shown to eliminate
1128 Molecular Therapy Vol. 25 No 5 May 2017
muscular dystrophy in transgenic mice, and 13 years since systemic
delivery of AAV/micro-dystrophin vectors was demonstrated.4,7,27

Progress in therapeutics for DMD has been accelerating, and the field
is now at a critical juncture where the feasibility and efficacy of AAV-
mediated systemic therapies for DMD will be tested in the clinic. Up-
coming clinical trials should provide data on whether current tech-
nology can be adapted for widespread use or whether refinements
are needed. Such refinements could include testing alternate AAV se-
rotypes; using different regulatory cassettes; varying the route of de-
livery, dose, or age at treatment; and testing immune-suppression
strategies. AAV-mediated delivery of dystrophin genes appears to
have enormous potential for therapy, as it enables correction of the
fundamental cause of DMD and BMD: failure to produce functional
levels of the dystrophin protein. If successful, this approach could be
applicable to any patient with DMD or BMD.

In addition to AAV/micro-dystrophin, several other gene therapies
approaches are being contemplated for DMD. Many of these were
summarized in a recent review, but a few comments are relevant
here.56 Due to the possibility of an immune response against dystro-
phin, various groups are testing delivery of a surrogate gene that could
partially substitute for dystrophin. Candidate genes include the pa-
ralog utrophin, GALGT2, or alpha7-integrin.57–59 Another emerging
technology that might be tested in coming years involves the use of
gene editing using the CRISPR/Cas9 system.60

Gene editing is attractive as a therapy as it has the potential to directly
modify the mutantDMD gene to enable production of the dystrophin
protein. In cases where themutation is small, such as a point mutation
or small deletion, this approach could lead to production of a nearly
full-length protein.61 The potential for this strategy was demonstrated
using AAV vectors to deliver CMV-Cas9 and guide RNA cassettes to
bypass the premature stop codon in the genomes of mdx mice,62–64

and more recently, multiple strategies were shown to have potential
for muscle-specific editing in the more complex mutational context
in mdx4cv mice.56,65 However, with large deletions, editing would
only enable production of smaller dystrophins, similar to approaches
using antisense oligonucleotides (below). A method to circumvent
this issue by using editing to introduce a portion of the dystrophin
cDNA into the mutant gene to restore production of larger and
more functional dystrophins has recently been suggested.66 Overall,
multiple strategies will be needed for treating the wide variety of mu-
tations found in DMD patients.

A number of issues need to be resolved before gene editing can be
tested in the clinic. One is the obvious problem of low efficiency
observed to date. A second is the issue of expressing the bacterial
Cas9 enzyme for extended periods in muscle. As noted above for mi-
cro-dystrophin, the studies that expressed Cas9 from the CMV
enhancer/promoter are likely to lead to an immune response against
the bacterial Cas9.23,62–64,67 Muscle-specific expression could reduce
this concern but would still lead to long-term nuclease expression,
albeit only in post-mitotic cells.61 Safety issues related to off-target ed-
iting also need to be addressed. While gene editing has been suggested
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as a method that could lead to permanent correction of dystrophin
deficiency, such a goal will require targeting the gene in myogenic
stem cells. This latter issue arises because even normal muscles cells
display a low rate of turnover. At present, it is unclear whether
AAV vectors are capable of transducing myogenic stem cells in vivo
at an efficiency needed for significant gene editing, but future studies
may clarify this issue.63,68

Non-viral genetic approaches include systemic administration of
morpholino antisense oligonucleotides that can induce skipping of
mutant exons from pre-mRNAs to restore dystrophin production
in muscles. Such a strategy recently resulted in FDA approval for
exondys 51 (tradename of eteplirsen).69,70 The EMA has given condi-
tional approval for the use of ataluren,71 a small molecule designed to
suppress use of premature stop codon mutations found in �10% of
DMD patients. Other strategies are aimed at testing small molecules
that could target aspects of muscle pathology resulting from dystro-
phin deficiency. These include drugs designed to upregulate expres-
sion of utrophin, reduce muscle inflammation, reduce fibrosis,
enhance regeneration by stimulating myogenic stem cell function,
or even induce new muscle cell formation via myogenic stem cell
transplantation. Ultimately, an optimal treatment might result from
the use of several approaches in combination. For example, one can
envision gene therapy to restore dystrophin expression coupled
with small-molecule therapies to reduce fibrosis.

Conclusions

The prospects of gene therapy using systemic delivery of AAV/micro-
dystrophin vectors appears increasingly feasible and will soon be
tested in clinical trials. The method as originally developed in mdx
mice was shown to be safe and largely eliminates dystrophic patho-
physiology for the lifespan of the mice. Recent and ongoing studies
suggest that similar results are observed in canine models for
DMD, and various types of AAV vectors have been shown to be
safe in non-human primate studies and clinical trials for other genetic
disorders. The general approach is amenable to significant modifica-
tion if initial human studies do not achieve satisfactory results. While
DMD was once viewed as an incurable disease, progress in the field
suggests that successful gene therapies may soon be available.
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