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Background

Sorafenib (NEXAVAR®, BAY43-9006) is an oral anti-cancer drug approved by the U.S. 

Food and Drug Administration (FDA) for the treatment of advanced renal cell carcinoma 

(RCC), unresectable or metastatic hepatocellular carcinoma (HCC), and locally recurrent or 

metastatic, progressive and differentiated thyroid carcinoma (DTC) refractory to radioactive 

iodine treatment [1]. It is also being evaluated in acute myeloid leukemia (AML) and other 

solid tumors in adults and children. Sorafenib inhibits tumor cell proliferation and 

angiogenesis via targeting numerous serine/threonine and tyrosine kinases (RAF1, BRAF, 

VEGFR 1, 2, 3, PDGFR, KIT, FLT3, FGFR1, and RET) in multiple oncogenic signaling 

pathways [2–5]. The most common adverse effects associated with sorafenib include hand-

foot skin reaction (HFSR), diarrhea, hypertension, rash, fatigue, abdominal pain and nausea 

[6–9]. Serious adverse effects (eg. liver failure, myocardial infarction) are rare but may arise 

in some cases. Adverse events may lead to compromised efficacy due to dose reduction or 

treatment interruptions. There is high interpatient variability in cumulative drug exposure 

and responses following sorafenib treatment [2, 3, 10, 11]. In this review, we discuss the 
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clinical pharmacology of sorafenib and highlight genetic variations that may contribute to 

the diverse pharmacological responses to sorafenib. Better understanding of the factors 

contributing to the high variability of response to sorafenib should improve the efficacy and 

safety of the drug, and help select patients who will benefit most from sorafenib therapy.

Pharmacokinetics

Sorafenib is a small lipophilic molecule with low-solubility and high permeability. After oral 

administration, it is rapidly absorbed from the gastrointestinal tract and reaches the liver via 

the portal vein. Sorafenib reaches peak plasma levels between 1 and 12 hours, with typically 

longer periods for the fed state, and reaches steady-state concentrations typically around 7 

days [2, 12–14]. It has a relatively long mean half-life ranging from approximately 20 to 48 

hours at the 400 mg bid dose. The majority (77%) of sorafenib is eliminated in the feces 

(51% unchanged) and about 19% is excreted in the urine (mostly as glucuronide conjugates 

of the parent drug and its metabolites) [15]. Full prescribing information about the drug is 

available at http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021923s016lbl.pdf.

High interpatient pharmacokinetic variability was observed with multiple dosing of 

sorafenib. Clinical trials showed that sorafenib exposure (area under the plasma drug 

concentration-time curve (AUC)) varied from 18.0–24.0 mg*h/l on day 1 and 47.8–

76.5mg*h/l on the last day of the dosing cycle, and the peak plasma concentrations (Cmax) 

ranged from 2.3–3.0 mg/l on day 1 and 5.4–10.0 mg/l on the last day of dosing [2, 12, 14, 

16]. The median time to peak plasma concentration (Tmax) varied from 2–12 h. 

Additionally, sorafenib’s AUC and Cmax values increased less than proportionally with 

increasing dose [2, 12, 14, 16]. Incidence and severity of sorafenib-induced side effects 

(eg.HFSR) were also related to cumulative dose and sorafenib exposure level [17–20]. The 

underlying mechanisms that led to these variabilities are not fully elucidated, and no 

validated markers have been found that can predict clinical outcome or tolerability for 

sorafenib [21–23].

Sorafenib is metabolized primarily in the liver via two pathways: phase I oxidation mediated 

by cytochrome P450 3A4 (CYP3A4), and phase II conjugation mediated by UDP 

glucuronosyltransferase 1A9 (UGT1A9) (Figure 1) [24, 25]. Eight metabolites of sorafenib 

have been identified (M1–8) [26–28]. The main circulating metabolite in the plasma is 

sorafenib N-oxide (M2) and it is produced through oxidation of sorafenib by CYP3A4 [29, 

30]. Comprising 9 – 16% of the circulating analytes at steady-state, M2 exhibits an in vitro 
potency similar to sorafenib [16, 26, 30]. M2 also gets further metabolized to N-

hydroxymethyl-sorafenib-N-oxide (M1), and glucuronidated to M8 [26]. The metabolite M7 

(glucuronide of sorafenib) is produced through glucuronidation of the parent compound by 

UGT1A9 [26]. Glucuronidation accounts for clearance of about 15% of sorafenib dose in 

human, while oxidation accounts for only 5% [15]. Among the metabolites of sorafenib, M2, 

M4 (demethylation), and M5 (oxidative metabolite) were found to inhibit Vascular 

Endothelial Growth Factor Receptor (VEGFR) signaling pathway, Platelet-Derived Growth 

Factor Receptor (PDGFR) signaling pathway and members of the Mitogen-Activated Protein 

Kinase (MAPK) pathway [26].
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Since the metabolism of sorafenib occurs through the CYP3A4 and UGT1A9 pathways, 

induction or inhibition of these pathways may affect the pharmacokinetics and effectiveness 

of sorafenib. Administration of the drug with CYP3A4 inducers, such as rifampin, St. John’s 

Wort, phenytoin, carbamazepine, phenobarbital, and dexamethasone, has been shown to 

increase the metabolism of sorafenib and decrease exposure [31]. In contrast, administration 

of the drug with an inhibitor of CYP3A4, ketoconazole, did not significantly influence 

sorafenib exposure in healthy volunteers receiving a single dose of sorafenib, nor did it 

affect safety or tolerability of sorafenib [15, 24]. Though not a substrate for CYP2B6, 

CYP2C8, CYP2C9 and UGT1A1, sorafenib has been shown to inhibit their activities in vitro 
[25, 27]. The clinical significance of this inhibition is not clear, and drugs that are 

metabolized by these enzymes should be used with caution in patients receiving sorafenib 

due to a potential risk of drug interactions.

In addition to differences in metabolizing enzymes, inter-individual differences in hepatic 

transporters may also contribute to the substantial pharmacokinetic variability observed with 

sorafenib. In vitro and preclinical studies demonstrated that the hepatic uptake of sorafenib 

and its metabolites is mediated in part by organic cation transporter-1 (OCT1, encoded by 

gene SLC22A1) [32–36] and by organic anion transporting polypeptide 1B1 and 1B3 

(OATP1B1 and OATP1B3, encoded by gene SLCO1B1, SLCO1B3) [34, 35, 37]. Sorafenib 

also showed moderate affinity for the efflux transporter P-glycoprotein (p-gp, encoded by 

gene ABCB1) and breast cancer resistance protein (BCRP, encoded by gene ABCG2) [38–

43]. Functional differences of both the influx and efflux transporters (either due to genetic 

variation or co-medication) may affect systemic exposure and response of sorafenib. 

Moreover, intra-tumoral OCT1 mRNA expression has been shown to be a significant 

positive prognostic factor in hepatocellular carcinoma patients treated with sorafenib [44].

Pharmacodynamics

Sorafenib was initially identified as a Raf-1 kinase inhibitor [5, 45]. Further in vitro and in 
vivo studies demonstrated that it also targets multiple receptor tyrosine kinases in the cell 

membranes (eg. VEGFR 1, 2, and 3, PDGFR, stem cell factor receptor (KIT), FMS-related 

tyrosine kinase 3 receptor (FLT3), fibroblast growth factor receptor 1 (FGFR1), and RET 

proto-oncogene (RET)) as well as downstream intracellular serine/threonine kinases (eg. 

RAF1, wild-type BRAF and mutant BRAF carrying V600E) [2–5]. Blocking these kinases 

and their downstream signaling molecules in multiple oncogenetic pathways leads to potent 

inhibition of both tumor cell proliferation, apoptosis, as well as tumor angiogenesis (Figure 

2).

Preclinical studies have demonstrated that sorafenib inhibits tumor growth in a wide 

spectrum of human cancers (melanoma, renal, colon, pancreatic, hepatocellular, thyroid, 

ovarian, and non-small cell lung carcinomas (NSCLCs)) and in some cases induces tumor 

regression [46]. In Dec 2005, Sorafenib was approved for the treatment of advanced renal 

cell carcinoma (RCC) by the FDA after favorable progression-free survival (PFS) results 

(5.5 months for sorafenib vs. 2.8 months for placebo) were obtained in the pivotal double-

blind, placebo-controlled Phase III TARGET trial (Treatment Approaches in Renal Cancer 

Global Evaluation Trial) [47]. Shortly after that in 2007, sorafenib was approved for the 
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treatment of advanced unresectable hepatocellular carcinoma (HCC) after it demonstrated 

significant survival benefits in two global phase III clinical trials (the Sorafenib 

Hepatocellular Carcinoma Assessment Randomized Protocol (SHARP) trial and the Asia 

Pacific trial) [48, 49]. In 2013, sorafenib was also approved by the FDA to be the first-line 

treatment option in advanced, radioiodine-refractory differentiated thyroid carcinoma (DTC) 

[50]. The Phase III study conducted in radioiodine-refractory DTC showed that sorafenib 

significantly prolongs progression-free survival compared to placebo, 10.8 versus 5.8 

months, respectively [51]. Though it prolongs overall survival (OS) or PFS in these trials, 

sorafenib’s efficacy is modest with short survival prolongation periods of a few months. 

Following the approval of sorafenib, there have been various tyrosine kinase inhibitors 

(TKIs) investigated in phase II and III trials as first-line and second-line therapies to improve 

treatment outcomes of these advanced diseases. For advanced HCC, none of the TKIs have 

demonstrated superiority versus sorafenib in the front line setting or improved survival 

advantages over sorafenib used alone or in combination [52–55]. Sorafenib remains the only 

approved therapy for HCC and is one of the most commonly used kinase inhibitors for the 

treatment of solid tumors.

Sorafenib has a low response rate, but was demonstrated to improve progression-free and 

overall survival. However, small numbers of patients in individual trials have demonstrated 

significant reductions in tumor burden. Biomarkers that can predict sorafenib efficacy, 

especially these burden reduction effects, would be helpful to identify the group of patients 

that are likely to benefit most from the treatment. Numerous clinical studies have been 

published trying to identify biomarkers that may predict prognosis or efficacy for sorafenib 

[21–23, 56–59]. However, no predictive biomarker has yet been found or clinically 

validated. The candidate biomarkers that have been examined include molecular targets of 

sorafenib, ligands to those target receptors, as well as molecules that have been implicated in 

the pathogenesis of HCC. The clinical outcomes involved in biomarker analysis are PFS, OS 

and toxicities related to sorafenib treatment. The most convincing evidence evaluating 

plasma biomarkers to predict prognosis and response to sorafenib came from large 

randomized controlled trials. In the phase III randomized controlled SHARP trial involving 

602 patients with HCC, Llovet et al found that plasma biomarkers (angiopoietin 2 (Ang2), 

VEGFA, HGF and IGF2) were predictors of prognosis in patients with HCC; however, none 

of the plasma biomarkers tested reached statistical significance to predict response to 

sorafenib, only high s-c-KIT or low HGF showed trends towards enhanced survival [23]. A 

recent exploratory biomarker study in 494 patients with advanced HCC treated with 

sorafenib with or without erlotinib in the phase III SEARCH (Sorafenib and Erlotinib, a 

Randomized Trial Protocol for the Treatment of Patients With Hepatocellular Carcinoma) 

trial showed that high baseline plasma levels of HGF and VEGFA correlated significantly 

with shorter overall survival (OS), and high KIT concentration with longer OS. Additionally, 

high VEGF-C correlated with better time to progression (TTP) [21]. However, since the 

SEARCH trial did not include a non-sorafenib (placebo alone) arm, it is not possible to 

determine if any of these markers tested would be predictive of treatment benefit from 

sorafenib, was prognostic, or spurious. Similar findings were reported from analysis of 

patients with differentiated thyroid cancer (DTC) in the phase III DECISION trial (http://

meetinglibrary.asco.org/content/169956-176). The authors reported that elevated baseline 
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serum thyroglubulin (Tg), VEGFA, VEGFC, TGF-β1, and low E-cadherin were correlated 

with poor prognosis in DTC. However, none of the biomarkers tested were able to predict 

benefit from sorafenib. In summary, despite the large number of plasma and tissue 

biomarkers that have been examined in various trials and clinical studies, unfortunately no 

predictive biomarkers of responsiveness to sorafenib have been validated for clinical use.

Clinical pharmacodynamics biomarkers such as treatment adverse effects have also been 

examined. Hypertension and HSFR are two of the common side effects associated with 

sorafenib in cancer patients, and the occurrence of these events have been associated with 

more favorable clinical outcomes [17, 60–62]. These adverse events are also commonly seen 

with other anti-angiogenic therapies (eg. pazopanib, sunitinib, lenvatinib etc.) and are 

considered a class-specific toxicity [63–67]. The mechanism behind sorafenib-induced 

toxicities is not clear and may involve simultaneous disruptions of multiple signaling 

pathways including VEGF, PDGF, RAF1, BRAF, KIT, and FLT3 in normal organs [68–70].

Pharmacogenomics

The role of genetic factors in predicting response and toxicity to sorafenib has been the 

subject of many publications. In vitro and clinical data have associated polymorphisms in 

the genes regulating pharmacokinetics (PK) and pharmacodynamics (PD) of sorafenib with 

high interpatient pharmacokinetic variability and clinical outcomes [2, 12, 14, 16, 26, 29]. 

However, due to the lack of replication, small sample size and marginally significant 

associations in many of these studies, none of the genetic variants identified have emerged as 

clinically meaningful or useful to select patients most likely to respond to sorafenib 

treatment.

Pharmacogenetic research on sorafenib published so far has mainly focused on SNPs 

selected based on the knowledge of PK or PD of the drug. CYP3A4 and UGT1A9 regulate 

the metabolism and clearance of sorafenib [24, 25]. In a study examining genetic variations 

in metabolizing enzymes in a cohort of 111 patients with solid tumors treated with sorafenib, 

Jain et al. observed no significant effect on sorafenib exposure in patients with 

polymorphisms CYP3A4*1B, CYP3A5*3C, UGT1A9*3, and UGT1A9*5 [71]. Later, a 

study by Boudou-Rouquette et al. examined additional SNPs in UGT1A9 along with 

variants in CYP3A5, UGT1A9, ABCB1 and ABCG2 for their association with sorafenib-

induced toxicity in 54 patients with solid tumor [18]. Similar to the previous study, no 

genetic variants of metabolizing enzymes and efflux transporters were related to sorafenib 

exposure.

Though UGT1A1 is not involved in sorafenib metabolism, its activity is inhibited by 

sorafenib [25]. In a study that examined the effect of UGT1A1, UGT1A9 and ABCC2 
polymorphisms on the pharmacokinetics of sorafenib and the risk of developing 

hyperbilirubinemia in 120 cancer patients dosed with sorafenib, Peer et al. found that 

patients carrying at least one copy of UGT1A1*28 had increased plasma bilirubin 

concentrations and greater sorafenib exposure [25]. This is consistent with earlier case 

reports showing that sorafenib induced hyperbilirubinemia in individuals carrying the 

UGT1A1*28 polymorphism and inhibited UGT1A1-mediated bilirubin glucuronidation [25, 
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72, 73]. A recent study by Bins et al. in 114 cancer patients also confirmed that cancer 

patients carrying the UGT1A1*28/*28 (rs8175347) had over five-fold higher odds of acute 

hyperbilirubinemia within 2-months of sorafenib treatment [74]. Patients carrying at least 

one UGT1A1 variant allele also had a 3.4 fold higher odds of interrupting treatment.

In addition to metabolizing enzymes, genetic polymorphisms in drug transporters have also 

been associated with sorafenib toxicity and response. In a recent study with 114 cancer 

patients treated with sorafenib, patients with at least one variant allele of rs2306283 in 

SLCO1B1 (*1B, increased transporter function) had almost eight fold lower odds of 

developing diarrhea than patients with wild type genotype following sorafenib treatment 

[74]. Another variant in SLCO1B1, rs4149651 (*5, reduced transporter function), was 

associated with 4.2-fold higher odds of developing thrombocytopenia. On the other hand, 

genetic variations in SLCO1B3 (rs4149117), ABCC2 (rs717620), ABCG2 (rs2231142) and 

UGT1A9 (rs17868320, rs6714486) were not found to be associated with either toxicity or 

response to sorafenib in this study [74]. In contrast to this study, a previous report in 

Japanese patients with advanced renal cell carcinoma showed that the CC genotype of 

ABCC2 rs717620 and HLA-A*24 were associated with a higher risk of sorafenib-induced 

high-grade skin rash [75].

In summary, numerous publications in the past decade have investigated multiple gene 

variants in candidate genes and found associations with sorafenib efficacy or toxicity. 

However, many of these studies have small sample sizes, lack reproducibility, and can only 

be considered as exploratory. The clinical significance of these findings will only be 

revealed through study of larger observational cohorts. At this time, none of the reported 

associations meet the current standard of evidence for genotype/drug effect relationships 

[76, 77].

Conclusion

The multi-kinase inhibitor, sorafenib, is currently approved for the treatment of metastatic or 

advanced liver, kidney, and thyroid cancers. Although many new targeted therapies have 

been tested over the past decade, sorafenib remains the standard of care for these diseases 

due to its modest efficacy and acceptable tolerability. The pharmacokinetics and 

pharmacodynamics of sorafenib have been well studied, but there is still incomplete 

understanding of the high variability in sorafenib exposure and clinical responses. Although 

numerous studies have been conducted to identify biomarkers that can predict response to 

sorafenib therapy, no predictive biomarkers for sorafenib response have been identified.

This experience with pharmacogenomic and biomarker studies of sorafenib should be 

instructive for investigation of predictive biomarkers for anti-cancer drugs in the future. 

Sorafenib has high inter-individual variance in pharmacokinetic parameters. The dose of 

sorafenib is therefore a poor predictor of individual exposure. Without the measured 

exposure, the power to detect meaningful associations between pre-treatment markers and 

on-treatment events is greatly reduced. In this setting, it becomes difficult to detect 

reproducible and clinically meaningful relationships even in the largest clinical trials. 

Karovic et al demonstrated a systematic method to detect a clinically meaningful 
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relationship between sorafenib dose and a rapidly detectable and precisely measurable 

pharmacodynamic biomarker-blood pressure [67]. Their results suggested that although 

blood pressure had many favorable properties as a pharmacodynamic biomarker, it would be 

unlikely to be useful in the clinical setting. Perhaps more systematic evaluation of candidate 

biomarkers will enable our community to better conserve our precious resources so that we 

might focus our efforts on development of biomarkers that have the greatest likelihood to 

improve care of patients who receive narrow therapeutic index treatments.
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Figure 1. 
Sorafenib pharmacokinetics pathway.

Stylized cells depicting genes involved in the metabolism of sorafenib. A fully interactive 

version is available online at: https://www.pharmgkb.org/pathway/PA165959537
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Figure 2. 
Sorafenib pharmacodynamics pathway.

Stylized cells depicting the mechanism of action of sorafenib. An interactive version is 

available online at: https://www.pharmgkb.org/pathway/PA165959584
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