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ABSTRACT A theorem about closure operators on par-
tially ordered sets is given, and applications to the counting of
colorings of graphs according to partition type are derived.

In recent papers, the two ofus have independently attempted
to extend to a broader algebraic context the combinatorial
theory of mobius functions as originally developed by Rota.
In refs. 1 and 2, the notions of Mobius and zeta functions of
a subposet of a partition lattice are generalized to those of
Mobius type function and zeta type function, which serve in
enumeration problems not only to count partitions but also to
describe the types-i.e., the numbers of blocks of each
size-of the partitions counted. In the case of the poset of
admissible partitions of the vertex set of a graph G (which is
closely related to the lattice of contractions of G), it is shown
that the natural extension of the characteristic polynomial to
this setting, called the umbral chromatic polynomial of G,
counts colorings of the graph according to their partition
type. This is a substantial generalization of the well-known
result (3) that the characteristic polynomial of the lattice of
contractions of a graph is equal to the chromatic polynomial
of the graph (modulo a simple multiplicative factor).

In refs. 4 and 5, the Hopf algebra structure of incidence
algebras of partially ordered sets is recognized, and the
antipodes of these Hopf algebras become the natural gener-
alization of Mobius functions. Theorems for calculating the
antipodes of incidence (Hopf) algebras are then given, gen-
eralizing well-known results about Mobius functions. These
theorems are significant extensions of their Mobius theoretic
counterparts, because computing the antipode is equivalent
to computing the convolution inverse of all of the functions
of an incidence algebra.
The main result of this paper is a generalization of a

powerful theorem that relates the Mobius functions of two
posets, when one is the image of the other under a closure
operator. This result can be understood as a theorem about
computing antipodes of incidence Hopf algebras, but to
simplify the presentation here, we state it as a formula for
inverting a single, arbitrary element of an incidence algebra,
thus avoiding the machinery of Hopf algebras. As an appli-
cation, we show how this theorem leads to a major improve-
ment in our understanding of the construction of the umbral
chromatic polynomial x'P(G; A) of a graph G, answering the
question formulated in refs. 1 and 2 as to why the set of
admissible partitions, rather than the lattice of contractions,
ofG provides the appropriate framework for the construction
of xV(G; A). For convenience, we have stated our results in
terms of coclosure operators, which are the duals (in the
sense of partially ordered sets) of closure operators.

Incidence Algebras and Coclosure Operators

Let P be a locally finite partially ordered set, or poset for
short, and let R be a ring with identity. The incidence algebra
R(P) ofP (over R) is defined to be the set of functions from
the collection of intervals in P, Int(P), to the ring R, with

pointwise addition and scalar multiplication; and convolution
product defined by

f * g(x, y) = > f(x, z)g(z, y),

for f, g in R(P) and x - y in P. The identity 8 of R(P) is given
by S(x, y) = Ax8y, the Kronecker delta, and the zeta function
; satisfies {(x, y) = 1, for all x c y in P. The Mobiusfunction
, of P is the convolution inverse of the zeta function.
A corank function on a poset P is a map v from P into the

nonnegative integers such that v(x) = 0 if x is maximal and
v(x) = v(y) + 1 whenever y covers x in P. If P has corank
function v and unique minimal element 0, then the charac-
teristic polynomial ofP is the polynomial X(P; A) = ExEP (40,
x)A(x).
A coclosure operator on P is a function x x-> from P into

itself such that (i) x < x, (ii) x = x, and (iii) x c y implies x
s y, for all x, y E P. An element x ofP is closed if x = x. Let
Pc denote the subposet of closed elements ofP, and let 4V and
g, be the zeta and Mobius functions of P, One of the most
powerful tools for computing Mobius functions is the follow-
ing well-known theorem, due to Rota (3), which expresses uc
in terms of u.
THEOREM 1. Let x --x be a coclosure operator on a poset P.
For all a s b in P

E 4(x, b) = {fc(a, b) if a, b EPP,
x,x=a 0 otherwise. [11

Now let qp be any element ofR(P) and let Pc E R(PC) be the
restriction of p to Int(P,). We seek a formula analogous to Eq.
1 that expresses s'1, the (convolution) inverse of sPc in R(Pj),
in terms of sp-' and sp, and reduces to Eq. 1 in the special case
that p is the zeta function of P. We must make an additional
assumption about the map x -x T to do this.

Definition 1: Let sp E R(P). A coclosure operator x -x T on
P is sp-factoring if for all x, y E P with x - y

O(x, y) = O(x, y)p(y, y). [2]
THEOREM 2. Suppose (p E R(P), and x -- X is a sp-factoring
coclosure operator on P. IfP,. denotes the subposet ofclosed
elements ofP, and sp,. E R(P,) is the restriction of p to Int(P,),
then for all a < b in P

> so(a, x~s1-l~xs b'= {<Pq- (a, b) if a, b E PC,
xx=a 0 otherwise.

Proof: Define functions 5 and f6-1 in R(P) by

-(x y) fp(xy) ify X,
0 otherwise,

and

fC l~x,y1 = {q0-1(x, y) if x, y E Pc,
10 otherwise,
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for all x c y in P. Then the theorem is equivalent to the identity
sp * p-' = (PC1 in R(P). Or, by convolving with 'p on the right,

_= -1 [41

Now the sum in Eq. 3 is empty if a is not closed, so we will
assume a E PC. In this case

(p- * p(a, b) = > 'c1(a, x)(p(x, b).
a-xsb
x closed

It follows from the definition of a coclosure operator that x
b if and only if x c b. Combining this with the fact that x
x is (p-factoring, the sum can be rewritten

E_pfc -a, 7r)c(pC, b)(p(b, b).
x closed

Hence

s~~~~~c(*pab (b, b) if a =b
O0 otherwise,

which is equal to sp(a, b), since we have assumed a = a. Thus
Eq. 4 holds, and the proof is complete. o
Note that any coclosure operator on a poset is {-factoring;

so Theorems I and 2 are identical in the case that 'p =

Posets of Partitions

Let V be a finite set. A partition of V is a set o of nonempty,
disjoint subsets of V, called blocks of a, whose union is V.
Hl(V) will denote the poset of all partitions of V ordered by
refinement; that is, er c ir in H(V) if and only if every block
of a is contained in some block of ir. H(V) has maximal
element i = {V} and minimal element 0 = {{x}Ix e V}. If Jrl
denotes the number of blocks of the partition or, then setting
v(o) = Ju1 - 1 defines a corank function on Hl(V).
Let 'F be the polynomial ring Z[p1, p2, . . .1 in infinitely

many variables. Define the function in the incidence
algebra d1(HI(V)) by setting gY(o, ir) = ' 9P2k2 .. . , for or - r

in IH(V), where ki is the number of blocks of i that are unions
of exactly i + 1 blocks of a-. The monomial {'(or, ir) is called
the type of the interval [a-, r]. The monomial P(0', ir) is the
type of the partition ir. Note that this differs from the usual
notion of the type of a partition found in the literature, in that
the function {F does not count blocks of size one.
Now if P is any subposet of Hl(V), the restriction of P to

Int(P) will be called the zeta type function of P, and the
convolution inverse of r' in F(P) will be called the Mobius
type function ofP and denoted ,I. The Mobius type function
of P indeed exists; it is given by

,u(ar, r)
- z E (-1)k~'(cro, c1) . . . {,p(ak_1, crk)

k o=cro<-'<ck=o&

for all arc r in P, where the inner sum is taken over all chains
from cr to r whose elements all belong to P. It is easy to see
that this defines a convolution inverse for {v in 4(P). When
P is equal to Hl(V), we write uPY instead of pf for the Mobius
type function. The subposets P of Hl(V) that we will consider
here are subposets of closed elements corresponding to
coclosure operators on fI(V); hence, we use the notation '4
for the Mobius type function of P to be consistent with the
notation used in Theorem 2.

IfP contains the element 0 of H(V) and has corank function
v then we define the characteristic type polynomial of P by

XP(P; A) = I uP4(6, o)Ap(f).
creP

We remark that P, gP, and XP(P; A) are generalizations ofthe
usual zeta and Mobius functions and characteristic polyno-
mial of P in the sense that each reduces to its classical
counterpart upon the substitution 'P1 = 'P2 = .. .= 1.

Simplicial Complexes and Coclosure Operators

Suppose S is a simplicial complex on a finite set V. That is,
S is a collection of subsets of V such that whenever U E S and
W C U, then WE S. We can then define a map cr- a from
H1(V) into itself by letting a be the partition of V whose
nonsingleton blocks are precisely those of a that are not
contained in S. In other words, 5i is obtained from cr by
splitting into singletons all nontrivial blocks of cr that belong
to S. We then have the following.
PROPOSITION 1: Let S be a simplicial complex on a finite set
V; then the associated map o- -* 5: defined above is a
{'9-factoring coclosure operator on H(V).
Proof: The map cr-- U is clearly a coclosure operator. Now
for any subset B of V, let IrB be the partition of V whose only
nontrivial block is B. In particular, 7rB = O whenever IBI = 1.
Then for all a E H(V), we have

ol(6, cr) = H1 o(0, TB).
BEo

Now let S' be the collection of all subsets of V that are not
in the simplicial complex S. Then

0'(6, a) = H {'(O, 7TB)
BEfans'

and

VPO' a) = H VP(6, RB)
BEulns

Thus {?"(6, cr) = {'(6, cr) ;,cro-), for all ar in H(V). Eq. 2
follows easily, hence the map ar -- 5 is CP-factoring.o
Graphs

Let G = (V, E) be a finite graph with vertex set V and edge
set E. If U is a subset of V, the induced subgraph G(U) is the
graph whose vertex set is U and whose edges are those of G
having both endpoints in U. A subset U of V is independent
if the induced subgraph G(U) contains no edges. The collec-
tion of all independent subsets of V is a simplicial complex on
V, denoted by S(G). A k-coloring of G is a map f:V --+{1,
. . . , k} such that f-1(i) is independent for 1 s i c k. A
partition or in H(V) is a color partition of G if its blocks are
independent subsets of V. A contraction of G is a partition oa
E H(V), where G(B) is a connected graph for all B E ar. Let
'C(G) denote the lattice of contractions of G, and let x(C(G);
A) be the characteristic polynomial of %(G). The chromatic
polynomial x(G; k) ofG is defined by the property that x(G;
k) is equal to the number of k-colorings of G, for all positive
integers k. It is a classic theorem (3) that

Ac-X(C(G); A) = x(G; A),

where c is the number of connected components of G. We
would like to make an analogous statement about the char-
acteristic type polynomial of'6(G), but this is not possible for
reasons that we shall explain below. Instead we must con-
sider a larger, closely related subposet of H(V). Thus, we
define a partition cr E fH(V) to be admissible if every block of
ar that is not a singleton is not independent and let si(G)
denote the poset of all admissible partitions of V. Clearly we
have %(G) C s4(G) C H(V). The essential property of sd(G),
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which is actually just a restatement of its definition, is the
following: sL(G) is the subposet of closed elements of 1I(V)
corresponding to the {v-factoring coclosure operator associ-
ated with S(G), the complex of independent subsets of V.
According to ref. 2 we define the umbral chromatic poly-

nomial xy(G; A) ofG to be the characteristic type polynomial
of As(G), multiplied by A. That is

xv(G; A) = I ,4(6, o)A'k'.
Esi(G)

Now let p(A) be any polynomial in (F[A], and let k be a
positive integer. The substitution of the umbral integer kp
into p, denoted p(kqp), is defined as follows: For each positive
integer n, let (kp)l be the result of applying the multinomial
expansion to the expression (a1 + * * * + ak)" and then setting
ac equal to Pr-1 for 1 s i - k. Then p(kcp) is obtained by
substituting (kqin for Al in p(A), for all n.
We can now give a simplified proofofthe main result ofref.

2.
THEOREM 3. Let G be a finite graph with umbral chromatic
polynomial xV(G; A). For all positive integers k,

X'(G, kp) = > , [5]
f

where the sum is over all k-colorings f of G, and qf is the
monomial gJ19S2. .. , where f1 is the number ofcolors j E {1,
2, .. . , k} with lf-1)l = i + 1.
Proof: For all positive integers k and for v < fr in 11(V), let
(k)(a, ir) be the falling factorial (k)ll. Then if oa E rl(V) has n
blocks, we have (kp)" = {v * (k)(o, 1), where the convolution
takes place in 1(I(V)). Now define ,uF in F(11(V)) by

^( AC/(oT, ar) if cr, irEs(G)
ICO-0

o otherwise,

where A.I is the Mobius type function of d(G). Then we can
write

x'(G; kg) = c(6, o,)(kp)O'I = 14 * Ho * (k)(O, I).
crEE(G)

A

Now by Proposition 1 and Theorem 2 (Eq. 4) we have

Vf*(P('{(cr) if) '=O
AC(0,O)=otherwise.

But 5j = 6 if and only if or is a color partition of G. Thus

x"(G; kg) = > 1(6, o)(k)1,,cr, color
partition

and the proof is complete. I

It follows immediately from Theorem 3 that xw(G; A)
reduces to the ordinary chromatic polynomial of G upon
setting sp1= 2 = .* = 1.
Now suppose V is a set of n elements. Then the Bell type

numberBP = B9((pl, p2, . .) is defined by BnP = 7aEff(V) g`P(0,
er) or BP = IP * {(O, 1). We will write x(G, B'P) for the image
of xV(G; A) under the umbral substitution An -* Be. Then we
have the following variant of Theorem 3, which was not
apparent from the original proof.
THEOREM 4. If G is a finite graph with umbral chromatic
polynomial v(G; A), then

X(PG B) =
a, color
partition

The proof is essentially the same as that of Theorem 3.
If we further write Bn for the nth Bell number, that is, the

total number ofpartitions ofan n-element set, and x(G; B) for
the image of y(G, A) under the umbral substitution An -*Bn
we obtain the following.
COROLLARY 1. IfG has chromatic polynomial y(G, A), then
x(G; B) is the number of color partitions of G.
We can at last explain why the poset d(G) of admissible

partitions forces itself upon us when defining the umbral
chromatic polynomial. It is certainly true that the lattice of
contractions of G is also the subposet of closed elements
corresponding to a coclosure operator on 1l(V)-i.e., map oa
to &, where & is obtained by splitting all blocks of o-into their
connected components (as induced subgraphs of G). This
coclosure operator has the property that & = O if and only if
cris a color partition ofG. Thus it follows from Theorem I that
the classical characteristic polynomial oft(G) is (essentially)
the chromatic polynomial of G. However, the map a- -a & is
not a ~P-factoring coclosure operator, hence we cannot apply
Theorem 2.

Instead, we are required to find a new coclosure operator
or-) iia that is OP-factoring and also has the property that v =
6 if and only if o is a color partition of G. The coclosure
operator associated with the simplicial complex of indepen-
dent subsets of V clearly meets these conditions. Further-
more, it is easy to see that the subposet of closed elements
corresponding to any other such coclosure operator must
contain s(G). Hence st(G) is the unique minimal subposet of
rI(V) required for Theorem 3.

It is a pleasure for both of us to convey our thanks to Gian-Carlo
Rota, who introduced each of us to the work of the other.
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