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Abstract

Empathy is a phenomenon often considered dependent on higher-order emotional control and an
ability to relate to the emotional state of others. It is, by many, attributed only to species having
well-developed cortical circuits capable of performing such complex tasks. However, over the
years, a wealth of data has been accumulated showing that rodents are capable not only of sharing
emotional states of their conspecifics, but also of prosocial behavior driven by such shared
experiences. The study of rodent empathic behaviors is only now becoming an independent
research field. Relevant animal models allow precise manipulation of neural networks, thereby
offering insight into the foundations of empathy in the mammalian brains. Here we review the data
on empathic behaviors in rat and mouse models, their neurobiological and neurophysiological
correlates, and the factors influencing these behaviors. We discuss how simple rodent models of
empathy enhance our understanding of how brain controls empathic behaviors.
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1. Introduction

By motivating prosocial behavior, inhibiting aggression and providing a basis for moral
development empathy plays a fundamental role in human life and society. Human empathy
is a very complex social phenomenon, which has been defined in different ways. Most
definitions, however, have common elements including the ability to experience and share
feelings of others and to respond with care to the distress in others (de Waal, 2008). For a
long time, empathy received much attention from philosophers and psychologists rather than
neuroscientists. More recently, vigorous development of human brain imaging techniques
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(especially fMRI) encouraged systematic neuropsychological studies of empathy that
provided many correlates of higher psychological functions (Bernhardt and Singer, 2012;
Stanley and Adolphs, 2013). These studies identified brain regions activated during
processing of complex social stimuli involved in advanced forms of empathic behaviors
observed in humans. However, since neuroimaging studies are correlative in nature and their
resolution is limited, neural mechanisms of empathy are largely unknown. Studies
employing animal models provide mechanistic insights into the exquisite organization of the
neuronal circuitry underlying emotional behaviors such as fear (Tovote at al., 2015),
suggesting that these complex neural mechanisms may also control social emotions. To date,
however, methods allowing detailed (at the level of neuronal circuits) insight into the
mechanism of such control have not been developed for human studies.

Empathy is considered by many to be a uniquely human trait. The possibility of emphatic
behaviors in hon-human animals has been largely ignored. However, accumulating data
show pro-social behaviors in multiple species including primates and rodents, suggesting
that some forms of empathy are phylogenetically older than humans. Such findings strongly
support the hypothesis about evolutionary continuity of empathic behaviors. Taking such a
perspective offers an experimental insight into simpler forms of empathy and gives a chance
to understand neuronal processes underlying empathic behaviors. Several theories of
empathy that adopted an evolutionary perspective and widened the scope of research have
been proposed. One of the most influential ones is de Waal’s multi-level conceptualization
of empathy:. It puts the simplest forms of empathy, involving adoption of another’s emotional
state (emotional contagion) at the core of all empathic behaviors, followed by more complex
level of the continuum involving concern about another’s state and attempts to ameliorate
this state by, e.g., consolation (sympathetic concern), and the most elaborate level -
attributing emotional state to another instead of self (empathetic perspective taking) (de
Waal, 2008, also see Preston and de Waal, 2002). Emotional contagion has been observed in
many animal species (Darwin, 1871; Panksepp and Panksepp, 2013), sympathetic concern
and consolation has been described in non-human primates (de Wall and Aureli, 1997) and
canines (Custance and Mayer, 2012), whereas the highest level of empathy in the de Waal’s
model, including targeted helping coming from cognitive appreciation of the other animal’s
situation (perspective taking), characterize mainly humans and apes (Hare et al., 2006, 2001,
Hirata, 2009). Some levels of cognitive empathy, however, involving an understanding of
what caused the distress in another animal (and subsequent active inhibition of that behavior
in order to minimize the distress of another individual) was also observed in Rhesus
monkeys and rats (Church et al., 1959, Masserman et al., 1964).

The evolutionary roots of empathy, and thus the existence of many levels of empathic
complexity, has been also acknowledged by Decety and Lamm, who postulated that empathy
encompasses both emotion sharing and cognitive control. According to their definition,
affective representations in the brain are automatically activated by perceptual input,
whereas cognitive control is mediated by cortical structures, mainly the prefrontal cortex
(Decety and Lamm, 2006).

More recently, another model emphasizing the complex, multilayered character of empathy
based on brain circuits involved in the control of empathic behaviors has been proposed
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(Panksepp and Panksepp, 2013). It recognizes three levels: the deeply subcortical primary
level responsible for emotional contagion, the secondary level based on basal ganglia and
limbic structures involved in learning and memory, and the tertiary process governed largely
by cortical and limbic structures required for cognitive empathy. Several of these brain
circuits may be crucial for more than one level of empathy and their specific actions are
dependent on the given emotion. At the primary level, emotions such as seeking, rage, fear,
lust, care, panic or play (Panksepp, 1997), could theoretically be shared through so-called
emotional empathy. Top-down control exerted by cortical and limbic structures is required
for both the formation of conditioned reflexes based on information from other conspecifics
(i.e., secondary empathy: the learning and memory formation), and for cognitive regulation
of behavioral responses to these stimuli (i.e., tertiary process). This elegant definition is
uniform for many species, including humans.

The theories proposed by de Waal and Panksepp and Panksepp form a frame for studying
primal emotional foundations of empathy in mammalian brains. Acknowledging the
existence of empathy in other animals allows the design of relevant animal models. Here, we
will describe the relevant rodent models and review the data, gathered with the use of such
models, on the neurobiological and neurophysiological correlates and the factors influencing
empathic behaviors. In order to gain insight into animal empathic behaviors, in line with
Tinbergen’s four questions (Tinbergen, 1963), besides the mechanisms we will also discuss
their ontogeny, phylogeny and adaptative value. The reviewed models involve different
levels of empathy (emotional contagion, social modulation of learning and empathic
concern), thus providing an opportunity to model complex human disorders characterized
with impairments of different aspects of empathy. Such models may shed some light on
neural mechanisms of empathy, which are still largely unknown. One of the most interesting
hypotheses on neural basis of emotional sharing proposed so far is mirroring mechanism,
which we discuss in the next section.

2. Do mirror neurons control social emotions?

The discovery of mirror neurons, originally found in macaque premotor cortex (Gallese et
al., 1996; Rizzolatti et al., 1996; Umilta et al., 2001), fueled speculations about neuronal
mechanisms of imitation and mimicry. Their involvement was hypothesized in the wide
range of abilities and diagnoses, including empathy and autism spectrum disorder (Baird et
al., 2011). In the social domain, mirroring occurs when the same neurons are activated by
the emotions experienced directly and by observing/interacting with others who are
experiencing emotions. Such vicarious activation would give us an insight into the feelings
of others. Vicarious activations in the anterior insula and, to a lesser extent, in the anterior
cingulate cortex have been shown in people feeling disgust and observing faces expressing
disgust (Wicker et al., 2003). Similarly, Singer and colleagues (Singer et al., 2004) showed
that experiencing pain and empathizing with pain of others evoked overlapping neural
activations in cingulate and insular cortices. However, despite years of studies we still do not
fully understand the function of mirror neurons and whether they play a role in these
vicarious activations (Hickok, 2009).
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Most of the results supporting the mirror mechanism in humans were obtained with
transcranial magnetic stimulation (TMS), EEG, MEG, and brain imaging techniques (PET,
fMRI). None of the abovementioned methods allows for identification of single cell activity.
Imaging techniques used in human studies do not have single cell resolution necessary to
understand such processes at the cellular level, at which, in the light of the recent discoveries
in rodents, such studies should be conducted. The studies in rats and mice have shown that
there are highly specialized networks of neuronal circuits that control specific behaviors and
that they differ from the surrounding neurons in their connectivity with other brain structures
(Tovote et al., 2015). Such circuits can be virtually physically overlapping (Knapska et al.,
2012), which makes them indistinguishable with lower resolution techniques. Since the
studies employing single-cell activity recordings showed that mirror neurons constitute less
than 17% of all recorded cells (Gallese et al., 1996, Mukamel et al., 2010), techniques
measuring activation of whole brain structures cannot verify whether the mirror neurons are
actually involved in a given process. Vicarious emotional experience may rely on mirror
neurons only, mirror neurons and accompanying cells (e.g., forming neural circuits with
mirror neurons) or no mirror neurons at all. To understand which types of neurons are
involved, how they are interconnected and what is their function in control of empathic
behavior, adequate techniques allowing single-cell resolution and manipulation are needed.

It has been recently shown that in the basolateral amygdala of monkeys there are neurons
that mirror value of rewards delivered to self and others (Chang et al., 2015), suggesting a
possible role of such neurons in vicarious experience of emotions. However mirror
mechanism is not the only possible explanation of vicarious emotions. Instead of some pre-
wired mirror neurons one can imagine that socially induced emotions recruit some cells
from a population of equivalent neurons controlling particular emotion. For instance, in case
of directly acquired fear, it has been shown that neurons in the lateral amygdala are recruited
randomly by fear conditioning, depending on relative neuronal excitability immediately
before training (Yiu et al., 2014). Moreover, emotional events separated in time seem to be
represented by non-overlapping populations of neurons in the lateral amygdala (Rashid et
al., 2016). Together, these results suggest that recruitment of neurons by fear-inducing
stimuli may be stochastic rather than dependent on activation of some sub-population of pre-
wired fear neurons. One can imagine that similar mechanism may underlie socially
transferred fear.

In summary, although we do not have convincing evidence that mirror neurons are crucial
for social interactions or empathy, it still remains an interesting hypothesis deserving further
studies (Ferrari and Rizzolatti, 2014). Certainly, in order to understand the mechanisms
through which the brain controls vicarious emotions and resonance behaviors, we need data
obtained with single-cell resolution and techniques that allow for investigating the function
of identified neurons. In the next paragraphs we will discuss animal models that can be used
to test the hypothesis about the role of mirroring mechanism in social sharing of emotions.

3. Emotional contagion

Emotional contagion is defined as sharing of the emotional states between individuals.
Tuning one’s emotional state to that of another increases the probability of similar behavior,
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which thereby allows for a rapid adaptation to environmental challenges (Hatfield et al.,
1994). Importantly, as proposed by Hatfield, affective contagion is transmodal, i.e.,
separated elements of emotional expression which are being witnessed, e.g., facial
expression, induce changes not only in the same aspects of emotional expression in the
witnessing subject, but result in full emotional response including, e.g., vocalizations and
body language. Emotional contagion is commonly observed and evolutionarily conserved in
the animal world. Most studies aimed at rodent empathic behaviors focus on the capability
to share negative emotional states, such as pain or fear and anxiety (see Table. 1). Modeling
of positive emotions appears less popular, mostly due to numerous difficulties with
standardization of the procedures.

3.1. Emotional contagion of pain

In their seminal study Langford et al. (Langford et al., 2006) reported social modulation of
pain in mice. Mice given an identical noxious stimulus (0.9% acetic acid in the abdominal
constriction test) and tested in dyads displayed higher levels of pain behavior than mice
tested separately. Co-occurrence in writhing (pain) behavior was significantly higher in
cagemates than in strangers, the effect dependent on visual observation. Moreover,
bidirectional modulation of pain behavior in the familiar mice injected with formalin was
shown; formalin-induced pain behavior was increased when the partner mouse received a
more noxious stimulus and decreased when the stimulus given to the partner mouse was
weaker. Consistent with these results, it was also observed that thermal hyperalgesia can be
produced by either injection of acetic acid or by mere observation of a cage mate injected
with acetic acid. The effect was limited to familiar mice. Since the interaction with an
unfamiliar conspecific induces stress response in mice, the results suggested that the effects
of familiarity depend on the level of stress associated with social interaction. In line with this
reasoning, further studies have shown that emotional contagion of pain is prevented by 30-
min restraint stress in cage mates but can be evoked in strangers by blocking the endocrine
stress response (Martin et al., 2015). Consistently, there are also results showing that
sensitivity to noxious stimulation is reduced in close proximity to a stranger mouse; however
when the physical contact between mice is limited, mice show hyperalgesia rather than
analgesia. The analgesic effect, which has been observed only in male-male dyads, is
testosterone-dependent and accompanied by increased plasma corticosterone level (Langford
etal., 2011).

3.2. Emotional contagion of fear

Fear learning is an adaptive, evolutionarily conserved process that allows animals to respond
appropriately to threats in the environment. The past few years have brought a number of
observations suggesting that rats and mice are able to socially share states of fear (Panksepp
and Lahvis, 2011; Panksepp and Panksepp, 2013), laying the foundation for studying neural
mechanisms of a primal form of empathy. Several rodent models of emotional contagion of
fear that differ in threat imminence have been developed (Table 1). The animal that is a
source of emotional stimulation (termed the Demonstrator) is either subjected to classical
fear conditioning or fear memory retrieval in a small enclosure lacking the possibility to
escape (imminent danger) or has been subjected to fear conditioning and transferred to a
safe cage where social interaction with an observer animal takes place (remote danger).
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When the threat is inescapable, passive coping strategies, such as freezing, are usually
elicited; they are accompanied by autonomic inhibition (hypotension, bradycardia) and an
increase in the neuroendocrine response (activation of the hypothalamo-pituitary-adrenal
axis and increased glucocorticoid secretion (Engel and Schmale, 1972; Steimer, 2002). On
the other hand, active coping strategies are used when an escape from the threat is possible,
and the autonomic changes associated with these active strategies are mediated
predominantly by sympathetic activation (hypertension, tachycardia). This is the fight-or-
flight response originally described by Cannon (Cannon, 1915; Steimer, 2002). Importantly,
specific brain circuits appear to mediate distinct coping reactions to different types of
stressors (Bandler et al., 2000; Keay and Bandler, 2001). Below we review the results of
studies on emotional contagion of fear in immediate and remote danger models (Figure 1).

3.2.1. Vicarious fear—Witnessing a partner subjected to fear conditioning exerts
profound effects on the behavior of an observer animal. Staying in the same apparatus as the
conspecific receiving aversive stimulation (usually behind a divider) results in an immediate
fear response in both rats and mice (Atsak et al., 2011; Chen et al., 2009; Gonzalez-Liencres
etal., 2014; Jeon et al., 2010). It has been shown that observing a conspecific’s distress leads
to heart rate deceleration (Chen et al., 2009) and freezing responses (Atsak et al., 2011; Jeon
et al., 2010). Magnitude of vicarious freezing response was modulated by previous
experience with shocks (Atsak et al., 2011; Sanders et al., 2013), familiarity (Jeon et al.,
2010; Gonzalez-Liencres et al., 2014), genetic background (Chen et al., 2009), and rearing
conditions (Yusufishag and Rosenkranz, 2013; Panksepp and Lahvis, 2016). Interestingly,
repeated exposure to a cage mate experiencing foot shocks resulted in a gradual decrease of
socially triggered freezing in the observers (Carrillo et al., 2015). It is noteworthy that
vicarious fear learning is associated trait measure of empathy in humans (Kleberg et al.,
2015), which indicates that the rodent models described above may tap into some
fundamental features of empathy across species.

3.2.2. Fear Conditioning by Proxy—Since the behavioral procedure used in the
abovementioned studies involves painful footshocks, observer animals probably respond to
both pain and fear of their partners. In a different model, Fear conditioning by-proxy
(FCbP), rats are allowed to freely interact with a conspecific that was previously conditioned
during a fear memory retrieval (Bruchey et al., 2010; Jones et al., 2014; Jones & Monfils,
2016). As such, the previously conditioned rat is expressing a fear response, but is not in
pain. Some rats display conditioned responding to a cue after interacting with a cage-mate
during fear memory retrieval (Bruchey et al., 2010). The FCbP paradigm makes use of rats
housed in triads, and takes place over three days. On day 1, one rat of each triad is fear
conditioned to a cue paired with a foot-shock. On day 2, the fear-conditioned rat (FC rat) is
returned to the fear-conditioning chamber accompanied by a cage-mate (FCbP rat) and the
tone is played in the absence of the foot-shock. The third rat (No FC rat) remains in the
home cage on day 2. The following day (day 3), all rats (FC, FCbP, and No FC) are placed
in the chambers alone and tested for fear expression (freezing) to the CS. This paradigm is
potentially advantageous in studying social fear learning in that 1) rats freely interact with
each other during the social learning session and 2) behavior can be observed both as a pair,
during training on day 2, and alone, during the follow up test on day 3. Testing in the
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absence of the demonstrator is essential to determine if learning has occurred by ruling out
any motivational or social facilitatory effects that can occur when animals are present in the
same chamber. FCbP is thought to engage mechanisms that possibly overlap with direct fear
condition, since FCbP experienced prior to pairing the tone to a mild shock leads to
increased freezing to the tone the next day compared to experiencing the CS+US pairing
alone (Bruchey et al., 2010).

3.2.3. Socially transferred fear—In the vicarious fear learning protocols, animals are
exposed to a partner which is in an immediate danger and therefore displays appropriate fear
responses, such as freezing, emission of distress calls and physiological signs of stress such
as bradycardia, urination and defecation. In contrast, in the model of socially transferred
fear, the partner rat or mouse is still stressed due to the recent fear conditioning procedure
but the danger is remote (Knapska et al., 2010, 2006), with a recent adaptation of the
protocol for mice, (Meyza et al., 2015). In this model, the animals are housed in pairs and
one member of the pair (the demonstrator) is removed and subjected to fear conditioning.
After the fear-conditioning episode, the conditioned animal is allowed to interact with its
naive cage mate (the observer). In the control group the demonstrator is exposed to the
experimental cage without fear conditioning. It has been shown that the demonstrator’s
emotions are socially transferred to the observer, resulting in both rapid increase in
exploratory behavior of the observer and increase in acoustic startle response, which is a
measure of emotional arousal (Knapska et al., 2006).

In summary, in vicarious fear models the observers, placed in very similar conditions to
those of the demonstrators, mirror their defensive responses (freezing). In contrast,
interaction with a recently conditioned partner in a familiar environment (socially transferred
fear model) results in an increase of emotional arousal, as well as exploratory and risk-
assessment behaviors (Fig. 1, Table 1). The fear conditioning by proxy model combines the
two approaches while relying mostly on socially transferred information. Thus, these models
seem to be well-suited for studying socially transferred emotions that lead to, respectively,
passive and active defensive responses. These models also encourage studies of contextual
modulation of behavioral choices in animals subjected to emotional contagion. Interestingly,
familiarity effect is commonly observed in models of pain contagion, whereas it is less
common in models of fear contagion. It is then possible that learning about danger from
conspecifics is beneficial even when the conspecifics are unfamiliar. Affective resonance in
response to pain of an unfamiliar conspecific may, on the other hand, induce defensive
aggression on the side of that conspecific and thus safety of interactions limit this behavior
to familiar animals only. It is also worth noting that /n certain conditions the presence of a
partner or vicarious learning can attenuate some forms of fear and anxiety (a phenomenon
called social buffering, for details see section 5).

3.3. Social modulation of fear memories

Tuning one’s emotional state to that of another increases the probability of similar behavior,
which thereby allows rapid adaptation to environmental challenges (Hatfield et al., 1994).
Another question is whether the state-matching in emotional contagion can exert /ong-
lasting effects on behavior affecting learning and memory.
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Although one can learn about potentially harmful stimuli by directly experiencing an
aversive event, observation or an interaction with a conspecific in danger and/or in pain may
also provide valuable information about environmental threats. In humans, most emotional
learning probably occurs through observing other people (or through language), rather than
through direct experience (Bandura, 1971).

Several works show that social learning can be also observed in rats and mice. For instance,
observing a conspecific receiving aversive stimulation results in vicarious fear learning in
both rats and mice (Atsak et al., 2011; Chen et al., 2009; Gonzalez-Liencres et al., 2014;
Jeon et al., 2010). It has been also shown that socially transferred fear promotes aversive
learning and memory in an otherwise naive animal (Knapska et al., 2010). Knapska et al.
(2010) observed that a brief social interaction with a recently fear-conditioned partner before
learning session facilitates both the acquisition and memory in a shock-motivated shuttle
avoidance task and increases conditioned freezing measured on the next day in contextual
fear conditioning task. The observed effects were not due to a stress-induced increase in pain
sensitivity or analgesia. The study of Knapska et al. (2010) was carried out in rats. On the
other hand, in mice, Bredy and Barad (Bredy and Barad, 2009) showed that exposure to a
recently fear-conditioned familiar animal impaired acquisition of cued conditioned fear.
They obtained similar effects using an olfactory chemosignal emitted by a recently fear-
conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-
phenylethylamine (beta-PEA). The discrepancy of the rats and mice experiments results may
stem from different levels of stress induced by interaction with an emotionally aroused
partner in these species, similarly as described earlier for emotional contagion of pain
(section 2.1). This hypothesis, however, requires further studies.

In addition to affecting the rate of acquisition of conditioned fear responses, social
interaction with a stressed conspecific can affect the extinction of already acquired
conditioned reflexes. This phenomenon was studied extensively in mice (Bredy and Barad,
2009; Nowak et al., 2013) with several protocols, which yielded distinct results. While home
cage exposure to a recently fear-conditioned mouse facilitated extinction of conditioned fear
response, an exposure to recently fear-extinguished mouse (but not its urine alone) impaired
fear extinction (Bredy and Barad, 2009). On the other hand, an exposure (in an adjacent
chamber of a shuttle box) during extinction memory retention test to a fear conditioned but
not to an extinguished mouse impaired fear extinction memory retrieval (Nowak et al.,
2013). The apparent discrepancy between the results may be caused by the differences in the
experimental protocols and handling procedures leading to different levels of stress during
the experiments in both studies.

In summary, it has been consistently observed that social interaction with an emotionally
aroused partner results in long-lasting changes of behavior. It has been also shown that such
social interaction modulates subsequent learning. However, additional studies are needed to
fully understand the factors through which social interaction improves or impairs learning.

3.4. Contagious yawning

Emotional contagion can also be related to non-fearful events. One of the phenomena
commonly referred to as “contagious” is yawning. The effect was observed uniformly
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among mammals. It was reported in humans (Gallup and Church, 2015; Platek et al., 2003;
Provine et al., 1987), non-human primates (Campbell and de Waal, 2011, 2010), canines
(Romero et al., 2014) and rodents (Moyaho et al., 2015) alike. Contagious yawning has been
shown to have no respiratory function (Provine et al., 1987). Though generally appearing in
non-fearful situations, yawning has been also observed in stressful situations in different
species and can serve as a possible indicator of increased stress (Aureli and de Waal, 1997,
Kubota et al., 2014; Leone et al., 2014; Miller et al., 2012). In line with this hypothesis, a
reduction of yawning has been observed following administration of the glucocorticoid
synthesis blocker, metyrapone (Carrillo et al., 2015). However, intranasal oxytocin, believed
to suppress stress and enhance empathy (Hurlemann et al., 2010), did not affect yawning per
se, but increased awareness of the act in participants, which resulted in higher rate of efforts
made to conceal it (Gallup and Church, 2015). Since the behavioral measure of emotional
contagion (yawning) is easy to observe and quantify, contagious yawning seems to be a good
model to study mirroring mechanism in the brain (Haker et al., 2013).

4. Neuronal correlates of emotional contagion

According to Panksepp and Panksepp’s theory, emotional contagion involves mainly the
subcortical brain structures. However, the mechanisms by which animals share emotional
states are largely unknown (see section 2). Human brain imaging studies showed activation
of several brain structures, such as the amygdala, the insular and anterior cingulate cortex
(ACC) in people observing others suffering from pain (Bernhardt and Singer, 2012) or
experiencing fear (Olsson et al., 2007). These studies also showed that similar brain areas
are activated during the first-hand experience of pain and fear. In rodents, in socially
transferred fear model it has been observed that c-Fos expression (a marker of neuronal
activation) in the observer’s amygdala and prefrontal cortex generally mirrors that of the
shocked demonstrators; c-Fos expression was heightened in the basolateral and medial
nuclei of the amygdala and the prelimbic and infralimbic parts of the prefrontal cortex of
both distressed rats and the respective observers (Knapska et al., 2006, Mikosz et al. 2015).
However, increased c-Fos induction in the central nucleus of the amygdala (CeA)
differentiated these two groups and was heightened only in the observers. This finding
suggests that particular neural circuits of the amygdala are responsive to the distress of
others.

Interestingly, the pattern of brain activation by socially transferred fear seems to be species-
specific (Knapska et al., 2006; Meyza et al., 2015; Mikosz et al., 2015). In the demonstrator
rats increased activation has been observed in the basal, lateral and medial nuclei, but not in
the CeA. In mice, c-Fos increases were observed in the basal, medial and central nuclei, but
not in the lateral nucleus of the amygdala. In the observer rats, c-Fos expression was higher
than in the demonstrators in the CeA. This did not hold true for mice. The increase in the
number of c-Fos positive nuclei in observer mice exposed to a stressed cagemate was seen
only for the basal nucleus of amygdala, while in rats it was observed for the basal, lateral
and medial nuclei. The patterns of activation of the prefrontal cortex were similar in rats and
mice.
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It has been also observed that lidocaine inactivation of the ACC, parafascicular (Pf) or
mediodorsal (MD) thalamic nuclei, which comprise the medial pain system representing the
affective or emotional dimension of pain, impairs vicarious fear learning. Similarly, the ACC
limited deletion of the Ca,1.2 type 1 Ca2* channels, contributing to synaptic transmission
and neural excitability, impaired vicarious fear learning. On the other hand, inactivation of
the thalamic nuclei that belong to the lateral, sensory pain system had no effect. Inactivation
of the ACC, Pf or MD thalamic nuclei led to impaired vicarious fear learning but did not
disturb fear expression, whereas inactivation of the lateral amygdala (La) resulted in
impairments of both fear learning and fear expression. Activity of the ACC and La was
augmented and synchronized during vicarious fear learning suggesting functional
connectivity between these regions (Jeon et al., 2010). Further studies have shown that D,
dopamine receptors but not Dy dopamine receptors or serotonin receptors in the anterior
cingulate cortex are required for vicarious fear, whereas increased serotonin, but not
dopamine, levels impaired vicarious fear and altered the regularity of neural oscillations in
the anterior cingulate cortex (Kim et al., 2014). Interestingly, in the same model,
hemispheric lateralization of vicarious fear learning has been shown. Inactivation of the right
but not the left ACC impaired vicarious fear learning. Such lateralization has not been
observed in the thalamic nuclei (Kim et al., 2012).

The Fear conditioning by-proxy (FCbP) paradigm was recently found to involve neural
pathways that overlap with those engaged in direct fear conditioning (FC), but to also
require distinct regions that appear specific to FCbP and not FC (Jones and Monfils, 2016).
Specifically, the neural processes underlying FCbP were evaluated in parallel with those
involved in direct FC using c-Fos immunohistochemistry. The results showed that both
social acquisition as well as retrieval of directly conditioned fear activated the lateral nucleus
of the amygdala and the ventral CA1 region of the hippocampus. Additionally, the
acquisition of FCbP uniquely activated neurons in the anterior cingulate cortex (ACC) as
well as the ventral CA3 region of the hippocampus. Importantly, selective inactivation (with
intracranial microinfusions of muscimol) of the ACC, but not the ventral hippocampus, was
found to prevent acquisition of FCbP, and not direct FC (Jones and Monfils, 2016). Together,
these findings suggest that the ACC is necessary for the acquisition of FCbP.

Moreover, a recent study showing the existence of emotional contagion, state matching,
familiarity bias and self-other discrimination in prairie voles (Burkett et al. 2016) proved
that intact oxytocin signaling in the anterior cingulate cortex is crucial for consolation in this
monogamic species.

Taken together, these results show that brain is strongly activated by socially transferred
emotions; however, it would be premature to draw definite conclusions about the precise
functional roles of its different parts. The patterns of activation seem to differ depending on
the social context, but the data are still scarce. The involvement of the amygdala, ACC and
PFC, and thalamic and hypothalamic nuclei in socially transferred emotions has been

shown; however it is not clear how they interact with one another and whether different
neural circuits within these structures are involved in specific social behaviors. Little is also
known about the role of the insular cortex, which seems to play a key role in human social
behavior. In order to answer these questions, more advanced techniques of studying anatomy
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and function of neural circuits are needed. Since c-fos-dependent tools proved to be very
useful in the studies on the role of neural circuits in control of non-social emotional behavior
and forming memory traces (Gore et al., 2015, Ramirez et al., 2015), description of patterns
of c-Fos expression in response to socially transferred emotions seems to be a good starting
point for analogous studies in the field of social emotions. Moreover, reciprocal functional
connectivity should be described to understand relations between different brain structures.
The existing data also point toward the role of oxytocin in social behaviors (e.g., see
Guzman et al., 2014 for an example of their role in social modulation of fear learning),
which opens up another promising line of research (Stoop, 2014). Oxytocin plays also an
important role in social buffering, an important phenomenon that allows relief from fear by
interacting with conspecifics and often parallels fear contagion.

5. Social buffering

Several human studies have suggested that company of a familiar individual helps dealing
with everyday stress and recover faster from trauma (Bowen et al., 2014). Similar
phenomenon was described in non-human primates (Gunnar et al., 2015; Sanchez et al.,
2015). In the series of studies Kiyokawa and co-workers showed that in rodents, social
interaction with a naive individual modulates the behavior of the stressed animals
(experimental details are summarized in Table 2). When fear-conditioned rats were exposed
to the conditioning context along with an accompanying conspecific animal, stress-induced
hyperthermia, behavioral fear responses (freezing) and c-Fos expression in the
paraventricular nucleus were attenuated. The effect depended on the stress status of a partner
rat, non-shocked partners were more effective than shocked partners (Kiyokawa et al.,
2004). Further studies showed that the behavioral effect depends also on the type and timing
of the interaction (pair-exposure to the stressor versus pair-housing after the shock). Pair-
housing for 24 h with an unfamiliar rat following auditory fear conditioning resulted in a
suppressed stress-induced hyperthermia, but not freezing response and increased c-Fos
expression in the lateral nucleus of the amygdala and ventrolateral periaqueductal gray. On
the other hand, pair-exposure reduced behavioral, but not the autonomic, response and
increased c-Fos expression in the basal nucleus of the amygdala and infralimbic region of
the prefrontal cortex. Rats that had been pair-housed and then pair-exposed showed no
behavioral, autonomic or neural fear responses (Kiyokawa et al., 2007). The data suggest
that consequences of “housing” and “exposure” social buffering differ at the behavioral,
autonomic and neuronal levels.

Kiyokawa et al. also showed that social buffering during pair-exposure to the conditioned
stimulus does not require a physical contact between the animals, but is mediated by the
main olfactory system and its projections to the lateral and central amygdala through the
posteromedial region of the olfactory peduncle (Kiyokawa et al., 2012, 2009; Takahashi et
al., 2013). Similarly, “Housing” type of social buffering did not require physical contact
between animals (Kiyokawa et al., 2013). In contrast to these results, physical contact was
necessary to prevent an increase in anxiety in the elevated plus-maze test performed two
weeks after social defeat (Nakayasu and Kato, 2011) and to reduce open field exposure
stress as measured by prolactin levels (Insana and Wilson, 2008). The latter study was
carried out on adolescent rats. Adolescent rats have been also shown to have reduced level of
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corticosterone when exposed to the novel environment with a conspecific, the effect
correlated with amount of physical contact (Terranova et al., 1999). Systematic comparison
of social buffering effects (measured with corticosterone levels and Zif268 immunoreactivity
as a marker of neuronal activation) in adult and adolescent rats during recovery after
isolation stress, showed no differences between different age groups (Hodges et al., 2014).
Thus, the age does not determine the role of physical contact in social buffering. The relative
importance of sensory modalities for social buffering is not clear and deserves further
studies.

Social buffering was studied mainly in fear and anxiety provoking behavioral tests that
employ standard stimuli, such as footshocks; however, the phenomenon has been observed
also in more ethologically relevant conditions. For instance, social exposure to predatory
threat promoted active responding, relative to individual exposure, and lowered c-Fos
expression in the dorsomedial periaqueductal grey, medial caudate putamen and lateral
habenula (Bowen et al., 2013). Furthermore, social interaction with a conspecific following
a poisoning reduced conditioned taste aversion in mice (Hishimura, 2015). Most of the
studies on social buffering was carried out on unfamiliar rats. Recently, however, it has been
shown that a familiar conspecific is even more effective at social buffering of conditioned
fear responses (Kiyokawa et al., 2014b). Similar effect was recently demonstrated for prairie
voles (Burkett et al. 2016).

The brain and physiological correlates of pair-exposure effects have been studied. It has
been shown that the presence of a conspecific animal significantly decreased the mean peak
amplitudes of auditory evoked field potentials, gamma and high frequency oscillations in the
lateral amygdala (Fuzzo et al., 2015). Social buffering was also observed at the stress
hormone level. Corticosterone levels in animals tested alone were much higher than those re-
exposed to the stressful stimuli in the presence of a conspecific (Burkett et al. 2016;
Kiyokawa et al., 2014a; Terranova et al., 1999). Pair-exposure to the open field and fear
conditioned context attenuated also prolactin-secretory response (Insana and Wilson, 2008).

Other form of social interaction that decreases response to aversive events described in the
literature is pro-active social buffering. Pre-exposure to a nonfearful conspecific reduced
subsequent long- but not short-term contextual fear memory in mice, leaving fear
conditioning in response to a novel context or cue intact (Guzman et al., 2009). The effect
was constrained by the shock intensity (Guzman et al., 2009) and modulated bidirectionally
by the septal oxytocin system (Guzman et al., 2014). These results suggest that under certain
conditions observational (vicarious) learning can attenuate some forms of fear.

Social buffering should be distinguished from general anxiolytic effects of co-housing. For
instance, pair-housing before aversive experience has been shown to reduce fear learning
and enhanced active avoidance learning compared to single housing (Knapska et al., 2010b).
Moreover, socially-enriched environment reduced anxiogenic effects of external stressors
(footshocks, forced swimming) and improve the performance in an operant task (Huzard et
al., 2015). In line with these results, group housing of mice reduced levels of anxiety and
depression induced by chronic restraint stress (Liu et al., 2013).
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In sum, social buffering is commonly observed during social interactions taking place
before, during or after aversive events. However, further research is needed to clarify the
factors modulating social buffering effects and the brain mechanisms underlying this
phenomenon. In particular, it is not clear which factors determine the choice between fear
contagion and social buffering during social interaction.

6. Sympathetic concern

In humans, empathy is a powerful motivator of helping behavior. Pro-social behavior can
emerge when an affective response to the distress of others evokes a drive to act for their
benefit. For rats, a highly social mammal species, there have been numerous accounts of
pro-social acts (Table 2). For instance, rats refrain from pressing a lever that shocks a
conspecific (Church, 1959), press a lever to relieve a rat dangling in midair (Rice and
Gainer, 1962), reciprocate food sharing (Rutte and Taborsky, 2007), prefer mutual rewards to
a selfish reward (Schuster and Perelberg, 2004; Hernandez-Lallement et al., 2014; Marquez
et al., 2015), and release a cage mate trapped inside a restrainer (Ben-Ami Bartal et al.,
2011).

In the latter study, rats were tested in a helping behavior paradigm, where free rats learn to
open the door to a restrainer in which another rat is trapped. It takes rats a few sessions to
learn how to open the restrainer. Once rats are able to release the trapped cage mate, they
will repeat this behavior quickly and intentionally on following sessions, indicating that
door-opening is reinforcing. Rats were motivated to release trapped cage mates, even when
they were pitted against chocolate chips. Rats did not open an empty restrainer or one
containing a toy rat (Ben-Ami Bartal et al., 2011). These findings were recently replicated
and expanded by Sato et al. (Sato et al., 2015), who showed that rats release others trapped
in a pool of water.

For rats, the motivation to release a trapped cage mate is dependent on the social context.
While rats were helpful to strangers of their own strain (Ben-Ami Bartal et al., 2014), they
did not release strangers of an unfamiliar strain. Yet two weeks of pair-housing with a
member of the other strain were sufficient to induce door-opening for strangers of that strain.
This finding suggests that the in-group bias that exists in humans is biologically rooted, and
is in line with evidence showing that in humans, social experience can influence empathy for
strangers (Martin et al., 2015) and out-group members (Cao et al., 2015; Telzer et al., 2013;
Zuo and Han, 2013). Furthermore, the pups that were fostered at birth with litters of another
strain were selectively motivated to help their adoptive strain, but not their own strain, as
adults. These findings suggest that the proximal mechanism that underlies pro-social
motivation in rats utilizes exclusively the individual’s social experience, rather than any
innate information about genetic relateaness.

7. Evolutionary roots of empathy?

It has been proposed that empathy has deep evolutionary roots, which originated long before
Homo sapiens started walking the Earth. According to de Waal’s multi-level
conceptualization of empathy, more complex behaviors evolved from the simplest forms
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involving adoption of another’s emotional states (emotional contagion). Similarly, Panksepp
et al. (1997) proposed that separation distress and pain of social loss emerged from more
ancient physical pain systems. Moreover, considering the continuity in sympathetic concern
across species, it has been argued that empathy is rooted in a behavior common to all
mammals - the caring for offspring. As suggested by Patricia Churchland (Churchland,
2011), neural evolution inclined humans to strive not only for self-preservation but for the
well-being of others - first offspring, then mates, kin, and finally strangers. The move from
self-caring to caring-for-others occurred by slight adjustments to the existing neural
mechanisms rather than some radical new engineering plan. According to Churchland’s
theory, the key player in these modifications to the brain is oxytocin, a hormone thought to
play an important role in mammalian bonding, evoking feelings of contentment and trust,
and reducing defensive behaviors like fleeing or fighting. This concept of the evolutionary
origins of empathy elegantly explains why separation and social exclusion cause pain, and
the company of loved ones causes pleasure. However, it cannot be validated in any other
way than by learning whether the same neural circuits are used by the brain in social and
non-social contexts. It is also not clear how more elaborated sympathetic behaviors are
related to the much simpler emotional contagion. To answer this question directly, a better
understanding how brain controls social behaviors is necessary (Insel and Fernald, 2004).
Future research should establish whether prosocial behavior eventually limits contagion of
negative emotions by suppressing their primary source: the distress of another individual.

The current view in the field is that the evolutionary roots of empathy are based in parental
care of their young. Specifically, in altricial mammals, a mother needs to be able to process
signals of need from the off-spring and be motivated to respond to those needs in order to be
reproductively successful (Preston, 2013). This raises an interesting question about sex
differentiation of the empathic neural circuits.

8. Sex differences

A growing body of human studies suggests an existence of sex differences in empathy
(Baron-Cohen and Wheelwright, 2004; Rueckert and Naybar, 2008; Schulte-Ruther et al.,
2008). Studies in rodents, however, are predominantly performed on males, with only a few
cases where female empathic abilities were investigated (Atsak et al., 2011; Ben-Ami Bartal
etal., 2011; Ishii et al. 2015; Jones et al., 2014; Langford et al., 2011; Mikosz et al. 2015;
Panksepp and Lahvis, 2016). Despite strong evidence suggesting the influence of menstrual
cycle on empathy in women (Derntl et al., 2013, 2008; Guapo et al., 2009; Pearson and
Lewis, 2005) only three of the aforementioned studies (Ishii et al. 2015; Jones et al., 2014;
Mikosz et al. 2015) accounted for the estrous cycle of the studied females, and only the latter
compared the obtained results also between the sexes. In that study, in the model of socially
transferred fear, differences in active avoidance learning following the interaction with a
stressed demonstrator were found between male (and diestral female) versus estral female
observers. Only in male observers, interaction with a fear-conditioned demonstrator resulted
in enhanced neuronal activation of the central and lateral nuclei of the amygdala and the
prelimbic and infralimbic parts of the prefrontal cortex. No such effect was observed in
females.
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Although female rats actively engaged in social interaction, they were unresponsive to fear
contagion, especially in the estrus phase of the cycle. This result is consistent with the notion
that elevated level of circulating estrogens is correlated with reduced anxiety (Mora et al.,
1997). Also under natural conditions the estral females are less anxious and explore beyond
their home range actively seeking males (Calhoun, 1963). In line with that, ovariectomy
results in increased anxiety, which can be reversed by subcutaneous administration of
estrogen (Walf and Frye, 2004).

These sex differences may stem from evolutionary roots. The behavior of male and female
individuals in the wild is noticeably different; males are territorial and engage in aggressive
encounters with other males, while in females dominance is less pronounced and aggression
is lower. Females have also smaller home ranges, explore beyond them only while actively
attracting males in estrus (Barnett, 1957). Assuming that socially transferred fear is an
adaptation that promotes defensive behavior to potentially dangerous situations in the
environment, female rats, as less exposed to dangers in the environment, can be less
sensitive to fear showed by adult conspecifics. The results suggest different behavioral and
neural mechanisms of emotional contagion in females, and presumably also differences in
sensitivity to various other social stimuli. Further studies are required to answer the question
which stimuli are more effective to induce emotional contagion in females.

9. Ontogeny of empathy

The development of empathy in the course of human ontogeny resembles that of the
evolutionary increase in the complexity of empathic behaviors observed in other animals
(Light and Zahn-Waxler, 2011). While newborns display uninhibited emotional contagion
(they cry when hearing other babies cry), already at the age of six months they become
capable of distinguishing the distress of others from their own emotional state (Hay et al.
1981). They then move to more complex manifestations of both emotional and cognitive
empathy (Roth-Hanania et al., 2011), with the age of two years serving as a key
developmental milestone for empathy and prosocial development. With the development of
speech and accuracy of movement, toddlers begin to more visibly display helping behaviors
(such as telling or pointing to objects and fetching items that appear out of reach for other
people, Dunfield et al., 2011). Their responsiveness is initially strongest to the distress of
their closest caretakers (Zahn-Waxler et al., 1992), gradually shifting towards members of
the same group and eventually strangers. With the gradual maturation of neuronal circuits
controlling emotional behavior (including medial, ventromedial and dorsolateral prefrontal
cortex, anterior cingulate cortex, amygdala and insula) children become more aware of
subtle differences in emotional expression of others. This, in turn, lets them become more
selective in their response to others (Decety and Lamm, 2006).

While human studies provide a wealth of data on the development of empathic responses
with age (for review see Decety et al., 2016), the data concerning the ontogeny of empathy
in other animals is scarce. In non-human apes, the development of empathic responses
seems to follow a similar trajectory to that of human babies. Moreover, in young bonobos
(Clay and de Waal, 2013a,b) consolation was more likely to be offered by juveniles as
compared to adults. Similarly, young adolescent (4 weeks old) c57BL/6 mice exhibited
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stronger observational fear learning, than adult individuals (Keum et al., 2016), although this
effect could have been a result of stronger expression of general freezing in the Pavlovian
fear conditioning at that developmental stage. Social exclusion during restraint was also
found to strongly affect adolescent rats, inducing elevated anxiety in these animals (Lee and
Noh, 2015).

Further studies in pre-weaning pups are required to trace the trajectory of emotional
contagion development in rodents. The time around weaning is a critical period for the
development of social repertoire. It would therefore be most interesting to see if major
changes in empathic and prosocial responses occur in rodents at that time. Especially that
the shift from in-nest to out-door type of dwelling requires a major change in both social and
non-social exploratory activity. E.g., while for pre-weaning pups it is vitally important to
adjust the amount of ultrasound vocalization based on the familiarity of the smell (strong for
a mother returning to the nest vs. inhibited towards an unfamiliar male, which poses threat to
the pup (Takahashi, 1992), post-weaning, mobile animals can adopt other behavioral
strategies during social encounters. The verification of empathy ontogeny in rodents is also
crucial for the validation of rodent models/protocols designed to study empathy impairments
otherwise characteristic of certain neurodevelopmental disorders (described in detail in
section 9).

10. Empathy and psychopathology

One of the main reasons to study empathy in rodents is the possibility of developing genetic
and environmental models of human disorders characterized with empathy impairments.
These, however, are not all uniform; for review see (Gonzalez-Liencres et al., 2013). In
2006, a model dividing empathy impairments into functional classes was developed (Smith,
2006) to reflect that diversity. It encompasses four distinct categories: Cognitive Empathy
Deficit Disorder (CEDD), Emotional Empathy Deficit Disorder (EEDD), General Empathy
Deficit Disorder (GEDD) and General Empathy Surfeit Disorder (GESD). While CEDD is
characteristic of neurodevelopmental disorders such as autism spectrum disorder (Smith,
2009) DSM-V), where patients do not comprehend the emotional states of others due to
impaired Theory of Mind (Baron-Cohen, 2002; Sucksmith et al., 2013), but declare the
ability to share others’ emotions (Dziobek et al., 2008); EEDD is comorbid with
psychopathy, conduct disorder and antisocial personality disorder. Such patients are aware of
the emotional states of others, but do not share them. This, combined with a lack of scruples
and/or respect for socially accepted boundaries, often leads to taking advantage of other
people. GEDD (the lack of both forms of empathy) is reported in schizophrenia patients,
who tend to isolate themselves (Derntl et al., 2015; Green et al., 2015). The opposite
phenotype is observed in the Williams syndrome (Riby and Back, 2010), although the extent
of understanding of the emotional state of others is difficult to judge due to cognitive
disability.

Such clear dissection may sound appealing, but it does not reflect the complexity of many of
these conditions. The complex etiology of these pathologies makes them hard to model in
laboratory animals. Only in a limited number of cases a monogenic cause of the given
phenotype is known. There are several genetic models of autism spectrum disorder (see
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(Ebrahimi-Fakhari and Sahin, 2015) for a review) and Williams syndrome (Osborne, 2010).
However, much less is known about the genetic causes of schizophrenia (Escudero and
Johnstone, 2014) or psychopathy (for review see (Cummings, 2015).

There are, however, certain neuroanatomical features that can be modeled in rodents, which
seem to be of functional relevance to empathy impairments. The size and activity of the
amygdalar complex is known to affect empathic concern. It is enhanced in Williams
syndrome (Capitéo et al., 2011) and decreased in individuals with psychopathic tendencies
(Marsh, 2015). Its connectivity and cell composition (fewer neurons and oligodendrocytes)
was also reported altered in autism spectrum disorder (Morgan et al., 2014). Changes in
amygdalar functions can be modeled in rodents either with the use of directed conditioned
genetic modifications or by transient, temporary inactivation or overstimulation of this brain
region. Studying strain differences in mouse studies of emotional contagion (Chen et al.,
2009) and coping with fearful stimuli (Szklarczyk et al., 2012) also offers an insight into the
role of amygdalar reactivity in the development of empathy.

Another neuroanatomical abnormality linked with impairments in recognition of certain
emotions (fear and disgust) was reported for patients lacking the corpus callosum (Bridgman
et al., 2014). 45% of children with agenesis of corpus callosum are co-diagnosed with
autism spectrum disorder (Lau et al., 2013). An acallosal mouse model of idiopathic autism,
the BTBR T~ 1tpr3tf/J mouse, was recently found to display impaired social transfer of fear
combined with hypoactivation of amygdala in response to contact with a stressed cagemate
(Meyza et al., 2015). These results encourage further studies on rodent models of human
empathy disorders. Relatively easy access to genetically modified mouse lines should prove
useful in assessing the efficacy of treatments aimed at improvement of empathic behaviors in
narrow, specialized populations of patients and in studying their mechanism of action prior
to the commencement of actual clinical tests. As an illustration, the intranasal oxytocin
supplementation was found efficient only in certain autistic and schizophrenic patients (see
(Gonzalez-Liencres et al., 2013) for review), while in borderline patients it worsened the
social anxiety of the subjects (Bartz et al., 2011). Similar discrepancies were found in
distinct mouse models of these disorders (Bales et al., 2014; Sobota et al., 2015; Teng et al.,
2013).

11. Future directions, outstanding questions

The studies of the neural basis of emotional empathy receiving a surge of interest in recent
years mostly employed human neuroimaging. Validation of a set of simpler animal models
would pave the way for systematic, single-cell recordings and tissue-specific manipulations
in the brain regions implicated in empathy. It would also allow for thorough preclinical
screening of potential therapeutic agents. Moreover, animal models offer a unique
opportunity to study comparative aspects of empathy.

Several questions, however, arise as a result of studying empathy in rodents. Firstly, how
accurately can we model neuronal mechanisms of empathy in rodents, which, with the
exception of prairie voles and the Fear conditioning by-proxy paradigm, seem to rely less on
insular and anterior cingulate circuitry and more on the amygdalo-prefrontal pathway in
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transmitting information about the emotional state of their conspecifics? To address this
concern, systematic comparisons between patterns of human and rodent brain activation in
simple models of emotional contagion are required. Secondly, is there an equivalent of
mirror neuron system in rodents? Are the same neuronal circuits activated by social and non-
social emotions? To answer these questions employing of more advance techniques of
studying anatomy and function of neuronal circuits in animal models of social contagion
will be necessary. Also, does rodent empathy develop in complexity with age, as it does in
humans? Answers to these questions might not be readily available, but should be
continually addressed in order to validate rodent models of empathy for preclinical use.
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Highlights
. Rodents are capable of emotional contagion to both painful and fearful
stimuli
. Rats and mice respond to unpleasant vicarious experiences with activation of

amygdala, prefrontal and anterior cingulate cortices

. Rats display pro-social behaviors towards conspecifics in need
. Familiarity and physical similarity modulate empathic behaviors
. Stress level and sex influence the ability to share emotions
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A. VICARIOUS FEAR LEARNING

DEMONSTRATOR OBSERVER

B. SOCIALLY TRANSFERRED FEAR

DEMONSTRATOR OBSERVER

Fig. 1. Immediate (upper panel) and remote (lower panel) danger models
In the model of vicarious fear learning the animals are put into the cage usually divided

into two compartments by a perforated transparent partition allowing the rats to see, hear
and smell the neighbor, but not to contact him physically. One of the animals
(“demonstrator”) is subjected to either subjected to fear conditioning or exposed to the
conditioned stimuli that evoke fear. The observer rats are not subjected to any training. The
observer animal is conditioned for context-dependent fear by observing the behavior of the
demonstrator animal receiving aversive stimuli. In the model of socially transferred fear
“demonstrators” are subjected to fear conditioning alone. When the demonstrators are
trained, their cohabitants (observers) are kept in the home cages in a different sound-
attenuating room. Immediately after the training, the demonstrators are placed back in their
home cages and allowed to interact with the observers.
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