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Abstract

Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in brain, Fabp1 gene 

ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain 

EC system of females differs significantly from that of males, it was important to determine if 

LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid 

(ARA)-containing ECs, i.e arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), 

but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-

OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels 

were not associated with: i) a net decrease in levels of brain membrane proteins associated with 

fatty acid uptake and EC synthesis; ii) a net increase in brain protein levels of cytosolic EC 

chaperones and enzymes in EC degradation; or iii) increased brain protein levels of EC receptors 

(CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss 

of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than 

males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 

2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).

*To whom correspondence should be addressed: Friedhelm Schroeder, Department of Physiology and Pharmacology, Texas A&M 
University, 4466 TAMU, College Station, TX 77843-4466. Phone: (979) 862-1433, FAX: (979) 862-4929; fschroeder@cvm.tamu.edu. 

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article. The content is solely 
the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author Contributions: Experiments were designed, performed, and analyzed by the following: GGM and LJD for Figures 1and 2 
and GGM for Figure 9; SC, DL, and KKL for Figures 3, 4D, 5A, C, D, 6, 7, 8; XP and MK for Figures 4A, B, C, E, F, G and 5B. FS, 
ABK, MK, and EJM conceived and coordinated the study and wrote the paper. All authors reviewed the results and approved the final 
version of the manuscript.

HHS Public Access
Author manuscript
Lipids. Author manuscript; available in PMC 2017 September 01.

Published in final edited form as:
Lipids. 2016 September ; 51(9): 1007–1020. doi:10.1007/s11745-016-4175-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

female; mouse; FABP1; gene ablation; brain; endocannabinoid

INTRODUCTION

The endogenous cannabinoid receptor (CB) agonists (i.e. endocannabinoids, EC) N-

arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) are both synthesized 

from arachidonic acid (ARA)-esterified to phospholipids (1, 2). Unlike other tissues, 

however, ability of the brain to synthesize ARA is not sufficient to meet needs and thus brain 

ARA is derived primarily from plasma (3, 4). However, plasma ARA availability for brain 

uptake is limited by high hepatic clearance (5, 6). Hepatic ARA clearance is associated with 

high hepatic levels of liver fatty acid binding protein (FABP1), a cytosolic protein that not 

only binds ARA with high affinity (7, 8) but also facilitates ARA uptake (9–12). Recent 

findings with male mice have shown that ablation of FABP1, a protein not found in brain 

(13–15), markedly increases serum ARA availability for brain uptake concomitant with 

increasing brain levels of ARA, AEA and 2-AG (16, 17).

Although most animal studies of the EC system have been performed with male rodents, 

increasing evidence indicates that the EC system of female humans and rodents differs 

significantly from that of their male counterparts (18–22). For example, females have a 

higher pain sensitivity threshold and are more susceptible to cannabinoid antinociception 

(18, 21, 23, 24). At the same time females are also more susceptible to developing 

cannabinoid abuse and dependence, while having more severe withdrawal, and are more 

likely to relapse than males (18). Female brains have fewer CB1 receptor binding sites, but 

their CB1 receptors are more efficient as compared to those in males (21, 23). Female rat 

brain hypothalamus and pituitary have higher AEA and 2-AG levels than those of males (21, 

23), consistent with higher blood ARA levels in females as compared to blood ARA levels 

to males (25, 26).

Taken together, the above findings suggested that the brain EC system of females may 

respond differently to ablation of FABP1 from that observed with male Fabp1 gene ablated 

mice. Therefore, this possibility was examined using female WT and Fabp1 gene ablated 

mice to determine the potential impact of its ablation on brain: 1) levels of ARA-containing 

ECs, i.e. AEA and 2-AG; 2) levels of non-ARA containing N-acylethanolamides and 2-

monoacylglycerols; and 3) protein levels and expression of proteins in the endocannabinoid 

system. The data show that the brain EC system of female mice was not altered (i.e. AEA, 2-

AG) or decreased (OEA, PEA, 2-OG) in response to Fabp1 gene ablation that was opposite 

of changes previously shown in males (17). This correlated with livers of WT female mice 

exhibiting significantly lower basal FABP1 levels than those of WT males.
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MATERIALS AND METHODS

Mice

Female inbred C57BL/6NCr mice were from the National Cancer Institute (Frederick 

Cancer Research and Development Center, Frederick, MD). Female Fabp1 gene ablated 

(LKO) mice on the same C57BL/6NCr background were backcrossed to C57BL/6NCr to the 

N10 generation (27). Mice were fed a standard rodent chow mix [5% calories from fat; 

D8604 Teklad Rodent Diet, Teklad Diets (Madison, WI)] and water ad libitum. Mice were 

housed in barrier cages on ventilated racks at 12-hr light/dark cycle in a temperature 

controlled facility (25°C), sentinel monitored quarterly, and confirmed free of all known 

rodent pathogens. At age 8 wk, WT and Fabp1 gene ablated female mice were placed on a 

defined phytol-free (28–33), phytoestrogen-free (34, 35) control chow to avoid dietary 

complications due to their potential impact on hepatic FABP1 level and/or the EC system. 

After 4 weeks on the phytol-free, phytoestrogen-free diet the mice were fasted overnight 

followed by brain removal/flash freezing and storage at −80°C. Mouse experimental 

protocols were approved by the Institutional Animal Care and Use Committee at Texas 

A&M University.

Extraction and Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis of Brain N-
Acylethanolamide (NAE) and 2-Monoacylglycerol (2-MG)

Arachidonoylethanolamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide 

(PEA), n-3 docosahexaenoylethanolamide (DHEA), n-3 eicosapentaenoylethanolamide 

(EPEA), 2-arachidonoylglycerol (2-AG), 2-oleoylglycerol (2-OG), 2-palmitoylglycerol (2-

PG), AEA-d4, OEA-d2, PEA-d4, DHEA-d4, EPEA-d4, and 2-AG-d8 were purchased from 

Cayman Chemical (Ann Arbor, MI). All solvents and reagents were highest grade available 

commercially. Frozen mouse brain (100–200 mg wet weight) was homogenized in 1.0 mL of 

ice-cold homogenization buffer containing 2000 pg each of AEA-d4, OEA-d2, PEA-d4, 

DHEA-d4, EPEA-d4, and 2-AG-d8. Lipids were extracted from mouse brain essentially as 

described in (36), reconstituted in 100 μL of ice-cold methanol, purged with nitrogen, and 

stored at −80°C until analysis by liquid chromatography-mass spectrometry (LC-MS). The 

NAEs (AEA, OEA, PEA, DHEA, EPEA) in the brain lipid extract were resolved, identified, 

and quantified in the Texas A&M University Protein Chemistry Laboratory (Dr. Larry 

Dangott, Director) essentially as described in (37) and modified as in (17). Likewise, the 2-

MGs (2-AG, 2-OG, and 2-PG) in the brain lipid extract were resolved, identified and 

quantified in the Protein Chemistry Laboratory basically as in (38) and as modified in (17). 

Brain NAE and 2-MG levels are expressed as pmol/g wet weight and nmol/g wet weight, 

respectively.

Antibodies and Proteins for Western Blotting

Rabbit polyclonal anti-SCP2 was prepared as described in (39). Caveolin-1 (CAV1; 610060) 

polyclonal anti-rabbit antibody was from BD Transduction Laboratories (Lexington, KY). 

Fatty acid transport protein 1 (FATP-1; sc-25541) polyclonal anti-rabbit, fatty acid binding 

protein-3 (FABP3; sc-58275) monoclonal anti-mouse, fatty acid binding protein-7 (FABP7; 

sc-30088) polyclonal anti-rabbit, FABP1 (sc-16064) polyclonal anti-mouse, N-

acylethanolamide hydrolyzing acid amidase (NAAA; sc-100470) monoclonal anti-mouse, 
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and β-Actin (sc-47778) monoclonal anti-mouse were from Santa Cruz Biotech (Santa Cruz, 

CA). Fatty acid binding protein-5 (FABP5; RD181060100) antibody was from BioVendor 

R&D (Asheville, NC). Fatty acid translocase/cluster of differentiation 36/thrombospondin 

receptor (FAT/CD36; RDI-M1537db) monoclonal anti-mouse antibody was from Research 

Diagnostics (Flanders, NJ). Anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 

MAB374) monoclonal anti-mouse antibody was from Millipore (Billerica, MA). 

Diacylglycerol lipase α (DAGLα; 13626 Cell Signaling, Danvers, MA) and 2-

monoacylglycerol lipase (MAGL; 310212) polyclonal antibodies were from Cayman 

Chemical Co (Ann Arbor, MI). Cytochrome C oxidase 4 (COX4, ab16056) polyclonal anti-

rabbit, antibody to cannabinoid receptor-1 (CB1; AB172970), glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH, AB8245), fatty acid amide hydrolase (FAAH, AB54615), and N-

acylphosphatidylethanolamide phospholipase D (NAPEPLD; AB95397) were from Abcam 

(Cambridge, MA). Antibody to transient receptor potential cation channel subfamily V 

member 1 (TRVP-1: 75j-254) was from Antibodies Inc. (Davis, CA). For quantitative 

Western blotting, recombinant protein standards were purified and delipidated as described 

in the following cited papers: murine FABP1 (7, 40), murine acyl-CoA binding protein 

(ACBP) (41, 42), and human sterol carrier protein-2 (SCP-2) (43–45).

Brain Protein Levels of Enzymes and Other Proteins in the Endocannabinoid System

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot 

analysis was performed on brain post-nuclear supernatants (PNS) as described earlier (17, 

46, 47). Brain proteins were resolved by 12% Tris-SDS-PAGE gel, transferred to 0.2 μm 

nitrocellulose membrane (162-0112, BioRad Laboratories, Hercules, CA), blocked with 3% 

gelatin for 1 hr, and incubated overnight with select primary antibodies followed by species-

specific Horseradish Peroxidase (HRP) or Alkaline Phosphatase (AP) conjugated secondary 

antibodies for 1–2 hr. After rinsing nitrocellulose membrane three times for 5 min in TBST 

(10 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.05% Tween 20), the HRP conjugated 

antibodies were exposed to the Super Signal West Pico chemiluminescent substrate (34077, 

Pierce, Rockford, IL) or Immuno-star HRP substrate (Bio-Rad, Hercules, CA). Images were 

obtained with an Image Quant LAS 4000 mini (GE Healthcare Life Sciences, Marlborough, 

MA) or C-DiGiT scanner (Li-COR, Lincoln, NE). AP-conjugated antibodies were exposed 

to BCIP/NBT solution (B6404, Sigma Aldrich) and images obtained with an Epson 

Perfection V700 Photo scanner (Long Beach, CA). Proteins were quantified by 

densitometric analysis using ImageJ software (National Institutes of Health, Bethesda, MD). 

Relative protein levels normalized to GAPDH or β-actin internal gel-loading controls and 

representative cropped Western blot images are inserted into figure panels similarly as in 

earlier publications in which individual Western blots are separated by a white line/space 

(48–52). Quantitative Western blotting of FABP1 was performed using a standard curve with 

recombinant murine FABP1 as in (53–56). Images of the blots were taken by Epson 

Perfection V700 Photo scanner (Long Beach, CA) and quantified by densitometric analysis 

with ImageJ software (NIH, Bethesda, MD) as described earlier (57).

QrtPCR Reagents for Analyzing Brain mRNAs of Genes in the Endocannabinoid System

TaqMan® RNA-to-CT
™ 1-Step PCR Master Mix Reagent kit was purchased from Life 

Technologies™ (Carlsbad, CA). The following gene-specific TaqMan® PCR probes and 
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primers were obtained from Life Technologies™ (Carlsbad, CA) to determine brain mRNA 

levels of: G protein coupled receptor kinase-2 (Adrbk2, Mm00622042_m1); cannabinoid 

receptor-1 (Cnr1, Mm01212171_s1); cannabinoid receptor-2 (Cnr2, Mm02620087_s1); 

diacylglycerol lipase α (Dagla, Mm00813830_m1); diacylglycerol lipase β (Daglb, 
Mm00523381_m1); fatty acid amide hydrolase (Faah, Mm00515684_m1); 2-

monoacylglycerol lipase (Mgll, Mm00449274_m1); fatty acid binding protein-3 (Fabp3, 

Mm02342494_m1); fatty acid binding protein-5 (Fabp5, Mm00783731_s1); fatty acid 

binding protein-7 (Fabp7, Mm01246302_m1); N-acylethanolamide hydrolyzing acid 

amidase (Naah, Mm01341699_m1); N-acylphosphatidylethanolamide phospholipase D 

(Napepld, Mm00724596_m1); transient receptor potential cation channel subfamily V 

member 1 (Trvp-1, Mm01246302_m1).

mRNA Extraction and QrtPCR to Determine mRNA Levels of Genes in the Brain 
Endocannabinoid System

Brain total RNA was isolated and purified with the RNeasy mini kit (Qiagen, Valencia, CA) 

using the manufacturer’s standard protocol. Concentration and quality of mRNA were 

determined by a NanoDrop 1000 Spectrophotometer (Thermo Scientific, Waltham, MA). 

Samples were stored at −80°C. QrtPCR expression patterns were analyzed with an ABI 

PRISM 7000 sequence detection system (Applied Biosystems®, Foster City, CA) using 

TaqMan® RNA-to-CT
™ 1-Step PCR Master Mix Reagent kit, gene-specific TaqMan PCR 

probes and primers. The thermal cycler protocol was as follows: 48°C for 30 min, 95°C for 

10 min, 95°C for 0.15 min and 60°C for 1.0 min, repeated a total of 40 cycles. TaqMan® 

gene expression assays to determine brain mRNA transcript levels of the genes listed above. 

Two replicates of each sample reaction (20 μL total volume each) were performed on 96 

well plates (Applied Biosystems®, Foster City, CA). The threshold cycle from each well 

was established with ABI Prism 7000 SDS software (Applied Biosystems®, Foster City, 

CA) and QrtPCR data normalized to the housekeeping gene 18S RNA for mRNA. 

Expression of Adrbk2, Arrb2, Cnr1, Cnr2, Dagla, Daglb, Faah, Mgll, Fabp3, Fabp5, Fabp7, 

Naah, Nape-pld, and Trvp-1 were relative to the control female mouse group.

Brain Cytokine Levels

Mouse LINCOplex kit (MADPK-71K) and mouse LINCOplex kit (MADPCYT-72K) from 

LINCO Research (St. Charles, MO) were used to determine brain levels of insulin, resistin, 

leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), plasminogen activator 

inhibitor-1 (PAI-1), interleukin-6 (IL-6), and tumor necrosis factor α (TNFα) according to 

the manufacturer’s instructions. Samples were detected with a Luminex 100IS microsphere 

analyzer (Luminex Corp., Austin, TX) and analyzed with Luminex 100 version 2.1 software 

supplied by the manufacturer using 5-parameter data reduction.

Statistical Analysis

Values represent the mean ± standard error of the mean (SEM). Statistical analysis was 

performed by one-way analysis of variance (ANOVA) followed by the Student-Newman-

Keuls post-hoc test. Statistical significance was assigned to values with p < 0.05.
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RESULTS

Fabp1 Gene Ablation (LKO) Differentially Impacts Brain Levels of Arachidonic Acid (ARA)-
containing versus non-ARA-containing Endocannabinoids (EC)

Brain contains three major classes of endocannabinoids: i) ARA-containing (2-AG ≫ AEA) 

ECs are the major endogenous ligand activators of cannabinoid (CB) receptors (4, 38, 58–

62); ii) Non-ARA-containing ‘potentiating’ ECs (OEA, PEA, 2-OG, and/or 2-PG) that 

enhance the activity of ARA-containing ECs by increasing their affinities for CB receptors 

or decreasing their enzymatic degradation (63–68); iii) Non-ARA-containing antagonistic 

ECs (DHEA, EPEA) that displace ARA from membrane phospholipids and decrease ARA 

containing phospholipid synthesis to thereby lower AEA and 2-AG production (69).

Arachidonoylethanolamide (AEA) levels were not different between groups (Fig. 1A), levels 

of potentiating endocannabinoids OEA and PEA were nearly 2-fold higher in the WT than 

LKO mice (Fig. 1B, C). LKO differentially impacted brain levels of potentiating, but not 

antagonistic non-ARA containing, ECs. LKO did not significantly alter brain levels of AEA 

(Fig 1A) or 2-AG (Fig. 2A). In contrast, brain levels of potentiating OEA and PEA (Fig. 1B, 

C) and 2-OG (Fig. 2B) were decreased. In contrast, LKO did not significantly alter the brain 

levels of antagonistic DHEA or EPEA (Fig. 1D, E).

Consistent with the literature, WT brain levels of the antagonistic DHEA (Fig 1D) and even 

more so EPEA (Fig 1E) were lower. WT brain levels of the other major ARA-containing 

EC, i.e. 2-arachidonoylglycerol (2-AG) (Fig. 2A) were 3 orders of magnitude higher than 

those observed for AEA, but WT brain levels of the potentiating 2-monoacylglycerols (2-

MGs) 2-OG and 2-PG (Fig. 2B, C) were 2–4 fold lower than those of 2-AG (Fig. 2A). 

Nevertheless the WT brain levels of 2-OG and 2-PG (Fig. 2B, C) were still markedly higher 

than those of AEA (Fig. 1A).

Fabp1 Gene Ablation (LKO) Does Not Affect Brain Protein Levels of Membrane Fatty Acid 
Transport/Translocase Proteins

WT brain contains several membrane associated proteins (CD36/FAT, CAV1, FATP1 and 

FATP4) that facilitate translocation/uptake of long chain fatty acids such as ARA as well as 

other non-ARA fatty acids (e.g. palmitic or oleic acid) (3). As shown by Western blotting, 

LKO did not alter expression of CD36/FAT, CAV1, FATP1, or FATP4 (Fig 3A–D). The 

lower levels of OEA, PEA, and 2-OG in LKO brain (Fig. 1,2) did not correlate with 

decreased levels of membrane fatty acid uptake proteins.

Impact of Fabp1 Gene Ablation (LKO) on Brain Levels of Proteins Involved in NAE and 2-
MG Synthesis and Degradation

Brain levels of NAEs and 2-MGs are determined in part both by synthetic enzymes in the 

plasma membrane (NAPEPLD and DAGLα) and degradative membrane enzymes (FAAH, 

NAAA, MAGL) localized in intracellular sites (70–72). Thus, it was important to examine if 

LKO-induced alteration in brain EC levels was attributable to altered levels of these key 

enzymes.
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Western blotting showed that Fabp1 gene ablation did not alter expression of the NAE 

synthetic enzyme NAPEPLD (Fig. 4A) or the 2-MG synthetic enzyme DAGLα (Fig. 4B). 

With regards to the NAE degradative enzymes, LKO did not alter that of the major one, i.e. 

FAAH (Fig. 4C), but decreased that of NAAA (Fig. 4D). Protein levels of the 2-MG 

degradative enzyme MAGL were not altered by LKO (Fig 4E). Finally, Western blotting 

showed that LKO did not alter protein levels of the AEA and 2-AG receptor CB1 (Fig. 4F), 

but did reduce protein levels of TRVP1 in brain (Fig. 4G).

Impact of Fabp1 Gene Ablation (LKO) on Brain Levels of Cytosolic NAE and 2-MG 
‘Chaperone’ Proteins

Due to their highly hydrophobic nature, not only ARA but even more so NAEs and 2-MGs, 

require cytosolic ‘chaperone’ proteins for intracellular transport/targeting to metabolic 

organelles. These roles are served by the brain cytosolic FABPs 3, 5, and 7 (13, 46, 73–79) 

and SCP-2 (17, 45, 80, 81). Therefore, it was important to determine the impact of LKO on 

brain proteins levels of these lipidic ligand ‘chaperones’.

As shown by Western blotting, LKO differentially impacted the expression of the cytosolic 

‘chaperone’ proteins. Brain protein level of FABP3 was significantly increased by LKO 

(Fig. 5A). Concomitantly, brain protein levels of the other ‘chaperones’ were either 

significantly decreased, e.g. SCP-2 (Fig. 5D) or did not change (FABP5, FABP7) (Fig 5. B, 

C).

Ablation/inhibition of cytosolic ‘chaperones’ is known to decrease NAE and 2-MG targeting 

for degradation which in turn increases their level (38, 47, 79). Since LKO decreased brain 

levels of non-ARA NAEs and 2-MGs, this would suggest that the concomitant upregulation 

of FABP3 may have exerted a larger impact than downregulation of the other cytosolic 

‘chaperones’ which were either decreased or unchanged.

Role of Transcriptional Regulation on the Impact of Fabp1 Gene Ablation (LKO) on Brain 
Protein Levels of Proteins and Enzymes in the Endocannabinoid System

LKO-induced changes in protein levels of some, but not most, brain proteins were 

attributable in part to altered mRNA levels. The decreased protein level of the NAE 

degradative enzyme NAAA (Fig. 4D) was consistent with decreased Naaa mRNA level (Fig. 

6E). LKO-induced decreased or unaltered protein levels of brain cytosolic ‘chaperones’ such 

as FABP5 and SCP2 (Fig. 5B, D) was consistent with decreased or unaltered Fabp5 and 

Scp2 mRNAs (Fig. 7B, D).

In contrast, other brain EC system protein levels did not correlate with the respective 

mRNAs in LKO mice. The protein levels of the synthetic enzymes NAPEPLD and DAGLα 
were unaltered (Fig. 4A, B) despite significantly decreased Napepld and Dagl mRNA levels 

(Fig. 6A–C). The protein levels of the degradative enzymes FAAH and MAGL were 

unaltered (Fig 4C, E) despite increased Faah and Mgll mRNA levels (Fig. 6D, F). The 

protein level of FABP3 was increased (Fig. 5A) but the Fapb3 mRNA decreased (Fig. 7A). 

Finally, the protein level of FABP7 was unchanged (Fig 5C); however, FABP7 mRNA level 

was decreased in LKO (Fig 7C).
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Hepatic FABP1 Expression is Sexually Dimorphic

Since LKO did not alter brain AEA and 2-AG levels in females (Fig. 1A, 2A), but 

significantly increased that in males (AEA: MWT = 15 ± 2 pmol/g brain, MLKO = 24 ± 2 

pmol/g brain; 2-AG: MWT = 16 ± 2 nmol/g brain, MLKO = 44 ± 3 nmol/g brain) (17), the 

possibility that this might be attributed at least in part to sex-differences in hepatic FABP1 

expression in WT mice was examined by quantitative Western blotting using a standard 

curve with purified recombinant murine FABP1 as described in Materials and Methods. As 

shown in multiple separate experiments, FABP1 was more highly expressed in livers of male 

than female mice fed a phytol-free, phytoestrogen-free diet (Fig 8).

FABP1 Gene Ablation (LKO) Impact on Brain Inflammatory Cytokine Levels

LKO had no significant impact on brain concentrations of insulin (Fig. 9A). LKO did 

modestly increase brain levels of inflammatory cytokines MCP-1 (Fig. 9E), PAI-1 (Fig. 9F), 

IL-6 (Fig. 9G), and TNFα (Fig. 9H). LKO also increased brain levels of adiponectin (Fig. 

9B), resistin (Fig. 9C), and leptin (Fig. 9D); however, these cytokines are not normally 

associated with inflammation in the brain. Taken together, the lack of major changes in 

inflammatory cytokine levels correlated with the lack of change in brain AEA and 2-AG 

levels in LKO mice.

DISCUSSION

Behavioral and other studies suggest considerable sexual dimorphism in the brain 

endocannabinoid (EC) system of both humans and rodents (18–23). However, little is known 

concerning the molecular details on which these differences are based—especially with 

regards to factors outside the brain that influence brain endocannabinoid levels. For 

example, liver fatty acid binding protein (FABP1) is not detectable in brain (13–15), but its 

ablation (LKO) in male mice markedly increases brain levels of arachidonic acid (ARA)-

containing EC (e.g. AEA: MWT = 15 pmol/g brain vs MLKO = 24 pmol/g; 2-AG: MWT = 

16 nmol/g vs MLKO = 44 nmol/g) and non-ARA-containing EC (e.g. OEA: MWT = 72 

pmol/g brain vs MLKO = 190 pmol/g; PEA: MWT = 80 pmol/g vs MLKO = 150 pmol/g; 2-

OG: MWT = 5 nmol/g vs MLKO = 18 nmol/g) (16, 17). Whether a similar effect is seen in 

the female brain EC system is unknown. The studies presented herein with female LKO 

mice presented new insights into the impact of sexual dimorphic FABP1 expression on the 

brain EC system.

First, there are a number of known differences in the brain EC system between males and 

females. For example, ARA-containing EC (AEA, 2-AG) levels were near 40 pmol/g and 60 

nmol/g brain, respectively, in female brains (shown herein)—several fold higher than those 

observed in the brains of male mice (AEA, 15 pmol/g brain; 2-AG, 16 nmol/g brain) (16, 

17). Consistent with these findings, female rat brain hypothalamus and pituitary have higher 

AEA and 2-AG levels than those of males (21, 23). In the rat, the higher AEA and 2-AG 

level in female brain is attributed to the higher plasma availability of ARA in females (25, 

26). This is important because most brain ARA is derived from plasma for uptake into brain 

and rapid esterification into phospholipids from which AEA and 2-AG are derived (3, 4). 

Finally, the markedly higher levels of AEA and 2-AG in brains of female vs male mice 
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correlated with the significantly lower basal FABP1 levels in livers of female vs male mice 

(shown herein). The possibility that lower hepatic FABP1 levels in females contributed to 

higher brain EC levels is supported by earlier studies showing that: i) FABP1 has high 

affinity for ARA (7, 9, 17, 82); ii) native FABP1 isolated from liver is preferentially enriched 

with endogenously-bound ARA (8); iii) hepatic FABP1 concentration is at least 20-fold 

higher than that of all the FABPs (FABP 3, 5, 7) in brain combined (83–90); iv) FABP1 

overexpression enhances ARA uptake (9–12).

In contrast, very little is known with respect to differences in the non-ARA containing ECs 

between males and females. Although brain can synthesize sufficient non-ARA fatty acids 

such as oleic acid and palmitic acid needed for incorporation into phospholipids from which 

non-ARA-containing EC are derived (3, 4), brain can take up non-ARA fatty acids from the 

blood (3, 74, 91). Thus, it was difficult to predict a priori the net impact of sex on brain 

levels of non-ARA-containing ECs. The data presented herein showed that female brain 

basal levels of non-ARA containing ECs (OEA, PEA, 2-OG, and 2-PG near 125 pmol/g 

brain, 135 pmol/g, 22 nmol/g, and 11 nmol/g, respectively) were signficantly higher than 

those in male brains (OEA, 70 pmol/g brain; PEA, 80 pmol/g; 2-OG, 5 nmol/g; 2-PG, 6 

nmol/g) (16, 17). This may be attributed at least in part by: i) females’ lower hepatic FABP1 

level; ii) FABP1 also binding non-ARA fatty acids with high affinity, albeit less than that for 

ARA (7, 92–94); iii) non-ARA fatty acids palmitic acid and oleic acid comprising the most 

common, i.e. 10% and 30% respectively, endogenously-bound fatty acids in native FABP1 

isolated from liver (8); iv) enhancement of non-ARA fatty acid uptake by FABP1 

overexpression and in direct proportion to FABP1 level in cloned human HepG2 liver cells 

(10, 12, 95–98).

Second, although Fabp1 gene ablation (LKO) markedly increased brain levels of both ARA-

containing (AEA: WT = 15 pmol/g brain, LKO = 24 pmol/g; 2-AG: WT = 16 nmol/g brain, 

LKO = 44 nmol/g) and non-ARA containing (OEA: WT = 72 pmol/g, LKO = 190 pmol/g; 

PEA: WT = 80 pmol/g, LKO = 150 pmol/g, 2-OG: WT = 5 nmol/g, LKO = 18 nmol/g; 2-

PG: WT = 7 nmol/g, LKO = 9 nmol/g) ECs in males (16, 17), its impact in female brain was 

not known. The data presented herein showed for the first time that (LKO) did not alter brain 

levels of AEA or 2-AG in females, while the levels of the non-ARA containing ECs (OEA, 

PEA, 2-OG) were decreased by 20–50%. While this was consistent with the already much 

lower level of hepatic FABP1 in WT females as compared to WT males, there is a paucity of 

literature regarding the impact of hepatic FABP1 level on sex differences in the brain EC 

system.

Third, the FABP1 gene ablation induced decreases in brain ECs were not attributable to 

marked alteration in proteins levels of: i) plasma membrane proteins for fatty acid uptake in 

brain; ii) membrane enzymes in synthesis/degradation of non-ARA-containing ECs; or iii) 

protein levels of cytosolic chaperones that would enhance non-ARA-containing EC cytosolic 

transport and targeting for degradation. Furthermore, the lack of compensatory changes in 

brain EC system proteins in response to FABP1 gene ablation was not attributable to lack of 

changes in respective mRNA levels—many of which were significantly altered. While the 

lack of correlation between brain EC system protein levels and mRNA transcripts is not 
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known, a similar lack of correlation in liver EC system protein levels and mRNAs has been 

attributed to specific micro RNAs (miRNAs) that inhibit mRNA translation (99).

With regards to physiological impact of these findings on brain function, an important 

function of endocannabinoids such as AEA is on analgesia (38). Lower hepatic FABP1 level 

in females (shown herein) vs males (16, 17) correlate with females having higher brain 

levels of AEA and potentiating OEA and PEA (enhancers of AEA activity on CB receptors). 

Higher AEA level in brains of females is associated with lower sensitivity to pain as 

compared to males (18, 21, 23, 24). Conversely, elevated liver FABP1 levels in human lipid 

disorders such as obesity (102), alcoholic fatty liver disease (AFLD) (103, 104), and 

nonalcoholic fatty liver disease (NAFLD) (105–108) are associated with increased pain 

sensitivity in obesity (118–120), AFLD (121, 122), and NAFLD (123) reported in these lipid 

disorders. While expression of a SNP in the human FABP1 gene coding region results in a 

T94A substitution also increases hepatic total FABP1 and is associated with NAFLD (109–

111), another relatively common SNP in the human FABP1 gene promoter region 

(rs2919872) decreases FABP1 promoter transcriptional activity to decrease FABP1 (110). 

However, the impact of these SNPs on pain sensitivity is not known. Resolving this issue is 

important, especially since the SNP leading to the FABP1 T94A variant is highly prevalent 

in the human population, occurring with 26–38% minor allele frequency and 8.3±1.9% 

homozygosity (MAF for 1000 genomes in NCBI dbSNP database; ALFRED database) (109, 

112–117). Taken together these studies would suggest that FABP1 reduction or Fabp1 gene 

ablation may impact pain sensitivity much less in females than males—a possibility to be 

tested in future studies beyond the scope of the present investigation.

Another major physiological effect regulated by brain endocannabinoids is the desire for 

food intake. Elevated AEA increases desire for food intake (124), while increased OEA, 

PEA, or 2-OG decrease the desire for food intake (69, 125, 126). Thus, the female brain’s 

higher AEA level (shown herein) as compared to that in brain of males (16, 17) would 

suggest higher food intake by females. Conversely, the female brain’s higher OEA, PEA and 

less so 2-OG content would tend to decrease food intake. The overall net effect led to less 

food intake in females versus males in control chow fed mice (127–131). With regards to the 

impact of loss of FABP1, LKO did not alter female brain AEA level, but decreased OEA and 

PEA by about 50%, and less so 2-OG (shown herein). As a result of the unaltered AEA and 

much smaller difference in potentiating ECs, the LKO female mice had unaltered or only 

slightly altered control chow food intake (127, 128, 131, 132).

In summary, wild-type mouse brain EC levels in females (shown herein) differed 

significantly from those of males (16, 17). This differential level of endocannabinoids adds a 

new level of understanding of our previously published studies demonstrating a reduction in 

food intake in female mice compared to males (127–131). Our studies further extend the 

impact of sex-differences on the content of endocannabinoids in the brain, demonstrating a 

higher level in female mice as compared to male mice. Finally, female brain EC levels were 

much less responsive to Fabp1 gene ablation (shown herein) as compared to their male 

FABP1 gene ablated counterparts (16, 17). This diminution of responsiveness of female 

brain EC levels to loss of FABP1 was associated with intrinsically lower FABP1 level in 

livers of WT females than males. This was in marked contrast to males wherein lower brain 
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EC levels correlated with higher liver FABP1 such that loss of FABP1 upon ablation 

markedly increased brain EC levels (16, 17), approaching the levels observed in female 

brains.
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Abbreviations

ACBP
acyl-CoA binding protein

ARA
arachidonic acid

AEA, anandamide
arachidonoylethanolamide

2-AG
2-arachidonoylglycerol

CB1, Cnr1
cannabinoid receptor-1

CB2, Cnr2
cannabinoid receptor-2

DAGL-α, Dagla
diacylglycerol lipase α

DHEA
docosahexaenoylethanolamide

EPEA
eicosapentaenoylethanolamide

EC
endocannabinoid

FAAH, Faah
fatty acid amide hydrolase

FABP1, L-FABP
liver fatty acid binding protein-1

FABP-3, Fabp3
fatty acid binding protein-3
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FABP-5, Fabp5
fatty acid binding protein-5

FABP-7, Fabp7
fatty acid binding protein-7

FAT/CD36
fatty acid translocase/thrombospondin receptor

FATP-1
fatty acid transport protein-1

FATP-4
fatty acid transport protein-4

LKO
Fabp1 gene ablated mouse on C57BL/6NCr background

GPCR
G protein coupled receptor

GRK-2, Adrbk2
G protein coupled receptor kinase-2

LCFA
long chain fatty acid

LCFA-CoA
long chain fatty acyl-CoA

2-MG
2-monoacylglycerol

MGL, Mgll
2-monoacylglycerol lipase

NAAA, Naaa
N-acylethanolamide-hydrolyzing acid amidase

NAE
N-acylethanolamide

NAPE
N-acylphosphatidylethanolamide

NAPE-PLD, Nape-pld
N-acylphosphatidylethanolamide phospholipase-D

OEA
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oleoylethanolamide

2-OG
2-oleoylglycerol

PEA
palmitoylethanolamide

2-PG
2-palmitoyl glycerol

SCP-2, Scp2
sterol carrier protein-2

TRVP-1, vanilloid receptor-1, Trvp-1
transient receptor potential cation channel subfamily V member 1

WT
wild-type C57BL/6NCr mouse
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Summary Statement

Brain AEA and 2-AG levels of female mice are resistant to the impact of hepatic Fabp1 
gene ablation.
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FIGURE 1. 
Impact of FABP1 gene ablation (LKO) on brain N-acylethanolamide (NAE) levels. Female 

WT and LKO (8 wk old) were fed phytol-free, phytoestrogen-free control diet for 4 weeks, 

fasted overnight, brains removed/flash frozen and stored at −80°C, and NAEs extracted for 

resolution, identification and quantitation by LC-MS analysis as described in Materials and 

Methods to determine content of: (A) arachidonoylethanolamide (AEA), (B) 

oleoylethanolamide (OEA), (C) palmitoylethanolamide (PEA), (D) 

docosahexaenoylethanolamide (DHEA), and (E) eicosapentaenoylethanolamide (EPEA). 

Data represent the mean ± SEM (n = 8); *, p < 0.05 for LKO vs WT.
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FIGURE 2. 
Effect of FABP1 gene ablation (LKO) on brain 2-monoacylglycerol (2-MG) levels. All 

conditions were as in legend to Fig. 1 except that LC-MS analysis was used to quantify 2-

monoacylglyerols as described in Materials and Methods: (A) 2-arachidonoylglycerol (2-

AG), (B) 2-oleoylglycerol (2-OG), and (C) 2-palmitoylglycerol (2-PG). Data represent the 

mean ± SEM (n = 8); *, p < 0.05 for LKO vs WT.
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FIGURE 3. 
FABP1 gene ablation (LKO) impact on protein levels of brain membrane proteins involved 

in fatty acid uptake. Female WT and LKO mice (8 wk old) were fed phytol-free, 

phytoestrogen-free control chow for 4 weeks, overnight fasted, brains removed/flash frozen 

and stored at −80°C, and aliquots of brain homogenate proteins examined by SDS-PAGE 

and subsequent Western blot analysis as described in Materials and Methods. (A) CD36/

FAT, (B) CAV1, (C) FATP1, and (D) FATP4. Insets show representative Western blot images 

of the respective protein (upper blot) and the gel-loading control protein β-Actin (lower 

blot). Relative protein levels were normalized to gel-loading control protein; values were 

compared to WT set to 1. Data represent the mean ± SEM (n = 7); *, p < 0.05 for LKO vs 
WT.
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FIGURE 4. 
Impact of FABP1 gene ablation (LKO) on protein levels of brain proteins involved in 

endocannabinoid synthesis and degradation and associated receptors. All conditions were as 

in legend to Fig. 3 except that Western blot analysis was performed to determine protein 

levels of (A) NAPEPLD, (B) DAGLα, (C) FAAH, (D) NAAA, (E) MAGL, (F) CB1, and 

(G) TRVP1. Insets show representative Western blot images of the respective protein (upper 

blot) and the gel-loading control protein (GAPDH or β-Actin, lower blot). Relative protein 

levels were normalized to the gel-loading control protein; values were compared to WT set 

to 1. Data represent the mean ± SEM (n = 7); *, p < 0.05 for LKO vs WT.
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FIGURE 5. 
FABP1 gene ablation (LKO) alters protein levels of brain cytosolic ‘chaperone’ 

endocannabinoid binding proteins. All conditions were as in legend to Fig. 3 except that 

Western blot analysis was performed to determine protein levels of (A) FABP3, (B) FABP5, 

(C) FABP7, and (D) SCP-2. Insets are representative Western blot images of the respective 

protein (upper blot) and gel-loading control (GAPDH or β-Actin, lower blot). Relative 

protein levels were normalized to the gel-loading control protein; values were compared to 

WT set to 1. Data represent the mean ± SEM (n = 7); *, p < 0.05 for LKO vs WT.
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FIGURE 6. 
Effect of FABP1 gene ablation (LKO) on brain levels of mRNAs encoding proteins for 

endocannabinoid synthesis and degradation. Female WT and LKO mice (8 wk old) were fed 

phytol-free, phytoestrogen-free control chow for 4 weeks, overnight fasted, brains removed/

flash frozen and stored at −80°C, and aliquots of brain homogenate used for qrtPCR to 

determine mRNA levels of (A) Napepld, (B) Dagla, (C) Daglb, (D) Faah, (E) Naaa, and (F) 

Mgll as described in Materials and Methods. Levels of mRNA were normalized to an 

internal control (18S RNA); values were compared to WT set to 1. Data represent the mean 

± SEM (n = 7); *, p < 0.05 for LKO vs WT.
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FIGURE 7. 
FABP1 gene ablation (LKO) alters brain levels of mRNAs encoding cytosolic ‘chaperone’ 

endocannabinoid binding proteins. All conditions were as in legend to Fig. 6 except that 

qrtPCR was performed to determine mRNA levels of (A) Fabp3, (B) Fabp5, (C) Fabp7, and 

(D) Scp-2 as described in Materials and Methods. Levels of mRNA were normalized to an 

internal control (18S RNA); values were compared to WT set to 1. Data represent the mean 

± SEM (n = 6); *, p < 0.05 for LKO vs WT.
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FIGURE 8. 
Hepatic FABP1 expression is sexual dimorphic. C57BL/6N male and female mice (8 wk 

old) were fed phytol-free, phytoestrogen-free control chow for 4 weeks, overnight fasted, 

livers removed and frozen at −80°C. Quantitative Western blotting was performed on livers 

to determine FABP1 protein level compared to standard curve of pure recombinant FABP1 

as described (53–56). FABP1 levels (ng L-FABP/μg total protein) are shown from four 

separate experiments, each presented as mean ± SEM (n = 3–10); *, p < 0.05 for LKO vs 
WT.
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FIGURE 9. 
Impact of FABP1 gene ablation on brain cytokine levels. Brain homogenate levels of (A) 

insulin, (B) adiponectin, (C) resistin, (D) leptin, (E) MCP-1, (F) PAI-1, (G) IL-6, and (H) 

TNFα were quantified as described in Materials and Methods. Data represent the mean ± 

SEM (n = 8); *, p < 0.05 for LKO vs WT.
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