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Summary

Caloric restriction (CR) can delay onset of several age-related

pathophysiologiesandextendlifespaninvariousspecies, including

rodents. CR also induces metabolic remodeling involved in activa-

tion of lipid metabolism, enhancement of mitochondrial biogene-

sis, and reductionofoxidative stress inwhite adipose tissue (WAT).

In studiesusinggeneticallymodifiedmicewithextended lifespans,

WAT characteristics influenced mammalian lifespans. However,

molecularmechanismsunderlyingCR-associatedmetabolic remod-

eling of WAT remain unclear. Sterol regulatory element-binding

protein-1c (Srebp-1c), amaster transcription factorof fattyacid (FA)

biosynthesis, is responsible for the pathogenesis of fatty liver

(steatosis). Our study showed that, under CR conditions, Srebp-1c

enhanced mitochondrial biogenesis via increased expression of

peroxisome proliferator-activated receptor gamma coactivator-1a
(Pgc-1a) and upregulated expression of proteins involved in FA

biosynthesiswithinWAT.However, via Srebp-1c,mostof theseCR-

associated metabolic alterations were not observed in other

tissues, including the liver. Moreover, our data indicated that

Srebp-1c may be an important factor both for CR-associated

suppression of oxidative stress, through increased synthesis of

glutathione in WAT, and for the prolongevity action of CR. Our

results strongly suggested that Srebp-1c, the primary FA biosyn-

thesis-promoting transcriptional factor implicated in fatty liver

disease, is also the food shortage-responsive factor in WAT. This

indicated that Srebp-1c is a key regulator of metabolic remodeling

leading to the beneficial effects of CR.

Key words: caloric restriction (CR); white adipose tissue

(WAT); mitochondria biogenesis; oxidative stress; sterol reg-

ulatory element binding protein-1c (Srebp-1c); peroxisome

proliferator-activated receptorgammacoactivator-1a (Pgc-1a).

Introduction

Caloric restriction (CR) is the most robust, reproducible, and simple

experimental manipulation known to extend lifespan and delay onset of

many age-associated pathophysiological changes in various laboratory

rodents. Suppression of growth hormone/insulin-like growth factor (GH/

IGF-1) signaling, reduction of mTOR signaling, activation of sirtuin,

enhanced mitochondrial biogenesis, reduced oxidative stress, and

suppressed inflammation mediate many of the beneficial effects of CR.

However, the exact underlying mechanisms are still being debated

(Chung et al., 2013; Guarente, 2013).

Fat-specific insulin receptor knockout (FIRKO) mice lived longer than

their controls (Bl€uher et al., 2003). Transcription factors, including

CCAAT/enhancer-binding protein (C/EBP)-a, C/EBPb, and peroxisome

proliferator-activated receptor-c (PPARc), are master regulators of

adipocyte differentiation (Farmer, 2006). Mice in which C/EBPa was

replaced with C/EBPb (b/b mice) lived longer than their wild-type (WT)

counterparts (Chiu et al., 2004). In contrast, hetero-deficient PPARc
knockout (KO) mice exhibited a shortened lifespan (Argmann et al.,

2009). White adipose tissue (WAT) is a primary harbor of inflammatory

cells within obese and aged individuals, while WAT inflammation

contributes to systemic metabolic dysfunction including insulin resistance

and cardiovascular disease (Lumeng et al., 2011; Ouchi et al., 2011).

Thus, the characteristics of WAT seem to influence age-associated

pathophysiology and the lifespan of rodents.

Sterol regulatory element-binding proteins (SREBPs) are master

transcriptional regulators of lipid metabolism with three known isoforms:

SREBP-1a, SREBP-1c, and SREBP-2. Both SREBP-1 isoforms activate

transcription of genes involved in fatty acid (FA) biosynthesis. SREBP-1c is

the primary isoform expressed in insulin-sensitive tissues such as the liver,

WAT, and muscle (Shimano, 2009). Because CR further extended

lifespan of two long-lived strains, Ames dwarf mice and heterozygous

antisense GH transgenic rats (Bartke et al., 2001; Shimokawa et al.,

2003), we examined the role of GH/IGF-1 in CR-associated gene

expression profiles of WAT in a previous study. Our findings suggested

that CR-associated alterations of gene expression were highly regulated,

in a GH/IGF-1-independent manner. In particular, CR downregulated

inflammatory gene expression in a GH/IGF-1-independent manner

(Chujo et al., 2013). In contrast, CR upregulated expression of Srebp-

1c (the mouse homolog of human SREBP-1c) and its downstream target

genes, especially those involved in FA biosynthesis, also in a GH/IGF-1-

independent manner (Okita et al., 2012; Chujo et al., 2013). Moreover,

CR significantly increased de novo FA biosynthesis in WAT but not in the

liver (Bruss et al., 2010). Therefore, we hypothesized that activation of

de novo FA biosynthesis via Srebp-1c may be pivotal in CR-associated

metabolic remodeling of WAT, systemic metabolism and that of various
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organs, and longevity. To test our hypothesis, CR-associated responses

in Srebp-1c KO and their embryonic fibroblasts (MEFs) were compared

with those of wild-type mice (WT).

Results

Srebp-1c was required for CR-associated activation of fatty

acid biosynthesis in WAT

Food intake was significantly higher in KO than in WT until almost

20 months of age. At 8–10 months of age, body weight was also

higher in KO than in WT and the effects of CR on body weight were

slightly attenuated in KO. The effects of CR on the weights of the

tissues examined in our study were not significantly different in WT and

KO (Fig. S1; Table S1, Supporting information). Plasma levels of

nonesterified fatty acids and 3-hydroxybutyric acid in ad libitum (AL)-fed

KO (KOAL) were markedly lower than in fasted WT. Moreover, KO had

a higher respiratory quotient and were more vulnerable to starvation

than the WT (unpublished data). These data suggested that KO may not

adjust to food shortage as compared with WT. Plasma insulin was

significantly lower under fasted conditions for all four groups of mice.

Plasma levels of IGF-1 and leptin were significantly lower in CR than in

AL, particularly under fed and fasted conditions, respectively. However,

the effects of CR did not differ in WT and KO. In KO, plasma

adiponectin levels were markedly increased under fasted, compared

with fed conditions, but this fasting-associated phenotype was not

found in WT. In addition, plasma levels of insulin, IGF-1, adiponectin,

and leptin were slightly elevated in KO (Table 1).

The effects of CR on Srebp expression in the liver and WAT were

analyzed by assessing mRNA copy numbers present for each isoform. In

liver tissue,CR increasedSrebp-1amRNAexpressiononly in fastedWTand

KO. By comparison, CR enhanced expression of Srebp-1c in both fed and

fastedWT. In contrast, Srebp-2mRNA expressionwas upregulated in KO,

particularly in CR animals (Fig. 1A–C). In WAT, CR significantly increased

Srebp-1a mRNA expression in WT, but not in KO, when fed. CR also

markedlyenhancedSrebp-1cmRNAexpression inWT,withCR-associated

upregulationexaggeratedunder fed conditions (Fig. 1D,E).Moreover, CR

significantly upregulated Srebp-2mRNA expression in WT, but not in KO

(Fig. 1F). Unexpectedly, in the liver, CR did not upregulate expression of

proteins involved in FA biosynthesis under any conditions tested in this

study. However, malic enzyme 1 (Me-1) protein was markedly downreg-

ulated in both fed and fasted KO mice (Fig. 2A–E). In accordance with

Srebp-1cmRNA levels inWAT,CRupregulatedexpressionof downstream

targets of Srebp-1c, including fatty acid synthase (Fasn), acetyl-CoA

carboxylase (Acc), ATP citrate lyase (Acly), andMe-1 proteins, in both fed

and fasted WT, but not in KO mice (Fig. 2F–J). In kidney and quadriceps

femorismuscle (QFM), it appeared thatCR slightly upregulatedexpression

of proteins involved in FA biosynthesis in WT, although this was

attenuated in KO (Fig. S2A–I, Supporting information). However, because

of variability causedby individual differences in protein expression, several

differences between these two mouse strains did not achieve statistical

significance and, therefore, represented only trends. In cardiac tissue, CR

did not upregulate expression of these proteins in either WT or KO

(Fig. S2J–M, Supporting information).

Srebp-1c was required for CR-associated activation of

mitochondrial biogenesis in WAT, but not in other tissues

In various reports, CR enhanced mitochondrial biogenesis in several

tissues (Nisoli et al., 2005; Finck & Kelly, 2006). Two long-lived strains, T
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FIRKO and b/b mice, showed, compared with WT mice, decreased

adiposity and enhanced mitochondrial biogenesis in WAT (Chiu et al.,

2004; Katic et al., 2007). To clarify the impact of Srebp-1c on CR-

enhanced mitochondrial biogenesis, we analyzed three mitochondrial

proteins, translocase of outer mitochondrial membranes 20 kDa

(Tom20), cytochrome c oxidase subunit 4 (Cox4), and sirtuin 3 (Sirt3).

CR did not increase expression of these proteins in the liver, kidney, QFM

or heart from either WT or KO (Fig. 3A–D and S3, Supporting

information). CR also did not increase citrate synthase (CS) activity in

those tissues from either strain (Fig. S4, Supporting information). In

contrast, in WAT, CR enhanced expression of these proteins, but this

effect was lower in KO than in WT (Fig. 3E–H). PPARc coactivator-1a
(Pgc-1a) plays a critical role in CR-associated mitochondrial biogenesis

(Anderson et al., 2008). In WAT, CR significantly upregulated expression

of Pgc-1a and Cox4 mRNAs in WT, but not in KO (Fig. 4A,B). Similarly,

CR increased mitochondrial DNA (mtDNA) content and CS activity in WT,

but not in KO (Fig. 4C,D). This suggested that CR enhanced mitochon-

drial biogenesis via Srebp-1c in WAT, but not in other tissues.

Srebp-1c enhanced mitochondrial biogenesis via

transcriptional activation of Pgc-1a

To further clarify the role of Srebp-1c in CR-associated metabolic

alterations within WAT, we examined protein expression in MEFs during

adipocyte differentiation, comparing those derived from KO (KO-MEFs)

and WT (WT-MEFs). First, to confirm whether MEFs of both genotypes

were equivalently differentiated to mature adipocytes, we analyzed

mRNA expression of two adipocyte differentiation markers, Pparg and

adiponectin. Expression of both genes was upregulated almost equally in

KO- and WT-MEFs (Fig. 5A,B). However, expression of proteins involved

in FA biosynthesis and mitochondrial biogenesis was significantly higher

in WT-MEFs than in KO-MEFs (Fig. 5C,D). Furthermore, expression of

Pgc-1a mRNA was markedly higher in WT-MEFs (Fig. 5E). Similarly,

elevation of both CS activity and mtDNA content was observed in WT-

MEFs, but not in KO-MEFs, during adipocyte differentiation (Fig. 5F,G).

These findings suggested that decreased levels of proteins involved in FA

biosynthesis and mitochondrial biogenesis in KO-MEFs resulted from

deletion of Srebp-1c, rather than from inhibition of adipogenesis.

To clarify effects of Srebp-1c on Pgc-1a transcription, we examined

whether Srebp-1c overexpression in Srebp-1c KO-MEFs would rescue

Pgc-1a mRNA expression levels. Indeed, overexpression of the mature

form of SREBP-1c rescued Pgc-1a mRNA expression, as well as the level

of Fasn mRNA (Fig. 5H). Because two sterol regulatory elements are

believed to bind to Srebp-1c, between �500 bp and 0 bp of the Pgc-1a
promoter, we examined whether CR increased Srebp-1 binding in the

Pgc-1a promoter region in WAT from rats. We used rats subjected to CR

for this experiment because sufficient quantities of WAT could not be

obtained from mice. Results from a chromatin immunoprecipitation

(ChIP) assay incorporating an antibody against Srebp-1 suggested that

more binding occurred in CR than in AL rats (Fig. S5, Supporting

information). As no specific antibodies against Srebp-1a or Srebp-1c are

currently available, we used ChIP to determine whether Srebp-1a or

Srebp-1c could occupy the Pgc-1a promoter region in WT- and KO-

MEFs. These results showed that SREBP-1c could directly activate

transcription of Pgc-1a and Fasn (Fig. 5I,J).

Srebp-1c was required for CR-associated suppression of

oxidative stress in WAT and for prolongevity effects

As CR generally suppresses oxidative stress (Song et al., 2014), we

evaluated two biomarkers of oxidative stress, aconitase activity and the

ratio of oxidized glutathione to reduced glutathione (GSSG/GSH). InWAT,

CR significantly increased aconitase activity and decreased the GSSG/GSH

ratio inWT, but not in KO (Fig. 6A,B).Moreover, CR increased total GSH in

WT, but had no effect on these levels in KO (Fig. 6C). c-Glutamylcysteine

synthetase (c-Gcs), a rate-limiting enzyme for GSH biosynthesis (Meister,

1991), was slightly upregulated by CR in WT, but not in KO (Fig. 6D).

Collectively, these findings suggested that CR suppressed oxidative stress

through regulation of GSH biosynthesis, which was mediated by c-Gcs
expression in a Srebp-1c-dependent manner. However, overexpression of

the mature form of SREBP-1c did not increase c-Gcs mRNA expression in

KO-MEFs (Fig. 6E), suggesting that SREBP-1c alone was insufficient to
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upregulate c-Gcs transcription. In liver tissue, CR did not significantly alter

aconitase activity, but it significantly reduced thiobarbituric acid-reactive

substances (TBARS) in both WT and KO (Fig. S6A,C, Supporting informa-

tion). This suggested that CR suppressed oxidative stress in a Srebp-1c-

independentmanner in the liver. In the kidney, QFM, and heart, CR did not

significantly improve either GSSG/GSH or TBARS (Fig. S6B, C, Supporting

information). Thus, Srebp-1c was specifically required for CR-associated

suppression of oxidative stress in WAT, but not in the other tissues.

Moreover,we examined the effects of Srebp-1c onCR-associated changes

in macrophage infiltration. Within WT and KO, CR markedly and

equivalently downregulated expression of macrophage markers, F4/80

and the proinflammatory cytokine monocyte chemoattractant protein-1

(Mcp-1) (Fig. 6F,G).

Finally, we analyzed distribution of the lifespan in the four groups.

They showed a linear relationship with a normal distribution (Fig. S7,

Supporting information). The slopes of these regression lines were

almost same among the four groups, whereas the order of their Y-

intercept values from large to small was as follows:

WTCR > WTAL > KOAL = KOCR. These results indicated that both CR

and KO probably altered longevity, although it could not be denied that

the power of this test was insufficient to explain the effects on lifespan

between WT and KO mice because of the extremely small number of

mice examined in this study. However, it was clear that CR predomi-

nantly affected WT (P = 0.029, by the log-rank test), because the

differences among KO groups (P = 0.464) were negligible (Fig. 6H).

Discussion

Previous reports demonstrated that expression of Srebp-1c and its

downstream target genes is upregulated and downregulated under fed

and fasting conditions, respectively, in both the liver and WAT (Horton

et al., 1998; Sekiya et al., 2007). However, we observed that CR
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WTAL-fed group (n = 4 per group). Values shown in all panels are means � SEM. *P < 0.05, **P < 0.01, ***P < 0.001 vs. AL, †P < 0.05, ††P < 0.01 and †††P < 0.001 vs.

WT, $P < 0.05 vs. fed, analyzed by Tukey’s test.
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enhanced expression of proteins involved in FA biosynthesis, via Srebp-

1c, in WAT, regardless of feeding condition. Moreover, CR upregulated

expression of Srebp-1c in the liver under both fed and fasting conditions,

but did not alter expression of FA biosynthesis proteins. Thus, CR-

associated changes in FA biosynthesis protein expression differed from

that of Srebp-1c in the liver. Further experiments will be required to

clarify these discrepancies and the differential responses to CR between

liver and WAT.

It was previously reported that the antiaging and prolongevity actions

of CR were attenuated in long-lived GH receptor (GHR) KO mice

(Bonkowski et al., 2006). Visceral fat removal elevated the respiratory

quotient in GHRKO mice, but had the opposite effect in WT mice

(Masternak et al., 2012). These observations suggested that WAT

derived from long-lived strains of mice, that is, good-quality WAT, can

increase whole-body lipid utilization. Recently, we proposed that Srebp-

1c-induced activation of FA biosynthesis is one of the major mechanisms

by which CR can remodel metabolism in WAT (Okita et al., 2012; Chujo

et al., 2013). Previous studies clearly demonstrated that CR significantly

enhanced whole-body lipid utilization and increased endogenously

synthesized FAs in WAT, but not in the liver (Bruss et al., 2010).

Therefore, we hypothesize that CR can induce, via Srebp-1c, a shift of

the substrate used for whole-body energy from carbohydrate to lipid.

In our study, we also demonstrated that Srebp-1c was responsible for

CR-associated activation of mitochondrial biogenesis and reduction of

oxidative stress in WAT, but not in the other tissues. These findings are

inconsistent with a previous report that CR enhanced mitochondrial

biogenesis in various tissues, including WAT and liver (Nisoli et al., 2005).

In contrast to that, however, certain reports suggested that CR did not

induce mitochondrial biogenesis or increase mitochondrial content

(Hempenstall et al., 2012; Lanza et al., 2012). Although the reasons

for these discrepancies are unclear, they might result from differences in

experimental conditions, including onset age or duration of CR, strain

backgrounds of mice, diet components, and housing environments.

Furthermore, it was reported that Pgc-1a was involved in CR-enhanced

mitochondrial biogenesis (Anderson et al., 2008). Our results indicated

that CR-enhanced mitochondrial biogenesis was caused by upregulation

of Srebp-1c expression to transcriptionally enhance Pgc-1a expression in

WAT. In support of this, Srebp-1c activated the PGC-1a promoter in

brown adipocytes (Hao et al., 2010). Our findings supported other

reports that multilocular adipocytes, which are characteristically similar

to brown adipocytes, were present in WAT in CR mice (Higami et al.,

2004). Moreover, it is likely that Srebp-1c is required for CR-associated

upregulation of c-Gcs gene expression and Sirt3 protein expression in

WAT. In contrast to Pgc-1a, c-Gcs transcripts were not directly and

sufficiently upregulated by Srebp-1c alone. Sirt3 can deacetylate several
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chemiluminescence method. Results for Tom20 (B, F), Cox4 (C, G), and Sirt3 (D, H) are each expressed as relative intensity of the indicated protein/CBB staining compared
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Pgc-1a (A) and Cox4 (B), in WAT from four groups of fed mice were analyzed by

real-time RT–PCR. Data were normalized against values for Tbp expression (n = 3–
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(CS) activity in WAT from four groups of fed mice was measured
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mitochondrial enzymes to activate their enzymatic activities (Rardin

et al., 2013). For example, in response to CR, Sirt3 activated superoxide

dismutase 2 (Sod2) (Qiu et al., 2010). Moreover, Sirt3 activated isocitrate

dehydrogenase 2 (Idh2), thereby increasing NADPH levels in mitochon-

dria, leading to suppression of oxidative stress (Someya et al., 2010).

Therefore, Srebp-1c-dependent upregulation of Sirt3 protein, as well as

enhanced GSH biosynthesis, may be vital for CR-associated suppression

of oxidative stress in WAT. In general, increased oxidative stress in WAT

can cause dysregulated production of adipokines. Additionally, increased

ROS production in WAT can lead to increased oxidative stress in the

blood, causing harmful events to occur in various other organs

(Furukawa et al., 2004). Certain genetically modified animals living

longer than controls were reported to exhibit activated mitochondrial

biogenesis in WAT (Chiu et al., 2004; Katic et al., 2007). The relation-

ship between oxidative stress and lifespan is still controversial. For

example, P�erez et al. (2009) found that the mice overexpressing Sod2,

which plays a major role in the detoxification of superoxide anions

generated in the mitochondria, did not have extended lifespan. On the
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Fig. 5 Srebp-1c enhanced mitochondrial biogenesis via transcriptional activation of Pgc-1a. (A, B) mRNA expression levels of adipocyte differentiation-related genes, Pparg

(A) and adiponectin (B), in WAT from four groups of fed mice were analyzed by real-time RT–PCR. Data were normalized against values for Tbp expression (n = 3). (C, D)

Example of immunoblot images showing expression of proteins involved in FA biosynthesis (C) and mitochondria (D) during adipocyte differentiation in primary MEFs derived

from WT and KO mice, respectively. (E) Representative gel image of RT–PCR showing expression of Pgc-1a genes in primary MEFs. (F) CS activity in MEFs from WT and KO

was measured spectrophotometrically at 412 nm. (G) Ratio of mitochondrial (COX2) vs. nuclear (b-globin) DNA in MEFs from WT and KO was obtained by real-time PCR

(n = 3). (H) Transfection of the mature form of Srebp-1c expression vector in KO-MEFs. The mRNA expression levels of Fasn and Pgc-1a were analyzed by real-time RT–PCR.
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same DNA–Srebp-1 antibody–transcription factor complex samples as for (I). Percent (%) input was calculated using the formula: 2(Ct [1% of input]�Ct [ChIP]). For ChIP assays,

IgG was used as a negative control. Experiments were each run twice, with similar results.
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other hand, Schriner et al. (2005) reported that the mice overexpressing

human catalase in the mitochondria, which catalyzes the decomposition

of hydrogen peroxide into oxygen and water, lived longer than control

mice (Schriner et al., 2005). These findings suggested that the inacti-

vation of mitochondrial hydrogen peroxide played an important role in

the extension of lifespan, while that of superoxide anions did not. In

other words, the effect on lifespan would be different depending on the

type of ROS. Therefore, we hypothesize that, particularly in WAT, CR-

associated metabolic remodeling, including enhanced lipid metabolism,

mitochondrial biogenesis activation, and decreased certain types of

mitochondrial oxidative stress, all regulated by Srebp-1c, may have

beneficial systemic effects, preventing age-associated pathophysiologies

and leading to lifespan extension (Fig. 6I).

It is widely accepted that adiponectin and leptin are anti-inflammatory

and proinflammatory adipokines, respectively (Ouchi et al., 2011). Trans-

genicmice overexpressing adiponectin in the liver live longer than controls

(Otabe et al., 2007), suggesting an important role for adiponectin in

promoting antiaging and longevity. In our study, plasmaadiponectin levels
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in KO were slightly higher than in WT. Particularly under AL fasted

conditions, these levels were significantly higher in KO than in WT. Our

datawere inconsistent with the beneficial phenotypes attributed to higher

adiponectin levels in other studies (Otabeet al., 2007). Plasmaadiponectin

is composed of amore functional highmolecular weight form (HMW) and

a less functional low molecular weight form (LMW) (Yamauchi &

Kadowaki, 2013). In KO mice, therefore, LMW, rather than HMW, might

be the dominant form of adiponectin. CR decreased plasma IGF-1 and

leptin levels in both WT and KO. Moreover, CR equivalently suppressed

macrophage infiltration in bothWT andKO. These findings suggested that

CR-associated depression of leptin levels was involved in suppressing

inflammation in a Srebp-1c-independent manner.

In this study, we demonstrated for the first time that Srebp-1c

orchestrated CR-associated and GH/IGF-1-independent regulation of

metabolic remodeling through effects on lipid metabolism, mitochon-

drial biogenesis, and oxidative stress in WAT. Upregulation of Srebp-1c

expression was found in the liver of obese mice (Ferr�e & Foufelle, 2010;

Kammoun et al., 2009). Liver-specific Srebp-1c transgenic mice showed

hepatic steatosis (Knebel et al., 2012), suggesting that Srebp-1c was

responsible for the pathogenesis of this condition. In the context of long-

term energy shortage, such as that induced by CR, Srebp-1c may induce

alteration of WAT function from an energy storage system to an energy

transducer capable of transforming glucose into energy-dense lipids.

Thus, Srebp-1c can act as both a FA biosynthesis-responsive factor in the

liver and a food shortage-responsive factor in WAT.

Experimental procedures

Animals

This study was conducted in accordance with provisions of the Ethics

Review Committee for Animal Experimentation at Tokyo University of

Science.

Srebp-1c+/� (B6; 129S6-Srebf1tm1Mbr/J) mice (Liang et al., 2002) were

purchased from Jackson Laboratory (Bar Harbor, ME, USA). Srebp-1c+/+

mice (WT) and Srebp-1c�/� mice (KO) were obtained by mating Srebp-

1c+/� mice and genotyping progeny by PCR. All mice were maintained

under specific-pathogen-free (SPF) conditions at 23 °C with 12-h light/

dark cycles in the Laboratory Animal Center at the Faculty of Pharma-

ceutical Sciences, Tokyo University of Science. Animals had access to

water and were fed a CR-LPF diet (Oriental Yeast, Tokyo, Japan). From

3 months of age, WT and KO were divided into two groups: One was fed

ad libitum (AL) and the other was calorie-restricted (CR; 70% of AL

energy intake, independently for each line). At 8–10 months of age, mice

that were group-housed were euthanized under anesthesia with

isoflurane inhalation (Mylan, Canonsburg, PA, USA). Prior to euthanasia,

mice in the CR and AL groups were further divided to receive two

treatments (fed or fasted) as follows. WTCR-fed and KOCR-fed groups

were provided with food 30 min before turning off the lights in the

evening and were sacrificed 1–3 h later. To evaluate the effects of

fasting, half of the CR mice were fasted overnight (approximately 20 h)

prior to sacrifice (WTCR-fast and KOCR-fast). Similar to CR mice, half of

the AL mice were sacrificed 20 h after removal of food from their cages,

which occurred when the lights were turned off (WTAL-fast and KOAL-

fast), while the other half were sacrificed without removing food (WTAL-

fed and KOAL-fed). When mice were euthanized, epididymal adipose

tissue (WAT), liver, kidney, quadriceps femoris muscle (QFM), and heart

samples were collected and weighed, as shown in Table S1.

Male 5- to 7-week-old Wistar rats and their husbandry care

and diet were as previously described (Okita et al., 2012), and their

use is described under additional experimental procedures in Data S1

(Supporting information). When the animals were euthanized,

epididymal WAT samples were collected. Tissues were immedi-

ately diced, frozen in liquid nitrogen, and stored at �80°C until

analysis. Blood samples were collected in 1.5-mL microtubes with

ethylenediaminetetraacetic acid (EDTA). After centrifugation (2500 9

g, 10 min, 4 °C), plasma samples were stored at �80 °C until

analysis.

Plasma biochemical analyses

Plasma glucose, insulin, adiponectin, and leptin levels were measured

by Autokit Glucose (Wako, Osaka, Japan), Mouse Insulin ELISA KIT (U-

type) (Shibayagi, Japan), Quantikine� ELISA Mouse Adiponectin/Acrp30

Immunoassay (R&D Systems, Minneapolis, MN, USA), and Quantikine�

ELISA Mouse/Rat Leptin Immunoassay (R&D Systems), respectively.

t-Cho, TG, and NEFA were measured with LabAssayTM Cholesterol

(Wako), LabAssayTM Triglyceride (Wako), and LabAssayTM NEFA (Wako),

respectively. All assays were performed according to the manufacturers’

protocols. Plasma 3-HB levels were measured by modification of a

previously reported method (Hansen & Freier, 1978). Briefly, plasma

was added to a reaction buffer, containing 80 mM Tris–HCl (pH 9.5)

and 4 mM b-NAD+, and incubated at 37 °C for 5 min. Reactions were

initiated by addition of 0.37 U mL�1 3-hydroxybutyrate dehydrogenase.

Changes in absorbance were measured for 10 min at 340 nm using a

SpectraMax Plus384 (Molecular Devices, Sunnyvale, CA, USA).

Preparation of MEFs, cell culture and adipocyte

differentiation

Male and female Srebp-1c+/� mice were crossed, and MEFs were

prepared from pregnant females. Each 13- to 15-day-old embryo was

dissected from the uterus and washed with PBS. After removal of the

head, tail, limbs, and blood-enriched organs, the remaining tissue was

washed with PBS, minced, and trypsinized at 37 °C for 10 min. After

inactivation of trypsin by adding fetal bovine serum (FBS; Sigma-Aldrich,

St. Louis, MO, USA), MEFs were separated by filtration through a cell

strainer. Cells were cultured and passaged in MEM High Glucose (Wako)

with 10% FBS, 1% penicillin and streptomycin (Sigma), and 0.1 lM 2-

mercaptoethanol (Sigma). To induce adipocyte differentiation, MEFs

were cultured until confluence. At confluence, maintenance medium

was changed to MEF differentiation medium, containing 500 lM 3-

isobutyl-1-methylxanthine (Sigma), 1 lM dexamethasone (Sigma),

10 lg mL�1 insulin (Sigma), and 100 lM troglitazone (Wako). The

differentiation medium was changed every other day and used for

quantitative real-time RT–PCR, Western blotting, and ChIP assay. KO-

MEFs were also infected with retrovirus expressing Srebp-1c.

Quantitative real-time RT–PCR

Total RNA was extracted from frozen WAT and liver tissue and

quantitative real-time PCR (qRT–PCR) was performed as described

previously (Chujo et al., 2013). The methods are briefly described

as additional experimental procedures in Data S1 (Supporting

information).

Construction of Srebp-1c expression vector

Mouse cDNA libraries were generated by reverse transcription of total

RNA from liver as described above. The coding region of the mature
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form of the Srebp-1c gene was amplified from mouse cDNA using the

following primers: forward primer 50-GTC GAC CAC CAT GGA ACA

AAA ACT CAT CTC AGA AGA GGA TCT GGA CTA CAA AGA CGA TGA

CGA CAA GGG AGC CAT GGA TTG CAC ATT TGA AGA-30 and reverse

primer 50- GTC GAC TTA GTG GTG GTG GTG GTG GTG CAG GGC CAG

GCG GGA G -30. PCR was performed using PrimeSTAR HS polymerase

(Takara, Japan) according to the manufacturer’s protocol. The PCR

product was ligated into a pBluescript II KS(+) digested with EcoRV.

The sequence of the insert was confirmed by DNA sequencing using

the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,

CA, USA) and a 3100 Genetic Analyzer (Applied Biosystems). The

insert was digested with EcoRI/Apa1 and subcloned into the same sites

of the modified expression vector, pMXs-AMNN-puro. This vector was

modified pMXs-puro (kindly provided by T. Kitamura, University of

Tokyo, Japan) by adding new restriction sites (ApaI, MluI, NruI, and

NspV) to the multiple cloning site (MCS) of an empty vector in our

laboratory.

Stable revertant of Srebp-1c

The Srebp-1c revertant was generated using retroviral infection. The

vectors, termed pMXs-AMNN-puro and pMXs-AMNN-puro-Srebp-1c

mature form, were transfected into Plat-E cells (kindly provided by T.

Kitamura, University of Tokyo, Japan) with FuGENE�6 (Promega,

Madison, WI, USA), according to the manufacturer’s protocol. Each

virus-containing culture supernatant was collected 2 d after transfection

and filtered through 0.22-lm filters (Millipore, Billerica, MA, USA). To

obtain stable cell lines, Srebp-1c KO-MEFs were incubated with virus-

containing medium for 2 days, followed by selection with 5 lg mL�1

puromycin for 5 days.

Protein extraction and Western blotting

Western blotting was performed as described previously (Okita et al.,

2012). The methods are briefly described as additional experimental

procedures in Data S1 (Supporting information).

Analysis of mitochondrial DNA (mtDNA) content and citrate

synthase activity

The mtDNA content and CS activity were measured as previously

described (Alp et al., 1976; Okita et al., 2012). The methods are briefly

described as additional experimental procedures in Data S1 (Supporting

information).

Chromatin immunoprecipitation (ChIP) assay for WAT and

MEFs

ChIP assays were performed as previously described with slight modi-

fications. The methods are briefly described as additional experimental

procedures in Data S1 (Supporting information).

Analysis of oxidative stress

Total glutathione (GSH + GSSG) and GSSG levels were measured as

previously described. Aconitase activity was measured with an Aconitase

Assay Kit (Cayman Chemical, Ann Arbor, MI, USA) according to the

manufacturer’s protocol. The methods are described as additional

experimental procedures in Data S1 (Supporting information).

Statistical analysis

Data were represented as means � SEM, and statistical significance was

determined with Student’s t-test for comparing two groups or Tukey’s

test for comparing more than two groups after the assessment of

significant differences by two- or three-way analysis of variance

(ANOVA). To compare survival distributions of AL and CR mice, the

log-rank test was applied. P values < 0.05 were considered statistically

significant.
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