Skip to main content
. 2017 May 5;8:803. doi: 10.3389/fmicb.2017.00803

Table 1.

Regulatory RNAs contributing to antimicrobial resistance or susceptibility through known mechanisms.

Small RNA Organism(s) Resistance and/or inducer Mechanism Reference
I. Attenuators and riboswitches
aac/aad Various species Aminoglycosides Riboswitch controlling translation of aminoglycoside acetyl- or adenyl-transferase genes Jia et al., 2013
bmrCD Bacillus subtilis Antibiotics targeting the ribosome Attenuator controlling transcription of bmrCD encoding an ABC transporter Reilman et al., 2014
cat Various species Chloramphenicol Attenuator controlling translation of chloramphenicol acetyltransferase genes Schwarz et al., 2004
cmlA Various species Chloramphenicol Attenuator controlling translation of chloramphenicol export genes Schwarz et al., 2004
ermC (A, B) Various species MLSB Attenuator controlling translation of ribosome methylase genes Ramu et al., 2009
ermK Bacillus spec. MLSB Attenuator controlling transcription of ribosome methylase genes Kwak et al., 1991
fexA Staphylococcus lentus Chloramphenicol, florfenicol Attenuator controlling translation of a chloramphenicol export gene Schwarz et al., 2004
lmo0919 Listeria monocytogenes Lincomycin Attenuator controlling transcription of an ABC transporter gene Dar et al., 2016
mef/mel (msR) Streptococcus Macrolides Attenuator controlling transcription of an operon encoding a MFS efflux pump (Mef) and an ABC transporter (Mel) Chancey et al., 2015
tetM Enterococcus faecalis Tetracycline Attenuator controlling transcription of the ribosomal protection gene tetM Su et al., 1992
tetQ Bacteroides Tetracycline Attenuator controlling translation of the ribosomal protection gene tetQ Wang et al., 2005
vmlR B. subtilis Lincomycin, virginiamycin M Attenuator controlling transcription of vmlR encoding an ABC transporter Ohki et al., 2005
II. Trans-encoded sRNAs
DsrA E. coli Oxacillin, erythromycin, novobiocin Overexpression provides resistance through upregulation of efflux pump MdtEF via RpoS Nishino et al., 2011
GcvB E. coli D-cycloserine GcvB provides resistance by repression of cycA, which is required for drug uptake Pulvermacher et al., 2009
GlmY, GlmZ E. coli, Salmonella GlmS inhibitors (Bacilysin, Nva-FMDP) Provide resistance via overproduction of GlmS Khan et al., 2016
MicF E. coli, Salmonella Cephalosporins, norfloxacin Deletion lowers and overexpression increases resistance through repression of ompF Kim et al., 2015
MgrR E. coli Polymyxin B MgrR mediates susceptibility by repressing synthesis of EptB, which modifies LPS Moon and Gottesman, 2009
RybB E. coli Epigallocatechin gallate (EGCG) EGCG activates expression of RybB, which down-regulates the biofilm regulator CsgD leading to inhibition of biofilm formation Serra et al., 2016
RyhB E. coli Colicin Ia RyhB mediates susceptibility by activation of synthesis of the colicin Ia receptor CirA Salvail et al., 2013
SdsR (RyeB) E. coli Ampicillin Ampicillin promotes mutations through repression of mutS by SdsR. Mutations may confer resistance Gutierrez et al., 2013
SdsR (RyeB) E. coli, Salmonella Quinolones, novobiocin, crystal violet Overexpression reduces resistance which is at least partially attributable to repression of tolC by SdsR Kim et al., 2015; Parker and Gottesman, 2016
SroC Salmonella Polymyxin B SroC contributes to resistance by downregulation of sRNA MgrR Acuna et al., 2016
SprX (RsaOR) Staphylococcus aureus Glycopeptides Overexpression reduces and deletion increases resistance. SprX acts by repression of spoVG. Eyraud et al., 2014
3′ETSleuZ E. coli Colicin Ia Contributes to resistance by lowering RyhB levels Lalaouna et al., 2015

MLSB, Macrolides, lincosamides, streptogramin B.