Table 1.
Small RNA | Organism(s) | Resistance and/or inducer | Mechanism | Reference |
---|---|---|---|---|
I. Attenuators and riboswitches | ||||
aac/aad | Various species | Aminoglycosides | Riboswitch controlling translation of aminoglycoside acetyl- or adenyl-transferase genes | Jia et al., 2013 |
bmrCD | Bacillus subtilis | Antibiotics targeting the ribosome | Attenuator controlling transcription of bmrCD encoding an ABC transporter | Reilman et al., 2014 |
cat | Various species | Chloramphenicol | Attenuator controlling translation of chloramphenicol acetyltransferase genes | Schwarz et al., 2004 |
cmlA | Various species | Chloramphenicol | Attenuator controlling translation of chloramphenicol export genes | Schwarz et al., 2004 |
ermC (A, B) | Various species | MLSB | Attenuator controlling translation of ribosome methylase genes | Ramu et al., 2009 |
ermK | Bacillus spec. | MLSB | Attenuator controlling transcription of ribosome methylase genes | Kwak et al., 1991 |
fexA | Staphylococcus lentus | Chloramphenicol, florfenicol | Attenuator controlling translation of a chloramphenicol export gene | Schwarz et al., 2004 |
lmo0919 | Listeria monocytogenes | Lincomycin | Attenuator controlling transcription of an ABC transporter gene | Dar et al., 2016 |
mef/mel (msR) | Streptococcus | Macrolides | Attenuator controlling transcription of an operon encoding a MFS efflux pump (Mef) and an ABC transporter (Mel) | Chancey et al., 2015 |
tetM | Enterococcus faecalis | Tetracycline | Attenuator controlling transcription of the ribosomal protection gene tetM | Su et al., 1992 |
tetQ | Bacteroides | Tetracycline | Attenuator controlling translation of the ribosomal protection gene tetQ | Wang et al., 2005 |
vmlR | B. subtilis | Lincomycin, virginiamycin M | Attenuator controlling transcription of vmlR encoding an ABC transporter | Ohki et al., 2005 |
II. Trans-encoded sRNAs | ||||
DsrA | E. coli | Oxacillin, erythromycin, novobiocin | Overexpression provides resistance through upregulation of efflux pump MdtEF via RpoS | Nishino et al., 2011 |
GcvB | E. coli | D-cycloserine | GcvB provides resistance by repression of cycA, which is required for drug uptake | Pulvermacher et al., 2009 |
GlmY, GlmZ | E. coli, Salmonella | GlmS inhibitors (Bacilysin, Nva-FMDP) | Provide resistance via overproduction of GlmS | Khan et al., 2016 |
MicF | E. coli, Salmonella | Cephalosporins, norfloxacin | Deletion lowers and overexpression increases resistance through repression of ompF | Kim et al., 2015 |
MgrR | E. coli | Polymyxin B | MgrR mediates susceptibility by repressing synthesis of EptB, which modifies LPS | Moon and Gottesman, 2009 |
RybB | E. coli | Epigallocatechin gallate (EGCG) | EGCG activates expression of RybB, which down-regulates the biofilm regulator CsgD leading to inhibition of biofilm formation | Serra et al., 2016 |
RyhB | E. coli | Colicin Ia | RyhB mediates susceptibility by activation of synthesis of the colicin Ia receptor CirA | Salvail et al., 2013 |
SdsR (RyeB) | E. coli | Ampicillin | Ampicillin promotes mutations through repression of mutS by SdsR. Mutations may confer resistance | Gutierrez et al., 2013 |
SdsR (RyeB) | E. coli, Salmonella | Quinolones, novobiocin, crystal violet | Overexpression reduces resistance which is at least partially attributable to repression of tolC by SdsR | Kim et al., 2015; Parker and Gottesman, 2016 |
SroC | Salmonella | Polymyxin B | SroC contributes to resistance by downregulation of sRNA MgrR | Acuna et al., 2016 |
SprX (RsaOR) | Staphylococcus aureus | Glycopeptides | Overexpression reduces and deletion increases resistance. SprX acts by repression of spoVG. | Eyraud et al., 2014 |
3′ETSleuZ | E. coli | Colicin Ia | Contributes to resistance by lowering RyhB levels | Lalaouna et al., 2015 |
MLSB, Macrolides, lincosamides, streptogramin B.