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Abstract The sophistication of the force fields, algorithms and
hardware used for molecular dynamics (MD) simulations of
proteins is continuously increasing. No matter how advanced
the methodology, however, it is essential to evaluate the appro-
priateness of the structures sampled in a simulation by compar-
ison with quantitative experimental data. Solution nuclear
magnetic resonance (NMR) data are particularly useful for
checking the quality of protein simulations, as they provide
both structural and dynamic information on a variety of tem-
poral and spatial scales. Here, various features and implications
of using NMR data to validate and bias MD simulations are
outlined, including an overview of the different types of NMR
data that report directly on structural properties and of relevant
simulation techniques. The focus throughout is on how to
properly account for conformational averaging, particularly
within the context of the assumptions inherent in the relation-
ships that link NMR data to structural properties.

Keywords Molecular dynamics . Nuclear magnetic
resonance . Protein . Biomolecular simulation

Introduction

In order to understand the function and malfunction of
proteins, it is essential to characterise not only their structure
but also their dynamics. Biomolecular simulation is an ex-
tremely valuable tool for probing these at a detailed molec-
ular level, uniquely allowing direct visualisation. It can

suffer, however, from limited force field accuracy and in-
sufficient sampling. Because of this, it is important to check,
and, if necessary, improve the relevance of, the structures
sampled during a simulation by comparing back-calculated
experimentally measurable quantities with experimental da-
ta. Nuclear magnetic resonance (NMR) data is particularly
useful for such comparisons because it reports on both
structure and dynamics, although this information can be
encoded in a complex manner.

The focus here is on the use of solution NMR data to
validate the ensembles of structures produced by molecular
dynamics (MD) simulations of proteins using atomic-level
force fields, and to bias such simulations towards structures
that are in keeping with the data. Whilst solid state NMR
data have recently been utilised for protein structure deter-
mination and refinement (Castellani et al. 2002; Andronesi
et al. 2005; Siemer et al. 2005; Manolikas et al. 2008; Van
Melckebeke et al. 2010), a field in which many of the
principles and techniques discussed here are also relevant,
these topics are outside the scope of this article.

This review begins by considering the average nature of
NMR data, followed by an outline of the relationships that
link NMR observables to structural properties of proteins.
Subsequently, the use of NMR data to validate MD simu-
lations of proteins is discussed, including factors that affect
the agreement between back-calculated and experimental
observables. Different means of restraining or biasing sim-
ulations to fit NMR data are then described and evaluated.
The article ends with a summary of the state of the art, and
some thoughts on future developments.

Averaging of NMR data

An important property of NMR data is that they are ensemble-
averages over the potentially different conformations of the
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many molecules present in the experiment, and time-averages
over motions that occur faster than the chemical shift difference
or the inverse of the coupling constant, depending on the type
of NMR experiment (Bryant 1983). This averaging has impor-
tant consequences when NMR data are interpreted in terms of
structural properties, particularly for mobile or disordered
states.

The ensemble of different structures sampled by the
many molecules present over the duration of the exper-
iment can be thought of in terms of distributions of
values of the structural properties, such as dihedral
angles or inter-nuclear distances, that are related to
NMR observables as outlined in Section 3. These dis-
tributions may or may not be correlated to one another.
Each value of the structural property in the distribution
may give rise to a different value of the related NMR
observable; it is the average value of the NMR observ-
able that is measured in an experiment. Because of this,
the most naive structural interpretation of an NMR
observable in terms of a single value of a structural
property back-calculated from the averaged observable
is only appropriate if the molecule is rigid (Fig. 1).
Reconstruction of the distributions of structural proper-
ties, and therefore the ensemble of structures, from the
averaged NMR observables is a non-trivial problem, as
the relationships linking NMR observables to structural
properties are often multiple-valued and non-linear (see
Section 3). An advantage of using MD simulations to

interpret NMR data is that the shape of the underlying
distribution of structural properties described by the data
does not have to be assigned a priori as it does when
using analytical models. Properly accounting for confor-
mational averaging remains difficult, however, and is
therefore discussed throughout this review.

Relating NMR data to protein structure

In order to compare MD simulations with NMR data,
the value of the NMR observables Q must be calculated
from the Cartesian coordinates of the protein r or vice
versa. In principle, Q can be calculated from r using
quantum-chemical methods (Oldfield 2002; Bühl and
van Mourik 2011), but the accuracy that can currently
be reached is rather low because a number of approx-
imations must be made due to the expense of the
calculations (Mulder and Filatov 2010; Frank et al.
2012). This also renders such calculations too expensive
to carry out “on the fly” during an MD simulation.
Therefore, protein structure is generally related to ob-
servable quantities according to semi-empirical, approx-
imate functions Q(r) and their inverses. These
relationships are outlined and discussed below for com-
monly used NMR observables that provide three main
types of structural information: distance, angular, and
orientational (Fig. 2).
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Fig. 1 The combined effect of conformational averaging and the non-
linear and multiple-valued relationships linking NMR observables to
structural properties. Upper row four different distributions of inter-
nuclear distances rij and (dashed lines) the corresponding (red) linearly,
(blue) r−3 and (green) r−6 averaged distances. All four distributions
have the same r−6 average (0.227 nm) upon which PREs and many
NOEs depend, and are therefore indistinguishable at the level of the
NMR observable. Lower row three different distributions of values of a

dihedral angle 8 and (rightmost graph) the Karplus relation for the 8
angle of the protein backbone (Pardi et al. 1984). All three distributions
give rise to the same average 3J-value (5.45 Hz, red dashed line in
rightmost graph) and thus are indistinguishable at the level of the
NMR observable. (Rightmost graph, green dashed line) the four dihe-
dral angle values that would be predicted from a 3J-value of 5.45 Hz
without allowing for conformational averaging
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Distance information

Short-range distances up to approximately 0.6 nm are
obtained from nuclear Overhauser effects (NOEs), the
transfer of spin polarisation between nuclei through
space via cross-relaxation (Wüthrich 1986). Generally,
only semi-quantitative distance information is extracted
from NOESY spectra using the isolated spin pair ap-
proximation (ISPA)

rij ¼ rref
aref
aij

� ��1=x

; ð1Þ

where rij is the distance between two nuclei i and j, aij
is the cross-peak intensity or volume and x0−3 if
internal structural fluctuations are significantly faster
than the tumbling time of the molecule, or −6 otherwise
(Tropp 1980). aref is a reference intensity corresponding
to an inter-nuclear distance rref that is known due to
internal geometry; these serve to calibrate the conver-
sion. This approach assumes that the mixing time τm is
short, so that the NOE buildup is approximately linear,
and that internal motion is negligible. In practise, these
expectations are not always met. A short mixing time
also limits the effects of spin diffusion (Kalk and
Berendsen 1976), one of the major causes of inaccuracy
in NOE-derived distances (Keepers and James 1984). In
most cases, spin diffusion leads to enlarged NOE

intensities and, therefore, under-estimated inter-nuclear
distances. A complete description of spin diffusion can
only be obtained with a full relaxation matrix formal-
ism, which is computationally very intensive. Neverthe-
less, several approaches are available for correcting
NOE-derived distance restraints for spin diffusion
effects during iterative structure refinement (Marion et
al. 1987; Boelens et al. 1988; Yip and Case 1989;
Borgias and James 1990; Borgias et al. 1990; Post et
al. 1990; Edmondson 1992; Leeflang and Kroon-
Batenburg 1992; Linge et al. 2004), although these are
typically not used in the analysis or biasing of MD
simulations.

Distances obtained using Eq. 1 are applied with large
tolerances to account for the many sources of uncertainty
mentioned above. Often, only an upper bound on the inter-
nuclear distance is used, with the sum of the van der Waals
radii of the two nuclei involved acting as a proxy for the
lower bound. The use of conservative bounds compensates
for alteration of cross-peaks by spin diffusion or partial
overlap, as well as other possible sources of error. Alterna-
tively, the NOE intensities may simply be sorted into a few
groups based on relative peak intensities, with weak, medi-
um and strong intensities corresponding to short, medium
and long distances. The upper bounds on the distance for
each group are chosen based on cross-peaks stemming from
pairs of protons for which the distance can reasonably be
estimated, such as those identified as being in regular sec-
ondary structure elements according to chemical shift data
or a priori structural knowledge. Upper bounds can also be
estimated from the maximum distance for which an NOE
cross-peak is expected to be observed (0.5−0.6 nm). Whilst
a single NOE-derived distance is relatively imprecise, this is
compensated for by the large numbers of NOEs typically
measured.

In certain cases, such as large proteins or disordered
states, long-range distance information may be desirable.
Distances in the range 1.2−2.0 nm can be obtained from
paramagnetic relaxation enhancement (PRE) experiments,
which exploit the change in the relaxation rate of a nuclear
spin induced by the presence of a distant paramagnetic
group (Solomon 1955; Gillespie and Shortle 1997; Battiste
and Wagner 2000; Donaldson et al. 2001; Clore and Iwahara
2009). The paramagnetic relaxation enhancement is quanti-
fied by the ratio of the intensities of the cross-peaks with the
paramagnetic group present and absent (diamagnetic state),
Ipara/Idia. From this, the paramagnetic relaxation rate Rsp

2

can be determined by fitting (Gillespie and Shortle 1997;
Battiste and Wagner 2000)

Ipara
Idia

¼ R2 exp �Rsp
2 t

� �
R2 þ Rsp

2

� � ; ð2Þ

Fig. 2 The types of structural information obtained from the NMR
observables introduced in Section 3: dashed lines short-range NOE-
derived distances, curved arrow dihedral angle 8 reported on by
3JHNCαHα-couplings and heavy line the orientation of the N–H bond
vector relative to the molecular frame specified by an alignment tensor
A attainable from RDCs. The protein atoms are coloured according to
type: cyan carbon, blue nitrogen, red oxygen and white hydrogen
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where t is the total INEPT delay time and R2 is the intrinsic
relaxation rate, usually estimated from the half-height line-
width in the diamagnetic state. The electron–proton distance
is then calculated according to

−
ð3Þ

where ωH is the Larmor frequency of the proton, τc is the
correlation time of the electron–proton vector and K is a
combination of physical constants.

The number of PRE-derived distances obtained is limited
by the need to include a paramagnetic centre, which typi-
cally requires the creation of many artificial constructs with
paramagnetic labels attached. Moreover, the presence of the
label must be accounted for when inferring and utilising the
inter-nuclear distances.

Angular information

Information regarding dihedral angles spanned by three
covalent bonds or the geometry of hydrogen bonds is pro-
vided by through-bond 3J-couplings. These are usually re-
lated to the molecular geometry using the Karplus relation:
(Karplus 1959)

3J θð Þ ¼ A cos2θþ B cosθþ C; ð4Þ
where θ is the torsion or hydrogen bond angle and A, B and
C are empirical parameters. More complex relationships
have also been proposed (Haasnoot et al. 1979; Haasnoot
et al. 1981; Imai and Osawa 1990; Suardıaz et al. 2007;
Schmidt 2007). The constants A, B and C are generally
estimated by fitting 3J-values measured for molecules
whose dihedral angle values are presumed to be known.
More sophisticated fitting methods such as Bayesian infer-
ence have also been used (Habeck et al. 2005). Efforts have
been made to incorporate the effects of dynamics and aver-
aging into the parameters by self-consistent fitting (Schmidt
et al. 1999; Pérez et al. 2001) and by deriving the parameters
from ensembles of structures obtained from MD simulations
(Brüschweiler and Case 1994; Lindorff-Larsen et al. 2005b;
Vögeli et al. 2007), but such parameters are not necessarily
transferable. When the Karplus relation is used, its approx-
imate form and parameters mean that 3J-couplings should be
interpreted with an uncertainty of at least ±1 Hz (Allison and
van Gunsteren 2009; Steiner et al. 2012). The multiple-
valued nature of this relationship further complicates the
extraction of angular information, as a single 3J-value can
be compatible with up to four dihedral angle values (see
Fig. 1, lower right graph). Whilst this degeneracy can, in
some cases, be resolved by the measurement of 3J-couplings
between different sets of atoms spanning a given dihedral

angle (Smith et al. 1991; Schwalbe et al. 2001; Allison and
van Gunsteren 2009), for dihedral angles in mobile parts of
a protein such as loops or side-chains, the analytical deri-
vation of angular information remains extremely difficult.

Dihedral angle information can also be extracted from the
chemical shifts of the protein nuclei, albeit indirectly. Al-
though chemical shifts are influenced by a wide array of
structural properties (Wagner et al. 1983; Osapay and Case
1991; Williamson and Asakura 1993; Case 1995; Wishart et
al. 1991, 1995), the dependence of Cα and Cβ chemical shifts
on the backbone ϕ and ψ dihedral angles (Pastore and Saudek
1990; Spera and Bax 1991; de Dios et al. 1993) is routinely
used to infer protein secondary structure (Spera and Bax 1991;
Wishart et al. 1991, 1992; Cornilescu et al. 1999; Peti et al.
2001; Yao et al. 2001;Wang and Jardetzky 2002; Eghbalnia et
al. 2005; Marsh et al. 2006; Shen et al. 2009). There is no
simple analytical relationship linking chemical shifts to pro-
tein structure. Methods for calculating chemical shifts using
quantum mechanics are improving, but remain too slow to be
applicable during simulations (Mulder and Filatov 2010;
Frank et al. 2012). A number of fast empirical methods for
calculating chemical shifts approximately have been devel-
oped (Xu and Case 2001; Neal et al. 2003; Meiler 2003; Shen
and Bax 2007; Kohlhoff et al. 2009; Shen and Bax 2010; Han
et al. 2011; Nielsen et al. 2012), although even these state-of-
the-art programs often result in errors much larger than the
deviation between back-calculated and experimental chemical
shifts (Kjaergaard and Poulsen 2012), and so should be used
with caution.

Orientational information

One source of orientational information is residual dipolar
couplings (RDCs) (Tjandra and Bax 1997; Blackledge
2005) between bonded or non-bonded pairs of nuclei. Mea-
surement of RDCs requires the protein to be partially
aligned with respect to the magnetic field direction (Bax
2003). Various alignment media have been developed for
this task (Sanders et al. 1994; Tjandra and Bax 1997; Clore
et al. 1998; Hansen et al. 1998; Sass et al. 1999. 2000;
Koenig et al. 1999; Tycko et al. 2000). Partial alignment
prevents complete isotropic rotation of the protein, which
would average the couplings to zero, but allows sufficient
rotation to reduce the dipolar couplings to manageable
magnitudes.

RDCs are related to the angle θ between an inter-nuclear
vector rij and the direction of the magnetic field, as well as
the length of the inter-nuclear vector rij , according to:

RDC ¼ � g ig jμ0h

8p3
3cos2θ� 1ð Þ

2r3ij

* +
mol;time

; ð5Þ

where γi and γj are the gyromagnetic ratios of the two
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nuclei, μ0 is the magnetic permeability of vacuum and h is
Plancks constant. The inter-nuclear distance rij is usually
assumed to be constant when i and j are bonded, consistent
with the constraint of bond lengths in classical atomic-level
force fields.

In order to simplify the interpretation of RDCs, the
alignment of the protein with respect to the magnetic
field is often separated from its internal structure. If the
protein is assumed to be rigid, Eq. 5 can be factorised
into structural and orientational components by using an
alignment tensor, A (Saupe 1968), to describe the non-
isotropic alignment of the protein, represented by the
molecular frame, and defining the orientation of the
inter-nuclear vector with respect to the molecular frame
(Blackledge 2005):

RDC ¼ � g ig jμ0h

8p3
X
a2x;y;z

X
b2x;y;z

Aab
cosðz ij;aÞ cosðz ij;bÞ

r3ij
ð6Þ

where ζij,α is the angle between rij and the α-axis of the
molecular frame, and the nine components, five of
which are independent, of the alignment tensor are
given by Aab ¼ 3=2 cosxacosxb

� �
, with ξα the angle be-

tween the α-axis of the molecular frame and the magnetic
field direction. The alignment tensor encompasses averaging
over different orientations of the protein. Whilst some have
averaged the angles ζij,α over the trajectory prior to fitting A
(Markwick et al. 2009), this is not strictly correct, as the
derivation of Eq. 6 depends on the assumption that the
molecule is rigid. Averaging of ζij,α also requires superposi-
tion of the structures, which cannot be done sensibly if the
protein undergoes large-scale structural changes during the
simulation. Thus, although the use of an alignment tensor
greatly simplifies the extraction of structural information
from RDCs, the assumptions inherent in its use are not
always appropriate. This is particularly pertinent for proteins
that are partially or entirely disordered, but even small
fluctuations may be sufficient to perturb the alignment
(Louhivuori et al. 2007), although such fluctuations appear
to be largely uncorrelated with the changes in alignment
(Louhivuori et al. 2006). Even when it is appropriate to
use an alignment tensor, the extraction of structural infor-
mation from RDCs is not trivial, due to the degeneracy and
non-linearity of Eqs. 5 and 6.

Validation of MD simulations with NMR data

Comparison of the values of NMR observables back-
calculated from and averaged over an ensemble of structures
generated by an MD simulation to experimental data allows

assessment of both the quality of the structures and the
extent of sampling. There are two important points to con-
sider in making such a comparison, however.

Firstly, because there are almost always fewer NMR
observables Nobs than degrees of freedom of a protein Ndf,
conformational averaging must be accounted for, and the
relationships linking observables to structural properties are
non-linear and/or multiple-valued, it is likely that many
different ensembles of structures can fit the experimental
data equally well on average. There are many documented
examples of this (Glättli and van Gunsteren 2004; Dolenc et
al. 2010; Missimer et al. 2010; Allison et al. 2011, 2012;
Eichenberger et al. 2012; Niggli et al. 2012), including
several in which the majority of the NMR data are equally
compatible with the folded or unfolded states (Daura et al.
1999, 2001; Peter et al. 2003; Zagrovic and van Gunsteren
2006). This insensitivity of NMR observables to the shape
of the underlying probability distribution of structural prop-
erties has been demonstrated analytically (Bürgi et al. 2001)
and is illustrated in the upper panel of Fig. 1. If it is possible
to use multiple experimental techniques to measure different
observables that report on the same or related structural
features, but are subject to different types of averaging, then
these can be combined to give more information about the
shape of the underlying distribution (Choy et al. 2002;
Allison et al. 2009). In general, combining many different
datasets to maximise the amount of experimental informa-
tion is a useful tactic, but is only strictly appropriate if the
data were measured at the same or very similar thermody-
namic state points.

A further concern is the extent of sampling of different
conformations. In the limits of an infinitely long simulation,
all possible conformations will occur with a relative proba-
bility given by the Boltzmann distribution. In practice, how-
ever, the length of a simulation is finite and often rather
short in comparison to the time-scale encompassed by NMR
data. The latter depends on the experiment and on the field
strength (Fig. 3). Whilst the length of MD simulations of
proteins has increased by several orders of magnitude from
the 9.2 ps of the first MD simulation of a protein in 1976
(McCammon et al. 1977), with ns and even μs time-scales
now routinely accessible, and ms simulations possible with
specialised hardware (Shaw et al. 2009), still longer simu-
lations may be needed for comparison with RDCs and
chemical shifts, as well as to obtain statistically good sam-
pling of faster motions. Indeed, earlier studies utilising
shorter simulation times mostly, although not always (Phil-
ippopoulos et al. 1997), found reasonable agreement with S2

order parameters, which report on ps–ns motions of bond
vectors (Fig. 3), but sometimes struggled to reproduce NMR
data averaged over longer time-scales (Brüschweiler et al.
1992; Chandrasekhar et al. 1992; Koerdel and Teleman
1992; Palmer and Case 1992; Eriksson et al. 1993; Smith
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et al. 1995a, b; Nanzer et al. 1997). Even in more recent
studies, the agreement with experimental data is often worst
for residues in loops or disordered regions (Wrabl et al. 2000;
Tong et al. 2009); in some cases, these regions are simply
excluded from the analysis (Showalter and Brüschweiler
2007).

Further evidence that longer simulations are required is the
typically better agreement with experimental data obtained for
small systems such as peptides, for which longer simulations
have been possible for some time (Trzesniak et al. 2005). Only
with the recent construction of ANTON, a massively parallel
supercomputer purpose-built for carrying out MD simulations,
has it become tractable to run ms-length MD simulations of
proteins (Shaw et al. 2009). As well, extensive parallelisation of
MD codes (Plimpton 1995; Phillips et al. 2005) and use of
GPUs (Schmid et al. 2010; Stone et al. 2010; Brown et al.
2011) have opened up the possibility of conducting hundreds of
ns or even μs simulations routinely even without access to
supercomputers. Early results from a 1.2 μs simulation of
ubiquitin showed that simultaneous consideration of all, rather
than solely internal, motions reduced the discrepancies between
calculated and experimental S2 values (Maragakis et al. 2008).
More recently, a 200 μs high-temperature simulation aimed at
sampling the disordered state of Acyl-CoA-binding protein
(ACBP) gave reasonable agreement with experimental NMR
relaxation rate data (Lindorff-Larsen et al. 2012b), although the
radius of gyration was smaller than the experimental value
despite the elevated temperature, and comparison with the
PRE-derived distances available for this protein (Teilum et al.
2002) was not made.

Despite being two orders of magnitude longer than
previous simulations, the aforementioned simulation of
ACBP was not converged, giving some indication of
the lengths of simulations that will be required to

characterise disordered states and other systems in
which large-scale conformational motions are expected.
Such long simulation times are required because of the
low probability of crossing the high energy barriers that
can exist between different conformations that co-exist
or interconvert during an NMR experiment. One possi-
ble means of counteracting this is to simultaneously run
multiple independent simulations of the same protein
starting from randomly selected different conformations.
So long as the starting conformations are sufficiently
different to allow access to all barrier-separated regions
of the potential energy surface, averaging over the
resulting pooled ensemble of structures should give
better agreement with experimental data. This was
shown to be the case for NMR data including RDCs,
although not 3J-couplings across hydrogen bonds (Lange
et al. 2010). In a similar way, enhanced sampling meth-
ods such as replica exchange (Fawzi et al. 2008) also
result in improved agreement with experimental data.

Another means of visiting more regions of conformation-
al phase space and crossing barriers that looks to be partic-
ularly promising is accelerated molecular dynamics (AMD)
(Hamelberg et al. 2004). The potential energy landscape is
smoothed by raising the low-energy regions, resulting in
accelerated exchange between low-energy conformations
whilst retaining the essential details of the landscape. The
acceleration level is chosen according to reproduction of
experimental data, and the resulting ensemble of structures
is reweighted such that the correct canonical Boltzmann
distribution is obtained. Due to the acceleration procedure,
the time-scale of the motions sampled using AMD is not
known explicitly, and can only be inferred indirectly by
comparison with the time-scale of the NMR data to which
the ensembles of structures are compared. Somewhat

Fig. 3 The degree of protein
conformational motion
associated with the time-scales
encompassed by the different
types of NMR observables dis-
cussed here. Note that the scale
on the time axis is logarithmic
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remarkably, given the range of time-scales associated with
different types of NMR data (Fig. 3), ensembles of structures
obtained at the RDC-optimal acceleration level also reproduce
experimental 3J-couplings and order parameters (Markwick et
al. 2009) or chemical shifts (Markwick et al. 2010).

A further potential source of discrepancy between back-
calculated and experimental NMR data is the quality of the
force field. Newly accessible long simulations of proteins are
allowing detection of shortcomings in force fields that were not
visible in shorter simulations (Klepeis et al. 2009) or in the
simulations of small molecules usually used for force field
parametrisation (Lindorff-Larsen et al. 2012a). Eight different
force fields (Mackerell et al. 1998, 2004; Kaminski et al. 2001;
Duan et al. 2003; Mackerell 2004; Hornak et al. 2006; Best and
Hummer 2009; Lindorff-Larsen et al. 2010; Piana et al. 2011)
were recently used to run 10-μs simulations of ubiquitin and
GB3 (Lindorff-Larsen et al. 2012a). Four of the most recent
variants produced ensembles of structures in very good
agreement with experimental NMR data including 3J-
couplings, RDCs and S2 order parameters. The key change
responsible for the improved agreement with experimental
data appears to be modification of the backbone potential, as
many other studies using the same and other force fields
refined in this way have also shown good agreement with
experimental NMR data including 3J-couplings, RDCs and
chemical shifts (Hornak et al. 2006; Buck et al. 2006;
Showalter and Brüschweiler 2007; Showalter et al. 2007;
Markwick et al. 2007; Trbovic et al. 2008; Li and Brüschweiler
2009; Schmid et al. 2011; Beauchamp et al. 2012; Robustelli
et al. 2012).

It cannot be excluded that uncertainty introduced by the
use of approximate relationships Q(r) could be causing
some of the disagreement between back-calculated and ex-
perimental data. For instance, 3J-couplings calculated using
density functional theory rather than the Karplus relation
(Eq. 4) from 500 ps simulations agree better with experi-
mental data than those calculated from the X-ray or NMR
model structures, despite the short length of the simulations
(Markwick et al. 2002). It is likely, however, that limited
sampling and force field inaccuracy play the most signifi-
cant roles. A means of overcoming both of these problems
simultaneously is to restrain or bias simulations to fit exper-
imental data, as outlined in the next section. Effectively, the
force field is adjusted to favour structures that agree with the
experimental data and the sampling is directed towards these
structures.

Biasing MD simulations to fit NMR data

To drive simulations to sample areas of conformational space
that are in agreement with experimental data, a restraining
function V restr (r(t)) that penalises deviation from the

experimental data is added to the physical interaction function
t e r m V phys rðtÞð Þ : V pot rðtÞð Þ ¼ V restr rðtÞð Þ þ V phys rðtÞð Þ.
Conventional restraining terms are harmonic:

V restr
i rðtÞð Þ ¼ 1

2
K restr
i ¼ f obsi � f calci rðtÞð Þ� �2

; ð7Þ

whereKrestr
i is a user-defined force constant, f obsi is the value of

the i th observable measured experimentally or the
corresponding structural property and f calci rðtÞð Þ is the value
of the observable or structural property back-calculated from
the simulation. The more f calci rðtÞð Þ deviates from f obsi the
larger the energy penalty and the resulting forces on the
protein. The force constantKrestr

i allows tuning of the strength
of the restraint, providing a means of accounting for experi-
mental or other uncertainty.

Various modifications of Eq. 7 are possible (Fig. 4). In
many applications, the penalty function becomes linear

when Δfi ¼ f obsi � f calci rðtÞð Þ�� �� is large to prevent excessive

forces. The restraint potential may be made “flat-bottomed”
by only enforcing the restraint potential ifΔfi is greater than
some threshold value. This is another useful means of ac-
counting for uncertainty in the experimental data or in the
relationship that converts between observables and structur-
al properties. For NOE-derived distances, a half-harmonic
potential is typically used, so that only distances larger than
f obsi are penalised.

Either the experimental observable or the related struc-
tural property may be restrained. In either case, relationships
such as those outlined in Section 3 are used to convert
between structural properties and experimental observables,
thus any inaccuracies or uncertainties in the nature or para-
metrisation of these relationships cannot be escaped. If the
relationship is highly non-linear, a small change in the
protein coordinates can have a large impact on the value
of the back-calculated observable. For multiple-valued rela-
tionships, such as the Karplus relation (Eq. 4), restraining
the structural property is only appropriate in cases where
additional information exists indicating that only one of the
multiple values is possible and specifying which value it is.
For both non-linear and multiple-valued relationships, the
restraining potential energy landscape is likely to be rugged,
and specialised sampling techniques may be required.

The issues discussed at the start of Section 4 mean that
restrained simulations tread a fine line between over- and
under-fitting. Over-fitting occurs when the restraints are too
stringently enforced (see Section 5.1), whereas under-fitting
occurs when Ndf≫Nobs (Bonvin and Brünger 1995), such
that many different ensembles of structures fit the data
equally well. A means of checking for under-fitting is
cross-validation (Brünger 1992, 1993; Brünger et al.
1993), in which the reproduction of “free” data not used as
restraints, which may comprise completely independent data
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or a randomly excluded subset of the restraint data, as
well as of the restraint data, is assessed. Satisfaction of
the restraints generally improves with more degrees of
freedom, whereas reproduction of the free data becomes
worse.

Instantaneous restraining

The most basic restraining method is instantaneous
restraining, in which a single copy of the protein is
required to fit all of the data simultaneously at each
point in time. Whilst this method is widely used, par-
ticularly in protein structure determination, it ignores the
average nature of NMR data. Even if a protein only
samples two different conformations, the structure pro-
duced by enforcing the restraints on a single copy will
not only be irrelevant, but may well be physically
impossible (Kessler et al. 1988). The rarity of examples
in which instantaneous restraining fails simply high-
lights the lack of NMR data relative to the number of
degrees of freedom (Nobs≪Ndf). Additionally, data per-
taining to mobile regions are often omitted. Given that a
special feature of NMR data is that they can be mea-
sured for dynamic states, it is desirable to account for
conformational averaging in the restraining methodolo-
gy. There are two possible means of doing so:
ensemble-averaging (Scheek et al. 1991; Kemmink et
al. 1993; Bonvin et al. 1994; Mierke et al. 1994) and
time-averaging (Torda et al. 1989, 1990).

Ensemble averaging

In ensemble-averaged restraining, multiple independent rep-
licas are simulated in parallel. At each integration step, the
quantity to be restrained is back-calculated from each repli-
ca and then averaged over the Nrep replicas before compar-
ison with the experimental value:

f calci rðtÞð Þ ¼ 1

N rep

XN rep

k¼1

f calci;k rðtÞð Þx
	 
1=x

: ð8Þ

The value of x depends on the type of data and whether the
observable or the related structural property is restrained.
For 3J-couplings, the non-linearity is already accounted for
by use of the Karplus relation to back-calculate the
couplings from the protein coordinates, so x01, whereas
for NOE- and PRE-derived distances, which are structural
properties, x0−3 or −6.

Ensemble-averaging accounts, to some extent, for the
average nature of NMR data, although the number of repli-
cas can never be as large as the number of different con-
formations over which the measured NMR data are
averaged, because of the limited amount of experimental
data. Averaging over too many replicas results in under-
fitting, where the ensemble is primarily determined by the
force field. A more elaborate version of ensemble-averaging
that attempts to correct for this is the MUMO method
(Richter et al. 2007), in which each type of data can be
restrained across a different number of replicas. This
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Fig. 4 Examples of the types of potential functions used to restrain or
bias MD simulations to fit experimental data. Upper row, left to right a
harmonic potential (f obsi is shown as f for clarity), a harmonic potential
that becomes linear when Δfi ¼ f obsi � f calci rðtÞð Þ�� ��>Δf , a "flat-
bottomed" harmonic potential that does not penalise deviations of less
than Δf from f obsi and a half-harmonic potential as used for NOE-
derived distances. Lower row, left-hand side potentials from (black) the
torsional term of a force field and (red) a harmonic 3J-value restraint
acting on a dihedral angle 8. Lower row, right-hand side two sets of
local elevation end-point potentials from simulations biased to fit

multiple types (shown in black, red, green and blue) of 3J-values
reporting on the same dihedral angle. Left a case in which even
allowing for conformational averaging, it is not possible to find a set
of dihedral angle values in keeping with all four 3J-values, so that the
local elevation potentials clash with one another and continue to build
throughout the simulation. Right a case where after an initial build-up
period in which the dihedral angle is biased towards values that on
average satisfy the data, the potentials remain static for the remainder
of the simulation (Allison and van Gunsteren 2009)
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provides a means by which to represent the different time-
and spatial-scales over which each type of data are aver-
aged, but thus far MUMO has only been used in simulated
annealing-based structure refinement (Richter et al. 2007;
Fenwick et al. 2011).

A further problem with ensemble-averaging is that, al-
though the structures sampled in each individual trajectory
will be correctly Boltzmann-weighted, the ensemble of
structures drawn from the different trajectories over which
the average is calculated at each point in time is not neces-
sarily Boltzmann-weighted. A possible solution to this in
which the probability of each replica was treated as a pa-
rameter in the simulation was explored, but found to suffer
from a number of drawbacks of its own (Fennen et al. 1995).

Despite the aforementioned issues, ensemble-averaging has
been used to generate ensembles of structures representative of
the dynamics of folded proteins (Hess and Scheek 2003; Best
and Vendruscolo 2004; Clore and Schwieters 2004; Lindorff-
Larsen et al. 2005a; Clore and Schwieters 2006; De Simone et
al. 2009; Robustelli et al. 2010), the variability of the
transition-state for folding (Vendruscolo et al. 2001; Paci et
al. 2002, 2004; Lindorff-Larsen et al. 2004), molten-globule
(Paci et al. 2005) and disordered states (Dedmon et al. 2005;
Kristjansdottir et al. 2005; Francis et al. 2006; Allison et al.
2009; Esteban-Martín et al. 2010) of proteins, the conforma-
tional equilibrium between major substates (Camilloni et al.
2012) and transiently populated excited states (Robustelli et al.
2010) using NMR and other types of experimental data.

Time-averaging

Another means of accounting for the average nature of
NMR data is time-averaging (Torda et al. 1989, 1990,
1993; Bonvin et al. 1994). A single copy of the protein is
simulated, and an exponentially-weighted time-average is
compared to the experimental observable:

f calci rðtÞð Þ ¼ 1

t
1

1� exp t=tð Þ

�
Z t

0
exp � t � t0

t

� �
f calci r t0ð Þð Þdt0; ð9Þ

where τ is the memory relaxation time. In this way, more

recent structures contribute most to the average, avoiding

f calci rðtÞð Þ becoming less sensitive to instantaneous fluctua-
tions for increasing values of t (Scott et al. 1998). Time-
averaging is computationally more efficient than ensemble-
averaging, as only a single copy of the protein needs to be
simulated. However the time-scale encompassed by the
average is generally much shorter than the time-scale over
which the experimental data were averaged, with τ typically
on the order of 5–10 ps. This means that the structures

contributing to the time-average are likely to be highly
correlated, in comparison to ensemble-averaging, where
each replica is independent. Thus, whilst time-averaging is
efficient at capturing fluctuations up to the time-scales of the
averaging time (Hess and Scheek 2003), ensemble-
averaging may be a better approach when multiple rather
different conformations contribute to the average, as it
allows them to co-exist simultaneously (Fennen et al. 1995).

One problem with time-averaging is that f calci rðtÞð Þ lags
behind f calci rðtÞð Þ, thus even if the current conformation of
the protein is in keeping with the experimental data, the
time-average will not be and the protein will continue to
experience a restraining force. This issue is particularly
important in the case of 3J-values. Alternative functional
forms for the restraint term have been proposed to overcome
this problem. One possibility is to use a biquadratic restrain-
ing function (Scott et al. 1998; Christen et al. 2007):

V restr
i rðtÞð Þ

¼ 1

2
Krestr
i f obsi � f calci rðtÞð Þ

	 
2
f obsi � f calci rðtÞð Þ� �2

:

ð10Þ
In this way, the energy penalty will be zero if either

f calci rðtÞð Þ or f calci rðtÞð Þ agrees with f obsi .
Rather than weight the time-average and instantaneous

values equally, an elliptic restraining function, incorporating

a linear combination f calci rðtÞð Þ and f calci rðtÞð Þ with relative
weights specified by the mixing parameter Aell ∈ [0 . . . 1],
may be used (Scott et al. 1998):

V restr
i ðrðtÞÞ ¼ 1

2
Krestr
i Aell f calci ðrðtÞÞ þ ð1� AellÞ f calci ðrðtÞÞ � f obsi

h i2
ð11Þ

This method allows the relative weights of f calci rðtÞð Þ and
f calci rðtÞð Þ to be adjusted by the user.

The particular characteristics of inversion of the Karplus
relation inspired further adaptation of the restraining func-
tion specifically for 3J-couplings by introduction of an
oscillating factor cos2(ωrestrt) that scales the torsion angle
potential function V tors

i of the dihedral angle associated with
the ith 3J-coupling as well as the restraining function V restr

i

for a period trestr ¼ p
wrestr (Keller et al. 2007). The oscillating

factor is switched on when the average 3J-value deviates
more than a certain threshold ΔJ from the experimental
value, temporarily scaling down the potential energy for
the dihedral angle, allowing it to escape from local minima.

A related method is local elevation biasing (Christen et
al. 2007), based on the local elevation enhanced searching
method (Huber et al. 1994). The simulation is driven away
from structures that do not fit the experimental data by
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adding Gaussian functions to a biasing coordinate, usually
the structural property related to the NMR observable. For
3J-couplings, for example, the biasing coordinate is the
dihedral angle θ upon which the couplings report. The range

of values of θ is divided into Nle bins with midpoints θ0i;k. At

each step, Gaussian functions centered on θ0i;k are added if

f calci rðtÞð Þ and f calci rðtÞð Þ do not match f obsi :

V le
i;k rðtÞð Þ ¼ K le

i wθi:k rðtÞð Þ

� exp � θi rðtÞð Þ � θ0i;k

	 
2
=2 Δθ0

� �2� �
: ð12Þ

K le
i is typically orders of magnitude lower than the force

constants used in Eqs. 7, 9, 10 and 11. The weight of the kth

penalty term wθi;k rðtÞð Þ is calculated according to

wθi;k rðtÞð Þ ¼ t�1
Z t

0
dθi r t0ð Þð Þθ0i;kV biq

i r t0ð Þð Þdt0; ð13Þ

where V biq r t0ð Þð Þ is calculated in the same manner as V restr
i

rðtÞð Þ in Eq. 10 and δ is

dθi rðtÞð Þθ0i;k

¼ 1 if θ0i;k �Δθ0=2 � θi rðtÞð Þ < θ0i;k þΔθ0=2
0 otherwise:

�
ð14Þ

Local elevation biasing greatly enhances sampling and has
been shown to produce superior agreement with experi-
mental data comprising side-chain 3J-couplings compared
to conventional instantaneous and time-averaged biqua-
dratic restraining methods (Christen et al. 2007; Allison
and van Gunsteren 2009; Dolenc et al. 2010; Missimer et
al. 2010).

Conclusions

The speed, accuracy and length of MD simulations of pro-
teins have increased markedly over the years, but it remains
essential to check the quality of the structures produced and
the extent of sampling by comparison with quantitative
experimental data. Solution NMR provides a number of
observables that can be directly linked to structural proper-
ties of proteins and that encompass dynamics on different
time-scales. Modern force fields produce ensembles of
structures that, on the whole, agree reasonably well with
NMR data, particularly when enhanced sampling methods
are used. The recent advent of specialised hardware and
highly parallelised software capable of simulations of sim-
ilar lengths to the time-scales encompassed by NMR data
has revitalised the field whilst revealing that there is still
work to be done. The alternative, biasing or restraining MD
simulations to fit experimental data, has also undergone

much development over the years, with methods that in-
clude enhanced sampling methods showing particular prom-
ise. Such methods will always be limited, however, by the
need to balance over- and under-fitting.

In the future, the deficiencies in atomic-level protein
force fields that are beginning to be exposed by the longer
simulations now possible need to be addressed. One possi-
ble means of doing so is to utilise the memory of the
alterations made to the potential energy surface to improve
the agreement between back-calculated and experimentally-
measured observables when using techniques such as AMD
and local elevation to guide the modification of force field
terms. This will involve carrying out such simulations and
comparisons with experimental data for a wide range of
different proteins, however, to ensure that any changes made
to force fields are not specific to a particular system. It
would also be desirable to see measurement of more NMR
data to improve the ratio of Nobs/Ndf , allow conformational
motion to be better accounted for, and increase the potential
for cross-validation. Finally, increasing computer power and
parallelisation should allow more accurate, perhaps even
quantum-chemical, relationships between experimental
observables and structural properties to be routinely applied
for macromolecules such as proteins.
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