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Abstract Integrins are ubiquitously expressed cell surface
receptors that play a critical role in regulating the interaction
between a cell and its microenvironment to control cell fate.
These molecules are regulated either via their expression on
the cell surface or through a unique bidirectional signalling
mechanism. However, integrins are just the tip of the
adhesome iceberg, initiating the assembly of a large range of
adaptor and signalling proteins that mediate the structural and
signalling functions of integrin. In this review, we summarise
the structure of integrins and mechanisms by which integrin
activation is controlled. The different adhesion structures
formed by integrins are discussed, as well as the mechanical
and structural roles integrins play during cell migration. As the
function of integrin signalling can be quite varied based on
cell type and context, an in depth understanding of these
processes will aid our understanding of aberrant adhesion
and migration, which is often associated with human pathol-
ogies such as cancer.
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Introduction

The local environment surrounding a cell plays an important
role in maintaining normal cellular homeostasis as well as

influencing cell fate. Cells create these environments by lay-
ing down extracellular matrix (ECM) components to support
the development of various tissue types. Integrins are ubiqui-
tously expressed in all metazoan cell types and are key medi-
ators of interactions with other cells or the surrounding ECM.
As such, integrins can influence a wide variety of cellular
phenotypes, including adhesion, migration, proliferation, sur-
vival, differentiation, mechano-sensing and cytoskeletal orga-
nisation, thereby implicating integrins in processes such as
tissue development and repair, angiogenesis, immune re-
sponse and haemostasis. Consequently, deregulation of
integrin signalling is associated with various pathological
processes, including autoimmunity, inflammation and cancer.
In this review we first summarise the structural aspects of the
integrin α- and β-subunits, heterodimer regulation, activation
and affinity for both intra- and extracellular ligands and then
we describe the mechanical functions of integrins, such as
their role during cell adhesion and migration.

Integrin structure

The integrin family contains 18 α- and eight β-subunits that
bind noncovalently to form 24 distinct αβ integrin
heterodimers with each β subunit binding several α-
subunits. The α- and β-subunits are both type I transmem-
brane receptors and share structural similarities, such as a large
extracellular domain, a single transmembrane domain and a
cytoplasmic tail (Xiao et al. 2004).

α-Subunit

The mammalian integrin α-subunits can be grouped
according to whether or not they contain an inserted (I)
domain (‘αI’ domain). The αI domain is a 200-amino acid
region that shares similarity with the von Willebrand factor
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‘A’ domain and contains a metal ion-dependent adhesion site
(MIDAS) that forms the ligand recognition component of
these receptors (Lee et al. 1995). Integrin α-subunits contain-
ing this insertedαI domain are the collagen receptors (α1,α2,
α10 and α11) and the leukocyte receptors (αE, αL, αM, αD
and αX) (Heino 2007; Popova et al. 2007; Rose et al. 2007).
The α-subunits that lack the αI domain are classified into four
subfamilies based on their evolutionary lineage. The first is
the laminin receptors (α3, α6 and α7), also known as the PS1
cluster due to their evolutionary similarity to the drosophila
PS1 proteins (Gotwals et al. 1994). These receptors pair
predominantly with β1 and are required for tissue integ-
rity in organs such as muscle, kidney and skin. The
second subgroup is the Arg-Gly-Asp (RGD) sequence
receptors (αIIb, αv, α5 and α8), also known as the PS2
cluster due to their structural similarity to drosophila PS2
proteins. These α-subunits form heterodimers with β1
and β3 subunits and bind ECM ligands that contain
RGD sequences, such as fibronectin or latent transforming
growth factor-beta (Munger et al. 1999). A third sub-
group, known as PS3, is only found in invertebrates,
specifically in insects (Huhtala et al. 2005). The fourth
and final subgroup is known as the α4/α9 cluster and
comprises the α4 and α9 subunits. These α-subunit pairs
with the β1 and β7 subunits and share similar ligands to
the α-subunits containing the αI domain, such as vascular
cell-adhesion molecules (VCAMs) and intercellular adhe-
sion molecules (ICAMs), soluble ligands in blood, such as
fibrinogen and complement, or pathogens (Vlahakis et al.
2005, 2007).

The structure of the α-subunit consists of a seven-bladed
β-propeller domain which forms the head, a thigh domain,
two calf domains, a single transmembrane domain and a short
cytoplasmic tail (Fig. 1). When present, the αI domain in α-
subunits forms the major ligand-binding site and is inserted
between β-sheets 2 and 3 in the β-propeller (Xiong et al.
2001, 2004).

β-Subunit

The integrin β-subunits can be classified into three phyloge-
netic branches: vertebrate group A, vertebrate group B and the
invertebrate group. Group A contains the β1, β2 and β7
domains while group B consists of the β3–β6 and β8 do-
mains (Huhtala et al. 2005). Despite some similarities, the
structural composition of the β-subunit is more complex
compared to that of the α-subunit. The β-subunit also con-
tains a βI domain that is homologous to the inserted αI
domain found in the α-subunits. This highly conserved region
of about 240 residues also contains two additional sections
that either play a role in ligand binding—the specificity-
determining loop—or in forming a critical interface with the
β-propeller of the α-subunit (Huang et al. 2000; Xiong et al.

2001). The βI domain also contains a MIDAS site similar to
the αI domain, and this site is important in mediating ligand
binding to negatively charged amino acid residues. In addition
to the MIDAS site, the βI domain contains two other metal
ion-binding sites called the adjacent metal ion-dependent ad-
hesion site (ADMIDAS) and the synergistic metal ion-binding
site (SyMBS) (Xiao et al. 2004). The βI domain functions to
either bind ligands directly in integrins lacking the inserted αI
domain or to regulate the binding activity of α-subunits con-
taining the αI domain (Xiong et al. 2001; Xiao et al. 2004).

The structure of each β-subunit consists of a head region, a
stalk/leg section, a transmembrane (TM) domain and a cyto-
plasmic tail. The head region is composed of a βI domain,
which is inserted into a hybrid domain that attaches to the
plexin–semaphorin–integrin (PSI) domain (Fig. 1). This is
followed by the β-subunit stalk/leg section that contains
four cysteine-rich integrin epidermal growth factor-like (I-
EGF) modules, before the β-ankle TM domain and a
cytoplasmic tail (Shi et al. 2005; Zhu et al. 2008). Both
the α- and β-cytoplasmic tails have no actin-binding or
enzymatic activity and instead act as a hub for adaptor
protein complex assembly (Zhu et al. 2008). Interestingly,
the β-tails are more highly conserved that the α-tails and
are the primary moderator of intracellular ligand interac-
tions. They contain a phosphotyrosine-binding (PTB) do-
main which consists of a membrane proximal NPxY motif
and a membrane distal NxxY motif (‘x’ represents any
amino acid) (Calderwood et al. 2003). This PTB domain
is important for binding multiple integrin adaptor proteins,
in particular kindlin and talin. In this regard, the β-tails
function as a hub for the ‘adhesome’ interactions that help
mediate ‘outside–in’ signalling (Zaidel-Bar et al. 2003).

Heterodimer conformational changes—integrin activation
models

Integrin activation involves major conformational changes
between the integrin α- and β-subunit, with these changes
representing different stages of integrin activation. Three
phases of integrin activation have been proposed, with each
reflecting the level of affinity of integrin heterodimers for their
cognate ligand, as depicted by different conformational states
(Fig. 1). These phases are (1) inactive, i.e. bent with a closed
headpiece (low affinity); (2) active, i.e. extended with a closed
headpiece (high affinity); (3) ligand occupied, i.e. extended
with an open headpiece (Xiong et al. 2001, 2002; Shimaoka
et al. 2003; Xiao et al. 2004). At the present time, two models
are proposed to describe the process of integrin activation: the
‘deadbolt’ model and the ‘switchblade’ model (Xiong et al.
2003; Luo et al. 2007). The ‘deadbolt’ model proposes that
integrin activation and extension occur after ligand binding,
whereas the ‘switchblade’ model suggests that ligand binding
only occurs once the integrin heterodimer is in the active
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extended conformation (Takagi et al. 2001; Beglova et al.
2002; Shimaoka et al. 2002). Debate is still ongoing on which
model is correct although the ‘switchblade’ model is the most
widely adopted despite examples still existing of integrin
activation occurring while in the bent or partially bent confor-
mation (Adair et al. 2005; Arnaout et al. 2007).

Integrin regulation

Integrin expression

The regulation of integrins can occur via many different
mechanisms, one of which is through the regulation of
integrin expression. The number of integrin receptors
displayed on the cell surface often does not correlate with
expression levels of integrins as the production of α- and β-
subunits may not be balanced (Heino et al. 1989). For

example, the αv and β1 subunits are often produced in abun-
dance relative to other subunits (Sheppard et al. 1992), possi-
bly due to their ability to promiscuously pair with multiple α-
and β-subunits. The pairing of integrin with their binding
partners to form heterodimers occurs in the endoplasmic re-
ticulum (ER), and only intact heterodimeric αβ integrins
appear on the surface of the cell. Excess unpaired α- or β-
subunits are retained in the ER and degraded (Johnson et al.
2009). This strategy limits the pairing combination of α- and
β-subunits and is dynamically regulated such that the compo-
sition of integrins at the cell surface can be quickly altered
(Johnson et al. 2009).

Bidirectional signalling

Integrins are unique when compared with other TM receptors
in their ability to signal bidirectionally. This is partly how they
derive their name—by integrating the extracellular and

Fig. 1 Integrin structure and
activation model. a Schematic of
the domain structure of theα- and
β-subunit. b The model of
integrin heterodimer activation
from resting to ligand occupied.
EGF Epidermal growth factor,
PSI plexin–semaphorin–integrin
domain
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intracellular environments, either by binding ligands outside
the cell or signalling molecules and cytoskeletal components
inside the cell (Hynes 1992, 2002). This bidirectional signal-
ling influences the adhesiveness of integrins for their ligands
via two mechanisms, namely ‘inside–out’ and ‘outside–in’
signalling (Kim et al. 2003). This dynamic control of integrin
receptor affinity for their cognate ligands is used to carefully
regulate the function of these receptors.

Inside–out signalling involves an internal signal binding to
the cytoplasmic tail of integrins, which then promotes confor-
mational changes in the heterodimer and influences the affin-
ity of integrin for its ECM ligand (Takagi et al. 2001;
Vinogradova et al. 2002). Both the TM domains and cyto-
plasmic tails play a role during inside–out signalling. The TM
domains exist in a coiled-coil structure in the resting or inac-
tive state, and this structure keeps the integrin α- and β-
subunits in close proximity (Gottschalk 2005). Separation of
these TM domains is a prerequisite for integrins to enter the
active state. The function of the cytoplasmic tails during
integrin activation is to facilitate the binding of integrin adap-
tor proteins, such as talin and kindlin, via NxxY motifs
(Calderwood et al. 1999). Upon adaptor protein binding, the
cytoplasmic tails separate along with the TM domains, which
destabilises the tail–head interface and facilitates the ‘switch-
blade’-like opening, causing the hybrid domain to swing out
and integrin to enter the high-affinity or active conformation
(Takagi et al. 2002; Vinogradova et al. 2002; Xiao et al. 2004;
Luo et al. 2007). In this ‘active’ extended conformation with
open headpiece, integrins are able to bind extracellular li-
gands, which further stabilises the integrin heterodimer and
eventually leads to integrin clustering, intracellular kinase
recruitment and activation of downstream signalling pathways
(Luo et al. 2007).

Outside–in signalling, on the other hand, involves
integrin binding to ECM ligands to induce conformational
changes first, followed by integrin clustering and the
assembly of large intracellular adhesion complexes
(Arnaout et al. 2005; Chen et al. 2006; Zhu et al. 2007).
Protein tyrosine phosphorylation is an important event in
outside–in signalling and is mediated through Src and
FAK family protein tyrosine kinases (Arias-Salgado
et al. 2003, 2005; Jiang et al. 2003; Cluzel et al. 2005).
Src family kinases (SFKs) and their inhibitor Csk are
permanently bound to integrin β-tails, but upon ligand
binding, Csk dissociates to facilitate SFK activation and
recruitment of tyrosine phosphatases (Arias-Salgado et al.
2005). Interestingly, mutational studies of β-tails have
revealed that SFK binding to integrin tails is not required
for inside–out signalling and, conversely, mutation of the
talin binding motif in β-tails does not affect the initiation
of outside–in signalling by SFKs, thus providing func-
tional distinction between these two integrin signalling
processes (Arias-Salgado et al. 2005).

Integrin activation states

Expression of integrins in an inactive state comprises another
level of integrin regulation and normally occurs when integrin
activation results in detrimental effects if initiated in the wrong
context. For example, the fibrinogen receptors on platelet
cells—αIIbβ3 integrin—are constantly exposed to fibrinogen
in the blood; however, as their activation results in platelet
aggregation and thrombosis they must be kept in the inactive
state unless blood vessel injury occurs. Inappropriate activa-
tion of these integrins results in pathologies, such as bleeding
disorders (Shattil and Ginsberg 1997; Shattil and Newman
2004; Petrich et al. 2007). The β2 integrin subfamily found in
leukocytes and T cells are also expressed in the inactive state
(Scharffetter-Kochanek et al. 1998; Baker and Koretzky
2008). Upon activation by cytokines, these receptors bind
their ligands and facilitate adhesion to facilitate inflammation,
cytotoxic killing, phagocytosis or lymphocyte recruitment
(Rosenkranz and Mayadas 1999). The ligands of leukocyte-
specific integrins comprise the immunoglobulin superfamily
of counter-receptors, such as ICAMs, found on the endothelial
cells that make up blood vessel walls. Human pathologies due
to deficient β2 integrin activation in leukocytes result in
recurring bacterial infections and wound healing defects, col-
lectively known as leukocyte adhesion deficiencies (Abram
and Lowell 2009). αIIbβ3 integrin and β2 integrin are both
examples of integrins that predominantly exist in the inactive
state, however, α6β4 and α3β1 are two examples of integrins
that are generally active and form components of
hemidesmosomes or link the ECM to the actin cytoskeleton,
respectively (Carter et al. 1990; Xia et al. 1996; DiPersio et al.
1997; Hodivala-Dilke et al. 1998). Using these different acti-
vation states, integrins can regulate the biophysical properties
of cells to respond to injury or infection or provide positional
identity to a cell through cell–ECM or cell–cell adhesion.

Integrin ligands and downstream integrin binding
partners

Integrin ligands

The different pairing combinations of α- and β-subunits de-
termine integrin ligand specificity. Interestingly, as a number
of integrin heterodimers can bind the same ligands, both the
regulation of integrin expression and activation and ligand
availability are important factors in determining integrin func-
tion. Thus, integrin-mediated intracellular signalling is depen-
dent on a variety of factors, such as the type of integrin
heterodimer involved and the nature and mechanical proper-
ties of the ECM ligand. In addition, integrins also participate
in signalling ‘crosstalk’, where in addition to the activation of
their own downstream signalling cascades, they interact with
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and regulate the activation of growth hormones or G-protein
coupled receptor-induced signalling pathways. Integrin li-
gands consist of either (1) ECM ligands, such as glycoproteins
that make up the ECM or (2) non-ECM ligands such as
molecules on the surface of other cells. ECM ligands can
comprise collagen, laminins, fibronectin and proteoglycans
(e.g. chondroitin sulfate and keratan sulfate) and are secreted
by cells to create their extracellular niche (Humphries et al.
2006). Non-ECM ligands include counter-receptors (ICAMs
and VCAMs), plasma proteins (fibrinogen and von
Willebrand factor), complement factors, cytokines and patho-
gens (viruses, bacteria and toxins) (Laurie et al. 1982;
Humphries et al. 2006).

The binding of integrins to extracellular ligands can be
clustered into four main groups of integrin–ligand combina-
tions, and these groups are based on the structural nature of the
molecular interaction. The first group consists of RGD-
binding integrins that recognise ligands containing an RGD
tripeptide active site. These integrins are the most promiscu-
ous in the family as they bind to a large number of extracel-
lular and soluble ligands. The second group comprises LDV-
binding integrins that bind to an acidic amino acid motif
(referred to as ‘LDV’), which is similar and functionally
related to the RGD motif. It is postulated that these LVD
ligands bind integrin in a similar fashion as RGD ligands.
The third group is the A-domain β1 integrins, which com-
prises α-subunits containing the inserted αI domain that pair
with β1 integrins to form a specific subfamily of laminin/
collagen-binding receptors. The fourth group is the non-αA-
domain-containing laminin-binding integrins, which is com-
posed of α-subunits that lack the inserted αI domain and pair
with β1 integrins to form specific laminin receptors
(Humphries et al. 2006). Integrins can also bind to a number
of other ligands (for review, see van der Flier and Sonnenberg
2001; Humphries et al. 2006).

Downstream integrin binding partners

Integrin cytoplasmic tails are relatively short (β-tails are 40–
60 amino acids long) and have no catalytic activity, so they
recruit and bind a number of accessory proteins with catalytic
activity and scaffold or structural function. Analysis of the
sequence of β-integrin tails has revealed three ‘hot-spots’ or
regions that represent preferred binding sites for adaptor pro-
teins. The first of these hot-spots is a membrane proximal
HDRK motif, which has been shown to bind paxillin, FAK
and Fyn (Schaller et al. 1995; Reddy et al. 2008). The second
and third hot-spots are the membrane distal NxxY and the
membrane proximal NPxY motifs (Calderwood et al. 2003).
These second and third motifs bind to adaptor proteins that
contain PTB domains, such as talin, kindlin 1, kindlin 2 and
Shc (Calderwood et al. 2002; Kloeker et al. 2004; Shi et al.
2007). The binding of talin to β-integrin tails via its

structurally conserved PTB-like domain results in the separa-
tion of the α and β cytoplasmic tails and subsequent integrin
activation (Wegener et al. 2007; Wegener and Campbell
2008).

Once recruited to integrin tails, adaptor proteins form
structures that are collectively referred to as focal adhesions
(FA) that are responsible for facilitating the signalling and
mechanical properties of integrins. As many proteins can bind
to the cytoplasmic tails of integrins and the composition of
proteins bound to integrins influences the signalling pathways
which integrins activate, post-translational modification of the
integrin tails is a mechanism used to regulate protein binding.
For example, serine/threonine phosphorylation of integrin
tails by kinases, such as ERK2, AKT, protein kinase C
isoforms and PDK1, can regulate the binding of adaptor
proteins such as 14-3-3 isoforms and filamin to influence cell
phenotypes (Freed et al. 1989; Hibbs et al. 1991; Kirk et al.
2000; Calderwood et al. 2001; Han et al. 2001; Fagerholm
et al. 2005; Lerea et al. 2007).

Integrin adaptor proteins can be loosely grouped into three
categories based on their function, namely, (1) adaptors that
have catalytic activity, (2) adaptors that have a structural
function and (3) adaptors that form scaffolds for other adap-
tors to interact and bind with. There is sometimes functional
overlap within these three categories with some focal adhesion
proteins playing a role in two or sometimes three of these
categories depending on the context. These adaptors usually
contain identifiable folded protein domains, such as LIM,
PTB, pleckstrin homology (PH), Src homology 2 (SH2) and
Src homology 3 (SH3). Catalytic adaptors are responsible for
communicating the signal from adhesion sites into the correct
downstream signalling pathway and include Src, integrin
linked kinase (ILK) and focal adhesion kinase (FAK)
(Schaller et al. 1995; Hannigan et al. 1996; Chen et al. 2000;
Ahmed et al. 2002; Eliceiri et al. 2002; Pasquet et al. 2002;
Arias-Salgado et al. 2003; Arias-Salgado et al. 2005).
Structural adaptors, which include filamin, tensin, α-actinin
and talin, bind F-actin and form a direct link between integrins
and the actin cytoskeleton (Otey et al. 1993; Calderwood et al.
1999, 2001, 2003). Scaffold adaptors, such as paxillin,
kindlin-2 and -3 and 14-3-3 proteins, provide binding sites
with which other focal adhesion proteins interact (Han et al.
2001; Fagerholm et al. 2005; Ma et al. 2008; Moser et al.
2008). For a detailed review of adaptor proteins that bind β-
integrin cytoplasmic tails, the reader is referred to Legate and
Fässler (2009). Collectively the composite of all the proteins,
such as kinases, phosphatases and proteases, known to interact
with integrins to assemble into FAs are loosely termed the
integrin ‘adhesome’ (Zaidel-Bar et al. 2007).

Integrin adaptor proteins function to link integrin to the
actin and microtubule cytoskeletal network, which helps
integrins to modulate the regulation and organisation of the
cytoskeleton. This in turn can influence cell behaviour
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induced by intracellular signals, such as cell cycle progression
via ERK and cyclin D1, cell survival via PI3K and AKT or
morphology, polarity and motility moderated via protein ty-
rosine kinases, phosphatases and members of the Ras and Rho
family of small GTPases (Kirk et al. 2000; Ahmed et al. 2002;
Jaffe and Hall 2005; Legate and Fässler 2009). The use of
genetic deletion studies has helped to further elucidate the role
of these integrin adaptor proteins which link integrin to the
cytoskeleton and are involved in signal transduction, such as
talin, α-actinin, vinculin, paxillin, FAK, ILK and p130 (Ilic
et al. 1995; Monkley et al. 2000; Hagel et al. 2002; Sakai et al.
2003). These deletion studies also enable the mechanism of
integrin signalling to be delineated. For example, ILK deletion
in the mammary gland recapitulated the integrin deletion
phenotype, whereas removal of FAK in the same system had
no effect (Naylor et al. 2005; Akhtar et al. 2009).

In addition to the positive regulators of integrin signalling,
there are a growing number of molecules being identified that
inhibit integrin activation (Bouvard et al. 2013). Filamin,
DOK1, ICAP1, SHARPIN and MDGI bind the cytoplasmic
tails of integrins to prevent interactions with integrin-
activating molecules, such as Talin. SHARPIN and MDGI
bind to α-subunits, while filamin, DOC1 and ICAP1 bind to
specific β-subunits through interactions with the NPxY and
NxxY motifs. These integrin inactivators likely contribute to
the regulation of integrin recruitment to adhesions, adhesion
maturation and turnover. For instance, ICAP1 and SHARPIN
associate with integrins in membrane ruffles—but outside of
adhesion sites—thereby perhaps facilitating integrin transport
around the cell surface, while preventing unwanted adhesions
forming (Rantala et al. 2011; Fournier et al. 2002). In osteo-
blasts, loss of ICAP1 has been found to impair maturation of
fibrillar adhesions and to result in reduced fibronection depo-
sition (Brunner et al. 2011). Together, the combination of
positive and negative regulators of integrin structural and
signalling functions enables integrins to control many cell
phenotypes, including adhesion and migration.

Mechanical functions of integrins: mechanisms
of integrin-mediated adhesion and migration

Integrin-mediated adhesion

Results from the initial studies investigating integrin-mediated
adhesion and migration led to the hypothesis that integrin
activation simply occurred when an integrin receptor came
into contact with its correct ligand. The functional diversity of
the integrin family with 24 distinct αβ heterodimers, all with
different ligand affinities, implied that activation and the
strength of this interaction would be based on the affinity for
that particular integrin with its ligand. Early studies using
platelet models on integrin receptors, such as αIIbβ3,

originally indicated this process occurred through passive
diffusion, i.e. integrin passing by its ligand led to activation
and subsequent adhesion and migration (Shattil and Ginsberg
1997). However, the presence of glycocalyx, an extracellular
substance consisting of glycoproteins, polysaccharides and
proteoglycans which coats cells in multicellular organisms,
suggests that the process is more complicated. The thickness
of glycocalyx can vary from 7 nm on red blood cells to
>100 nm on epithelial and endothelial cells (Ito 1969; Sabri
et al. 2000; Martins and Bairos 2002). This argues against the
passive diffusion model of integrin binding as, for example,
the proposed thickness of glycocalyx on leukocytes is approx-
imately 40 nm and activated integrin receptors are only 20 nm
in length (Cox et al. 1977; Xiong et al. 2009; Boettiger and
Wehrle-Haller 2010). These values indicate that glycocalyx is
physically preventing integrins from passively diffusing and
binding to their cognate ligands (Boettiger and Wehrle-Haller
2010). To overcome this physical barrier, the application of
force is required to compress the glycocalyx and allow ligand
binding (Sabri et al. 2000). This mechanism also encourages
integrin clustering, as higher numbers of integrins increase the
strength of the adhesion (Shimaoka et al. 2003; Bunch 2010).
Furthermore, the cluster size can also reflect the stiffness and
thickness of the surrounding glycocalyx, as well as the mem-
brane rigidity, with larger clusters being required in more rigid
cellular microenvironments.

The physical barrier of glycocalyx is overcome by struc-
tures called filopodia through two mechanisms—their physi-
cal size and the curvature of the leading edge (Sabri et al.
2000). These two factors mean that only a relatively small
amount of force is required to expose integrin receptors
through glycocalyx to their extracellular substrates
(Atilgan and Ovryn 2009; Boettiger and Wehrle-Haller
2010). The adhesive strength of exposed integrins with
their substrates is influenced by the mechanism of activa-
tion, i.e. integrin clustering or mechanical allostery.
Boettiger (2012) proposed these two mechanisms as a
means to describe the dynamic behaviour of stable or
unstable integrin interactions. The basis of these theories
stems from the collective adhesive bond strength of
integrins, i.e. the more the integrins are bound, the stronger
and more permanent the adhesion. However, the type of
bond formed between an integrin and its ligand will also
influence whether the integrin remains activated and
bound. Two types of bonds are proposed. The first is the
‘slip bond’ where the application of force increases the
distance between the integrin and its ligand, resulting in
bond instability and decreased integrin binding (Bell
1978). The second is the ‘catch bond’ where the applica-
tion of force strengthens the bond interface between
integrin and its ligand, resulting in increased bond strength
and a more stable adhesion complex (Kong et al. 2009;
Puklin-Faucher and Vogel 2009; Boettiger 2012).
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Integrin-mediated migration

One of the fundamental mechanical functions of integrins
is their involvement in migration. The state of adhesion
complexes during migration is divided into three phases:
assembly, dynamic and disassembly. The assembly phase
involves an increase in the concentration of the lipid
second messengers, phosphatidylinositol(4,5)P2 (PIP2)
and phosphatidylinositol(4,5)P3 (PIP3) at the leading edge
of the cell, in conjunction with filamentous (F-) actin
protrusions and the subsequent recruitment and activation
of the integrin adaptor proteins talin, vinculin and FAK or
kindlin and ILK (Chen and Guan 1994; Goksoy et al.
2008; Legate et al. 2011). This creates a positive feedback
loop and causes cytoplasmic changes, such as actin cyto-
skeleton reorganisation, whereby cellular morphology is
adjusted to prepare for migration. This step is associated
with integrins binding to F-actin in preparation for migra-
tion. Characteristics of this phase are the formation of
lamellipodia/filopodia, glycocalyx repulsion, formation
of nascent adhesions and focal complexes, catch bond
and affinity regulation (Schürpf and Springer 2011).

The dynamic phase involves the maturation of the adhesion
complexes, which is induced by actomyosin-dependent con-
traction and causes the downregulation of the Rac1 activation
pathway (Kuo et al. 2011). Increasing local contractile pres-
sure results in the maturation of adhesion sites, which then
grow in size (valency regulation). This phase is characterised
by increased tension or mechanical stress, integrin clustering
and the formation of stress fibres and fibrillar adhesions
(Legate et al. 2011; Qu et al. 2011). As a result, cells can
remain in this phase for long periods of time and play a role in
mechano-sensing and polarity.

An imbalance between integrin-dependent adhesion and
tension typifies the beginning of the disassembly phase
and, in combination with extracellular proteolysis and
integrin-adapter mediated endocytosis, results in the pro-
gressive disassembly of adhesion sites to allow controlled

rear contraction and cell migration. This phase involves the
coordinated rapid integrin recruitment to the inner edge of
adhesions, while integrins are removed from the distal
edge, resulting in adhesion site sliding and rear retraction.
The lipid second messengers play an important role in this
retraction process, with PIP2 levels remaining high at the
cell front to ensure that adapters such as talin are recruited
to facilitate the adapter-mediated endocytosis of integrins
(Chao et al. 2010a). Conversely, to prevent the recruitment
of integrin adaptors involved in adhesion site initiation and
assembly at the rear of the cell, such as ILK and kindlin,
the levels of PIP3 are kept low (Chao and Kunz 2009;
Ezratty et al. 2009; Chao et al. 2010b).

Cellular protrusions during migration

Migrating cells predominantly use two different types of
cellular protrusions to initiate migration, namely, lamellipodia
and filopodia, although two other types of actin-based protru-
sions also exist which are called podosomes and invadopodia
(Mattila and Lappalainen 2008; Murphy and Courtneidge
2011). These F-actin rich protrusions contain high levels of
integrins ready to be brought in contact with ECM ligands to
initiate adhesion (Wehrle-Haller 2012). Lamellipodia form
sheet-like protrusions at the leading edge of the cell, while
filopodia form finger-like protrusions that branch out from
within lamellipodia (Fig. 2). Both are similar in diameter (0.1–
0.2 μm), although the filopodia are much longer (3–10 μm).
Investigations into the type of integrins found within
lamellipodia and filopodia have revealed that β1 integrins
are preferentially concentrated in clusters at the ends of both
(Galbraith et al. 2007), whereasβ3 integrins require activation
before they can be assembled in filopodia or lamellipodia.
This assembly can occur through either the binding of intra-
cellular adaptor proteins to initiate inside–out activation or by
binding of the extracellular ligand to initiate outside–in acti-
vation (Zhu et al. 2008). In contrast, podosomes and

Fig. 2 Overview of structures
involved in cell adhesion and
migration. Schematic of the
different cellular structures used
during adhesion and migration
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invadopodia are cylindrical structures that are usually larger in
diameter (0.5–2 μm) than lamellipodia and filopodia and
found on the ventral cell surface either behind the leading
edge (podosomes) or beneath the nucleus (invadopodia)
(Chhabra and Higgs 2007; Murphy and Courtneidge 2011).
Podosomes are typified by containing FA proteins that help
form the central ‘core’ structure, such as paxillin, cortactin,
gelsolin and dynamin (Chellaiah et al. 2000; Ochoa et al.
2000; Luxenburg et al. 2012), and are commonly found in
leukocytes, osteoclasts and macrophages, whereas
invadopodia are only found in malignant tissue (Murphy and
Courtneidge 2011).

In addition to cellular protrusions, initial binding of
integrins to the ECM results in the integrin molecules cluster-
ing into focal complexes or nascent adhesions (Choi et al.
2008) that can eventually mature into larger FAs or fibrillar
adhesions (Geiger et al. 2001). There are three different types
of cell-matrix adhesions, namely, focal complexes/nascent
adhesions, FAs and fibrillar adhesions, which have been so
named due to their differing morphology, cell location and
size (Fig. 2) (Wehrle-Haller 2012). Focal complexes/nascent
adhesions consist of integrin clusters that form under
lamellipodia or filopodia where they facilitate the mechanical
attachment of the advancing F-actin cytoskeleton to the ECM
substrate (Fournier et al. 2010). They are usually located on
the edge of lamellipodium, have a ‘dot-like’ morphology and
are about 1 μm in size along their long axis. Focal complexes/
nascent adhesions are usually associated with cell migration
and are formed as a result of Rac1 activation (Nobes and Hall
1995; Rottner et al. 1999; Kiosses et al. 2001). They typically
contain all of the components of a mature FAs and can form
without acto-myosin-dependent force (Choi et al. 2011).
These dynamic focal complexes/nascent adhesions (precursor
FAs) can therefore either dissipate or mature into FAs with
mechano-sensing or adhesion roles depending on the cellular
context.

FAs form at the base of lamellipodia, have an ‘elongated,
oval’ morphology and are larger in size (about 2–μm) than
focal complexes/nascent adhesions (Murphy and Courtneidge
2011). Focal adhesions are predominantly found in vitro in
cultured cells; however, examples of similar structures have
been reported in vivo (Kano et al. 1996). Further back from
the leading edge, FAs can mature into fibrillar adhesions,
which have a ‘fibrillar’ or ‘beaded’ morphology and vary in
size from 1 to 10 μm along their long axis (Zamir et al. 1999,
2000; Geiger et al. 2001; Zamir and Geiger 2001). These are
characterised by containing extracellular fibronectin fibrils,
the fibronectin receptor (integrin α5β1) and the cytoplasmic
protein tensin (Zamir et al. 2000; Geiger et al. 2001). In
addition, they lack paxillin and a number of other focal adhe-
sion proteins; however, ILK is a common component of both
fibrillar adhesions and FAs (Zamir et al. 1999, 2000; Pankov
et al. 2000).

Conclusions and future perspectives

The essence of integrin function is defined through its struc-
tural and mechanical roles, which are involved in mediating
cell–cell or cell–ECM contacts. Through these contacts,
integrins communicate with the surrounding microenviron-
ment by signalling bidirectionally, a function unique to
integrin receptors. Key questions relating to the control of
integrin activity include how is the intracellular location of
distinct adhesion complexes regulated and (2) how do cells
utilise different integrin receptors, which bind the same sub-
strate, to elicit distinct cellular responses. Our understanding
of the latter was recently advanced in a comprehensive com-
parison of the specific functions of αv- and β1-integrins, in
response to binding fibronection (Schiller et al. 2013). In
addition to the culture models used to study integrins, it is
imperative that we also determine how tissue-specific func-
tions of integrins are regulated in vivo. The combination of
in vitro and in vivo knowledge of how integrins control cell
migration, adhesion, mechano-sensing, proliferation, apopto-
sis, among others will allow us to understand diseases associ-
ated with dysregulated integrin signalling, such as cancer.
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