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ABSTRACT Population structure can be described by genotypic-correlation coefficients between groups of individuals, the most basic
of which are the pairwise relatedness coefficients between any two individuals. There are nine pairwise relatedness coefficients in the
most general model, and we show that these can be reduced to seven coefficients for biallelic loci. Although all nine coefficients can be
estimated from pedigrees, six coefficients have been beyond empirical reach. We provide a numerical optimization procedure that
estimates all seven reduced coefficients from population-genomic data. Simulations show that the procedure is nearly unbiased, even
at 33 coverage, and errors in five of the seven coefficients are statistically uncorrelated. The remaining two coefficients have a negative
correlation of errors, but their sum provides an unbiased assessment of the overall correlation of heterozygosity between two
individuals. Application of these new methods to four populations of the freshwater crustacean Daphnia pulex reveal the occurrence
of half siblings in our samples, as well as a number of identical individuals that are likely obligately asexual clone mates. Statistically significant
negative estimates of these pairwise relatedness coefficients, including inbreeding coefficients that were typically negative, underscore the
difficulties that arise when interpreting genotypic correlations as estimations of the probability that alleles are identical by descent.
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MANY phenotypes are influenced by complex interac-
tions betweenmultiple genes and various environmen-

tal conditions (Fisher 1918). It may be impossible to isolate
all of the genetic factors contributing to a complex phe-
notype, but the total genetic contribution to phenotypic var-
iation can be estimated using regression coefficients that
describe the statistical association between the genotypes
of two individuals.

The statistical association of genotypes between individu-
als, or genotypic correlation, is usually described as those
individuals sharing alleles that are descended from the same
ancestral allele, in which case the shared alleles are said to be
identical by descent (IBD). Two slightly different meanings of
IBD are in common use, with IBD sometime being used in the

former sense and sometimes more specifically referring to an
IBD segment—a pair of haplotypes that have not experienced
any recombination during their descent from a single ances-
tral segment (Cotterman 1940; Malécot 1948; Sved 1971;
Powell et al. 2010; Thompson 2013). We use either pedigree
IBD or recombinational IBD, respectively, to refer to the more
specific meanings when necessary. Recombinational IBD is
distinguished from pedigree IBD in that recombinational
IBD depends on the locations of recombination events, but
pedigree IBD does not. In the absence of recombination, for
example over very short mapping distances, recombinational
IBD and pedigree IBD are identical (Thompson 2013). Since
pedigree IBD is sufficient for estimating the parameters of the
quantitative-genetic models used here, pedigree IBD is used
throughout the article.

A number of IBD coefficients are necessary to describe the
probability that different groups of alleles within diploid
individuals are IBD. If thegenotype-to-phenotype relationship
were very simple, then a single measure of genotypic corre-
lation which described how the number of alleles are corre-
lated between individuals—the coefficient of coancestry
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(Q)—would be sufficient to relate genetic covariance to phe-
notypic covariance. Unfortunately, many genes do not follow a
simple additive model of gene action, and as a result, addi-
tional genotypic-correlation coefficients are needed.

For example, full siblings tend to have a stronger phenotypic
resemblancetoeachother thaneithersiblinghas to theirparents.
While thismayseemsurprising, it canbeunderstoodasaresultof
nonadditive gene action. If the parents are unrelated to each
other, then at every locus a single parent and offspring share
exactly one pair of alleles that are IBD ðQ ¼ 0:25; see Supple-
mental Material, Table S5 in File S1). However, heterozygosity
and homozygosity (jointly called zygosity) are defined by the
relationship of two haploid genomes to each other. Because
each parent gives only one haploid genome to their offspring,
the offspring’s zygosity is unassociated with the zygosity of their
parent, so the coefficient of fraternity (D)—which describes the
association of zygosity between individuals—is zero. While sib-
lings share alleles that are IBD with each other with equal prob-
ability that offspring share alleles that are IBD with parents,
siblings can receive the same alleles from both parents, creating
a correlation of zygosity state ðD � 0:25Þ in addition to the
correlation of allele count. Thus, because alleles often exhibit
some form of dominance, a pair of siblings generally has greater
genetic covariance than a parent-offspring pair, despite having
similar coancestry coefficients (Lynch and Walsh 1998).

In a randomly mating, outbred population, knowledge of
bothQ andD between all individuals is sufficient to relate the
genetic covariance of individuals, sGðX; YÞ; to the additive
ðs2

AÞ and dominance ðs2
DÞ genetic variation in a population

(Lynch and Walsh 1998). These terms are used to estimate
heritability, and thus IBD coefficients are fundamental to a
variety of quantitative-genetic analyses. However, Q and D

are only sufficient to estimate genetic variation in panmictic
outbred populations. Additional genetic variance terms and
IBD coefficients are necessary to describe inbred individuals.

The probability of both pedigree IBD and recombinational
IBD can be estimated if the pedigree of the related individuals
is known (Wright 1922; Thompson 1988). However, because
each round of reproduction involves a limited number of
crossover events, typically on the order of one event per chro-
mosome arm; the actual pattern of inheritance can vary sub-
stantially from the expectation predicted by path analysis. For
instance, a pair of human half siblings have an expected coan-
cestry ofQ ¼ 0:125; but because � 184 crossover events sepa-
rate them, � 5% of half siblings will have a coancestry that
is ,0.092 or .0.158 (Speed and Balding 2015).

Some of the shortcomings of pedigree analysis can be
addressed by estimating genotypic-correlation coefficients from
molecularmarkers.Theactualpatternof inheritance, rather than
the pattern predicted from pedigree analysis, can be estimated
frommolecularmarkers.Additionally,definingallele frequencies
from the sampled population frees methods using molecular
markers from reliance on reference populations (Lynch
and Ritland 1999; Wang 2002, 2007, 2011; Fernández and
Toro 2006; Kalinowski et al. 2006; Anderson and Weir 2007).
However, if a method estimates the probability of IBD, then

meaningful estimates are confined to the interval between zero
and one. While this property is not undesirable per se, using the
probability of IBD within that model as a regression coefficient
is undesirable because it creates bias in estimates of heritablity
(Lynch and Ritland 1999).

Rather than attempting to estimate the probability of IBD
from the statistical association of genotypes, the statistical
association between genotypes can be directly described with
the goal of describing the statistical association between
genotypes at unknown causal loci; an approach which has
led to the modern use of genotpyic correlations in genetic
relatedness matrices (Lynch and Ritland 1999; Powell et al.
2010). This approach is consistent with the motivations be-
hind the development of IBD (Cotterman 1940; Malécot
1948). We examine how negative correlations arise within
genotypic correlations, an aspect of the statistical association
of genotypes which is poorly described in both a pedigree-
and recombinational-IBD framework.

With these problems in mind, we sought to develop a
method for estimating relatedness that makes effective use
of the biallelic markers abundantly available in population-
genomic data, withoutmaking restrictive assumptions about
possible values of relatedness coefficients. We show how
both genotypic and phenotypic correlation coefficients can
be negative,which emphasizes that these coefficients are not
probabilities; and also show that seven coefficients, rather
than nine, are sufficient to specify the genetic covariance at
biallelic loci.

Methods

A statistical view of genealogies

The genotype of one individual often gives us some informa-
tion about the genotypes of other individuals. We expect the
members of a species to be genetically similar, so sequencing a
single individual of that species can give us some idea of the
genes present in most members of that species. This genetic
similarity arises in part from the common ancestry of all
members of a species. The metaphor of IBD captures this part
of the explanation, but also obscures the influenceofmutation
and genetic drift on these correlations. This lacuna of un-
derstanding is also present in pedigree-based calculations of
IBD coefficients, which, despite .100 years of use, can only
be calculated from truncated pedigrees. Calculations from
exhaustive pedigrees cause pedigree-based calculations of
genotypic correlations to approach one (Speed and Balding
2015), differing sharply from the behavior of IBD coefficients
calculated using a molecular-marker method. A careful con-
sideration of the statistical processes at work highlights the
roles ofmutation and drift in generating genotypic correlations,
and shows how molecular-marker methods are related to
pedigree-based methods.

Wecan imagine that an individual’s genotype is determined
by a three step process, in which an allele (SNP) originates
in some particular ancestor through mutation (individual Z in
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Figure 1), and then descends stochastically down a fixed ge-
nealogical structure, ultimately coming to rest in the genome
of the individual that we have sampled (individual X or Y in
Figure 1). The genotypic correlation between two gametes
is a measure of the tendency of alleles to cooccur in those
gametes, and to calculate this correlation we will need to
estimate three probabilities: the probability of sampling a
particular allele in some particular gamete A, PðAÞ; the prob-
ability of sampling that allele in some other gamete B, PðBÞ;
and the probability of sampling that allele in both gametes
simultaneously, PðABÞ (see Table 1 for other symbols and
their definitions).

Calculating P(A) and P(B)

Unfortunately, the sampling of a haplotype is a singular event.
We cannot directly measure the probability of sampling an
allele in a particular haplotype in a particular individual.
However, we can use the distribution of genotypes within the
population as a whole, in combination with some statistical
model, as anestimateof thatprobability.Thesimplest statistical
modelwe canuse is a uniformdistribution,where the presence
or absence of an allele is independent and identically distrib-
uted among all haplotypes; in this case, our estimate of PðAÞ is
simply the frequency of the allele in the population. This is not
an unreasonable procedure, but we need to keep in mind that
PðAÞ is being calculated on the condition that the frequency of
some allele in the population is p, and would bemore properly
written as PðAjpÞ; and not simply PðAÞ:
Conditional independence

By conditioning on the current allele frequency in a panmictic
population, p, we can theoretically remove the genotypic
correlation created by genetic drift. If an individual X gives
no information about the genotype of individual Y, aside
from aiding in the estimation of the allele frequency in the
population, then the genotypes of X and Y can be made in-
dependent by conditioning on that allele frequency. This
process implicitly occurs when molecular markers are used
to estimate genotypic-correlation coefficients, because al-
lele frequencies must be measured in the current genera-
tion. Pedigree-based methods neglect this step by assuming
that allele frequencies are known a priori, and as a result, the
effects of drift are not removed explicitly or implicitly. As a result,
genotypic-correlation coefficients increase monotonically as
pedigrees become more extensive (Speed and Balding 2015).

Negative correlations

Conditioning on the allele frequency in the current generation
will not, in general,make the genotypes of all distantly related
individuals independent. Individuals in a population have
varying degrees of relatedness, and different allele frequencies
will be necessary to make different pairs of individuals indepen-
dent. No allele frequency will make all sufficiently distant indi-
viduals independent. For instance, in Figure 1, an allele that
originates in individual Z has an unconditional probability

PðXÞ ¼ 3=16 and PðYÞ ¼ 1=16 of being sampled in individuals
X and Y, respectively. The unconditional probabilities of sampling
the allele are independent because the allele descends through
entirely separate lineages. Because X and Y share no ancestors
that possess the mutant allele except for Z, we do not learn
anything about the frequency of themutant allele in Y’s ancestors
from X. Yet if we condition on the allele frequency in the parental
generation (from which gametes A, B, C, and D were sampled),
then individuals X and Y become negatively correlated.

It is easiest to see how this negative correlation arises if we
first think of conditioning on the generation containing X and Y.
For instance, consider the case where we condition on sampling
a single copy of themutant allele among the four alleles of X and
Y. In this case, learning that the allele was sampled in Y tells us
with certainty that the allele was not sampled in X, because we
already know the allele was sampled only once. A similar,
though less severe, process occurs when we condition on the
parental generation. Learning that individual Y possesses an
allele makes it more likely that copies of that allele were present
in Y’s parents, and if the total number of alleles in the parental
generation is known, then it becomes less likely that X’s parents
had copies of the allele, and vice versa. A negative genotypic
correlation indicates that an allele tends to be sampled from
either individual X or individual Y, but usually not both.

Negative correlations can occur in large unstructured pop-
ulations. Stochastic differences in reproductive success occur
between families delineated by any level of relatedness (e.g., a
family at the level of first cousins, all second cousins, etc.), and
just as in the preceding example, larger families will contribute

Figure 1 Two genealogies of identical structure which illustrate the sto-
chastic model of genotypic correlations. In both of these genealogies a
mutation is present in ancestor Z, making Z heterozygous for some trait
(pink). The allele is then transmitted to Z’s offspring with a probability of
1/2 for each, and thus gamete A has a probability of 1/4, and (A) B and C
each have a probability of 1/8 of carrying the mutant allele. If only one
individual in the second generation receives the mutant allele, as in (A), then
individuals X and Y cannot both receive the mutant allele. However, if in the
second generation two individuals possess the mutant allele, as in (B), then
A has a probability of 1/2, and B and C each have a probability of 1/4 of
carrying the mutant allele. The coefficient of identity between X and Y is
calculated depending on whether the probability of the gamete carrying the
mutant allele A, B, or C is conditioned merely on Z being heterozygous, or
on the genotypes of individuals in generations following Z.
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more alleles to estimates of allele frequencies than small
families. As a result, conditioning on allele-frequency es-
timates will create negative correlations between some
pairs of individuals. These negative correlations are a fun-
damental aspect of population structure that describes these
differences in reproductive success, and they do not become
trivial in large populations. Negative correlations are unfa-
miliar in the context of population structure because of the
tradition of envisioning these correlations as estimates of
probabilities, but later we will observe negative genotypic-
correlation coefficients among individuals in real popula-
tions, so we will need to have some understanding of the
mechanisms that create them.

Expression for pairwise genotypic correlation

Two random variables (for example a and b in Figure 1) that
can each be in one of two possible states (a = 0 and a = 1)
can take on four states jointly (a = 1 and b = 0, b = 1 and

a= 0, etc.), each with their own associated probability. These
four outcomes have three degrees of freedom (one degree of
freedom is lost because the four states sum to one), and thus
we need three parameters to describe the overall distribu-
tion: the probability that a ¼ 1; Pða ¼ 1Þ; or E½a�; the prob-
ability that b ¼ 1; Pðb ¼ 1Þ; or E½b�; and some parameter that
describes the association of a and b. An obvious choice for
this association term is the correlation coefficient between a
and b, which is a covariance normalized by the geometric
mean of the SDs of the univariate distributions, and can be
written as:

ra;b ¼
sab

sasb
¼ mða; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2ðaÞm2ðbÞ
p (1)

where sab and mða; bÞ are two different notations for the co-
variance between a and b, and s2

a and m2ðaÞ are two different
notations for the variance of a. In general mnðaÞ is the nth
central moment of a and is defined as E½ða2E½a�Þn�; where
E denotes the expectation, or raw moment, of a variable.

The covariance is related to the correlation coefficient by

sab ¼ ra;b

ffiffiffiffiffiffiffiffiffiffiffi
s2
as

2
b

q
; sowe canwrite the probability of a and b in

terms of the means E½a� and E½b�; and the correlation coeffi-
cient ra;b as:

E½ab� ¼ E½a�E½b� þ ra;b

ffiffiffiffiffiffiffiffiffiffiffi
s2
as

2
b

q
: (2)

By substituting a9 ¼ 12 a for a, we canwrite the probabilities
that Pða ¼ 0; b ¼ 1Þ as E[a9b], Pða ¼ 1; b ¼ 0Þ as E[ab9], and
so on, e.g.:

E
h
ab9

i
¼ E

�
a
�
E
h
b9
i
2 ra;b

ffiffiffiffiffiffiffiffiffiffiffi
s2
as

2
b

q

E
h
a9b9

i
¼ E

h
a9
i
E
h
b9
i
þ ra;b

ffiffiffiffiffiffiffiffiffiffiffi
s2
as

2
b

q
:

If we ignore the particular genealogy shown in Figure 1, and
instead consider the general case: the two gametes compos-
ing individual X and the two gametes composing individual Y
could have been sampled from different populations, and the
frequencies of alleles could differ in these populations, so it
may be the case that E½a� 6¼ E½b� 6¼ E½c� 6¼ E½d�; where E½a� and
E½b� are the allele frequencies in X’s parents and E½c� and E½d� are
the frequencies in Y’s parents. The correlation coefficient ra;b can
still be used to describe the genotypic correlation between a
and b, and the joint probabilities can be written in the form
of Equation 2, though determining the allele frequencies
may be difficult.

There are six unique ways to choose two items from four
items if items can be chosen only once, and the order of choice
does not matter (i.e., four choose two is six). As a result there
are six “second-moment” correlation coefficients between any
four random variables. These are just correlation coefficients
in the ordinary sense, but need to be distinguished from the
higher moment coefficients describing the statistical associa-
tion of three or four random variables, which are introduced

Table 1 Symbols and their meaning

Symbol Meaning

Dn The nth of Jacquard’s (1970) nine condensed modes of
IBD, described in Table 2

D Without a subscript, D is used to symbolize the coefficient
of fraternity

A The event A, typically the event of sampling some
particular allele in some particular gamete

a A random variable indicating whether event A occurred,
which takes on a value of 1 when event A occurs, and
a value of 0 when it does not

PðAÞ The probability of event A
E½a� The expectation, or mean, of the random variable a.

Equivalent to P(A)
â An estimate of E½a�
mnðaÞ The nth central moment of a, defined as E

�ða2E½a�Þn�
mða;b; . . .Þ A mixed central moment of a, b, and omitted variables,

defined as E
�ða2 E½a�Þðb2 E½b�Þ . . . �

gX€ ;Y The inbred relatedness, which is the probability of
sampling a locus where individual X is inbred and also
related to individual Y

QX;Y The coefficient of coancestry, or kinship, between
individuals X and Y, which is the probability that an
allele in individual X is IBD to an allele in individual Y.
Also denoted by u and F in some texts

DX€ ;Y€ The second-order zygosity correlation of individuals X and
Y, which is the probability that there are two pairs of
alleles which are each IBD. Either both individuals are
inbred but unrelated, or the individuals are genetically
identical but not inbred

dX€ ;Y€ The fourth-order zygosity correlation of genotypes
between individuals X and Y, which is the probability
that all four alleles in the two individuals are IBD

eXY The allele-frequency estimation error, the difference in
allele frequencies between individuals X and Y

Quantitative-genetic terms

s2
A The additive genetic variation of the population

s2
D The dominance genetic variation of the population

sADI The covariance of additive and dominance effects in
inbred individuals

s2
DI The variance of dominance effects in inbred individuals
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later. Two of these six “second-moment” coefficients are
inbreeding coefficients, which are the correlation coeffi-
cients of the gametes that fused to make an individual:

fX ¼ ra;b and fY ¼ rc;d: (3)

The other four second-moment coefficients are generally not
considered separately; instead, their arithmetic average de-
fines the coefficient of coancestry:

QXY ¼ ra;c þ ra;d þ rb;c þ rb;d
4

: (4)

The use of the arithmetic average is not an arbitrary choice. If
the two diploid individuals X and Y produce two gametes e
and f, the gametes will have a second-moment correlation
coefficient of

re; f ¼ QXY : (5)

There are 16 possible paired genotypes of two individuals at
biallelic loci ðE½abcd�; E½a9bcd�; E½a9b9cd�; etc.), and to fully de-
scribe the joint probability of these 16 paired genotypes several
parameters are needed. Coskewness and cokurtosis coef-
ficients both arise naturally when describing three- and
four-variable statistical associations, in the same way that
covariance arises when describing two-variable associa-
tions. While we will not use the coskewness or cokurtosis
themselves, the third- and fourth-moment correlation co-
efficients are related to coskewness and cokurtosis and
share properties with them.

Skewness (rather than coskewness) measures the asym-
metry of a probability distribution and is defined asm3 � m23=2

2 ;

it measures whether observations have a tendency to be ei-
ther larger (for positive skewness) or smaller (for negative
skewness) than the mean. Coskewness is the multivariate
analog of skewness that represents the tendency of jointly
distributed variables to simultaneously take on values on
the same (for positive) or different (for negative) side of
the means (i.e., major-allele frequencies) of the distribution,
and is defined as mða; b; cÞ � ½m2ðaÞm2ðbÞm2ðcÞ�21=2: While
coskewness is a dimensionless parameter—because the
numerator and denominator are the of same order—it
does not estimate genotypic correlations. The coskew-
ness of a haplotype with itself is simply the skewness,
whereas the genotypic correlation of a haplotype with
itself is one.

To obtain a statistic that does not vary as a function of allele
frequency, and thus estimates genotypic correlations, we
normalize the third central mixed moment by the third mo-
ments of the univariate distributions, yielding

ra;b;c ¼
mða; b; cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m3ðaÞm3ðbÞm3ðcÞ3
p : (6)

This notation is adapted to emphasize the similar form and
behavior of this parameter to a correlation coefficient, andwe

will refer to ra;b;c as the third-moment correlation coefficient.
(The choice of the geometric mean of central moments is
described in more detail in Section SC in File S1.) The
third-moment correlation can be used in a fashion similar
to the second-moment correlation coefficient to write proba-
bilities of the joint distribution of three variables, e.g.:

PðabcÞ ¼ PðaÞPðbÞPðcÞ þ ra;b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðaÞm2ðbÞ

p
PðcÞra;b

þ ra;c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðaÞm2ðcÞ

p
PðbÞ þ rb;c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðbÞm2ðcÞ

p
PðaÞ

þ ra;b;c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3ðaÞm3ðbÞm3ðcÞ3

p
:

A total of four third-moment correlations exist between four
haploid genomes, which are grouped into two arithmetic
averages:

gX€ Y ¼ ra;b;c þ ra;b;d
2

and gY€ X ¼ ra;c;d þ rb;c;d
2

: (7)

We call these terms the inbred-relatedness coefficients, be-
cause they describe the probability of sampling a sitewhere the
first index individual (X for gX€ Y or Y for gX€ YÞ is inbred and
related to the second indexed individual (through either one
or both of the alleles in the second indexed individual). The
symbols gX€ Y and gX€ Y are adopted from Cockerham (1971).
Again, the arithmetic mean is not an arbitrary choice, but
instead represents a formulation that allows us to ex-
press the third-moment correlation of gametes produced
by individuals.

The final term is the fourth-moment correlation coef-
ficient. This coefficient estimates the fraction of sites
where zygosity is guaranteed to be identical. There are
three modes of IBD (D1, D2, and D7 in Figure 2) where the
zygosity of the two individuals is guaranteed to be iden-
tical, so the fourth-moment correlation coefficient is de-
fined as

ra;b;c;d ¼
mða; b; c; dÞ

ð12aÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðaÞm2ðbÞ . . .

p þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4ðaÞm4ðbÞ . . .4

p ;

(8)

where m2ðaÞ and m2ðbÞ::: are the second central moments,
m4ðaÞ and m4ðbÞ::: are the fourth central moments, the dots
denote the omission of the moments of c and d, and a is a term
that describes the fraction of the fourth-moment correlation co-
efficient that arises from the fourth-moment component
as described below. Unlike the second-moment and third-
moment coefficients, where all identity modes contribut-
ing to the genotypic correlation describe the same basic
kind of relationship (either two alleles that are IBD or three
alleles that are IBD), the fourth-moment coefficient is com-
prised of two different kinds of relationships: a relationship
where all four alleles are IBD, and a relationship of two
pairs of two alleles, either in the same (D2) or different
(D7) individuals, which are each IBD. These are the sec-
ond- and fourth-moment components of ra;b;c;d : DX€ Y and
dX€ Y€ ; and they can be expressed in terms of ra;b;c;d as:
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DX€Y€ ¼ ð12aÞra;b;c;d ¼ rfa;bgfc;dg þ rfa;cgfb;dg þ rfa;dgfb;cg
(9)

and

dX€ Y€ ¼ ara;b;c;d ¼ rfa;b;c;dg: (10)

The notation fa; bgfc; dg in the subscript specifies which
groups of alleles are IBD. This notation becomes necessary
when there are several different ways in which the relation-
ship can be partitioned. The coefficient DX€ Y€ is the sum of the
terms DX€þY€ andDX€�Y€ used by Cockerham (Holland et al. 2003)
and becomes the coefficient of fraternity, D; in the absence of
inbreeding. The term dX€ Y€ is Jacquard’s (1970) D1 and is also
used by Cockerham (1971). We call ra;b;c;d the zygosity cor-
relation coefficient because it describes how zygosity (i.e.,
whether an individual is heterozygous or homozygous)
is correlated between individuals, with DX€ Y€ called the
second-moment zygosity correlation component and dX€ Y€
called the fourth-moment zygosity correlation component
because they depend on the second- and fourth-moments
of the univariate distributions, respectively.

Every set of nine probabilities for jointly sampling the
genotypes of individuals X and Y can be transformed into a
unique set of eight parameters. Two of these parameters are
the probabilities of sampling the minor allele in individu-
als X and Y, and the other six are the genotypic-correlation
coefficients relating X and Y: fX ; fY ; QXY ; gX€Y; gY€ X; and

mða; b; c; dÞ: However, the joint genotypic probabilities are
only defined for some values of these eight parameters (i.e.,
the relationship is not a one-to-one correspondence). Strong
correlation of the genotypes of the individuals places a con-
straint on the difference of the probability of sampling
the minor allele in both individuals. If correlations are close
to +1 then the difference of minor-allele frequencies must be
close to 0, but when correlations are close to 21, the differ-
ence must be close to 1 2 minor allele frequency.

Finally, it is the joint central moment mða; b; c; dÞ that is
specified by a set of nine genotypic probabilities, and not a
genotypic-correlation coefficient, either DX€Y€; dX€Y€; or ra;b;c;d:

Finding the values of the coefficients DX€Y€ and dX€Y€ requires a
range of allele frequencies, because DX€Y€ and dX€Y€ describe how
the denominator of Equation 8 changes as a function of allele
frequencies. The relationship of these coefficients to the nine
condensed modes of IBD is shown in Table 2.

Three condensed IBD modes can be expressed in terms
of these seven coefficients: D1 ¼ dX€Y€; D3 ¼ gX€Y€ 2 dX€Y€; and
D5 ¼ gX€Y€ 2 dX€Y€: Although we do not consider these coeffi-
cients for three or more alleles in this article, if more alleles
were present DX€Y€ could be separated into its components D2

and D7; and the remaining six condensed IBD modes could be
estimated from linear combinations of the genotypic-correlation
coefficients presented here.

A complete model of genetic covariance in populations

These genotypic-correlation coefficients are important in the anal-
ysisofquantitative traits. In theabsenceof inbreedingandepistasis,
the genetic covariance of quantitative traits can be defined as

sGðX; YÞ ¼ 2QXYs
2
A þ DXYs

2
D: (11)

In the presence of inbreeding, but absence of epistasis, this
becomes

sGðX; YÞ ¼ 2QXYs
2
A þ DX€Y€ s

2
D

þ
�
g
X€ Y

þ g
Y€ X

�
sADI þ dX€ Y€ s

2
DI;

(12)

where sADI is the covariance of additive and dominance ef-
fects in inbred individuals (2D1 in Cockerham 1983), and s2

DI
is the variance of dominance effects in inbred individuals ðD*

2
in Cockerham 1983) (see Lynch and Walsh 1998 and Abney
et al. 2000). In the absence of inbreeding, the terms gX€ Y; gY€ X;

and dX€Y€ are all 0, and DX€Y€ ¼ DXY ; so Equation 12 reduces to
Equation 11. However, even in ostensibly outbred popula-
tions, particular individuals will have small but statistically
significant amounts of inbreeding (or outbreeding) because
real populations are not perfectly panmictic (Cockerham and
Weir 1983). As a result, estimates of genetic covariance using
Equation 12 should be more accurate than estimates that
assume a perfectly panmictic population and use Equation
11. As with the additive and dominance genetic variance,
care should be taken in the verbal interpretation of the
covariance of additive and dominance effects in inbred

Figure 2 Results from 10,000 simulations using (A) 33 and (B) 103
coverage at 5000 loci; and (C) 33 and (D) 103 coverage at 100,000 loci.
Allele frequencies were drawn from a triangular distribution as described
and reported without error. All seven genotypic-correlation coefficients
are graphed jointly. A summary of biases and MSEs can be found in Table
S3 in File S1.

110 M. S. Ackerman et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.190660/-/DC1/FileS1.PDF


individuals ðsADIÞ and the variance of dominance effects in
inbred individuals ðs2

DIÞ; as these parameters describe prop-
erties of populations and do not describe modes of gene
action.

Estimating IBD coefficients from
population-genomic data

There are three steps in computing the coefficients of re-
latedness using sequence data: (1) an estimate of the allele
frequencies in the populations fromwhich the two individuals
are sampled must be obtained, (2) the genotypes of the two
individuals being compared must be estimated, and (3) a
relatedness estimate must be constructed from this informa-
tion. The first two steps are closely related, because they both
involve making inferences about genotypes from sequence
data, andwe use a framework that jointly estimates sequence
error rates and allele frequencies at each site (Maruki and
Lynch 2015), implemented in the program mapgd (M. S.
Ackerman, T. Maruki, and M. Lynch, unpublished data). A
benefit of this approach is that it not only produces unbiased
estimates of population parameters when depth of coverage
is low, but because we explicitly model sequencing as two
discrete events (the random sampling of chromosomes from
an individual followed by the random distribution of errors
among reads), we can assess whether the observed data are
consistent with our statistical model. The likelihood equation
used to estimate allele frequencies and genotypic likelihoods,
Equation S13 in File S1, can be transformed into a cumulative-
distribution function describing the probability of obtaining
data of lower likelihood than the observed data, Equation S16
in File S1. By limiting the analysis to genomic sites consistent
with themodel, we can remove sites that potentially suffer from
sequencing or assembly artifacts (Section S6 in File S1).

The third and final step in the process is to estimate the
genotypic-correlation coefficients fromgenotypic probabilities
and allele frequencies. We do this by maximizing a likelihood
equation thatdescribes theprobabilityof observing thepattern
of reads given a set of genotypic-correlation coefficients. For a
particular site, the likelihood equation is the product of the
three terms: (1) the probability PðGx ¼ ijXkÞ that individual X
has genotype Gx ¼ i; given that the “quartet” (i.e., counts of
A’s, C’s, G’s, and T’s observed at the site) Xk is observed at site
k; (2) the corresponding probability PðGy ¼ ijYkÞ for individ-
ual Y; and (3) the probability PðGX ¼ i;GY ¼ jjuÞ of observing
the pair of genotypes GX and GY in the two individuals given a
set of genotypic-correlation coefficients u: When estimating
genotypic-correlation coefficients, the terms PðGx ¼ ijXkÞ and
PðGy ¼ ijYkÞ are simplified from equation 4b in Lynch (2008),
because the error rate and major- and minor-allele identities
have been estimated prior to this calculation by mapgd from
the population data. The term PðGX ¼ i;GY ¼ jjuÞ is taken
from the joint genotypic distributions developed in the pre-
vious section (defining the coefficients of IBD) with u being
the vector of the seven genotypic-correlation coefficients.
Explicit forms of PðGX ¼ i;GY ¼ jjuÞ and PðGX ¼ ijXkÞ in
terms of allele frequencies, genotypic-correlation coeffi-
cients, error rates, and nucleotide quartets are given in Sec-
tion S2 in File S1.

Because the genotypes [of which there are three: (1)
homozygous for the major-allele, (2) heterozygous, and (3)
homozygous for the minor allele] are mutually exclusive
events, we sum across them ði; j 2 f1; 2; 3gÞ; and assume that
observations at the n different loci are independent. The
product (or the sum of the logs) of the likelihood of the data
at each site gives us the likelihood of the data overall:

ln LðujX;YÞ ¼
Xn
k¼1

ln

"X3
i¼1

X3
j¼1

PðGX ¼ i;GY ¼ jjuÞ

3 PðGX ¼ ijXkÞPðGY ¼ jjYkÞ
#
;

(13)

where Xk and Yk are the quartets of individuals X and Y at site
k, respectively.

Equation 13 ismaximized to estimate genotypic-correlation
coefficients. Because the assumption that observations at
different loci are independent is violated, these estimates are
quasi-likelihood estimates rather than maximum-likelihood
estimates. The maximization is done with the sequential
least-squares programming (SLSP) algorithm implemented
in the Python module SciPy. Testing of the maximization
procedures available in the SciPy module showed that this
method offered satisfactory convergence times and stability
(Section S4 in File S1). Although the performance of the SLSP
algorithm was satisfactory, we have not made a concerted
effort to maximize computational efficiency (for instance,
use of C++ instead of Python will likely offer computational
benefits). Thus future refinements of the numerical estimation
procedure may be helpful.

Table 2 Relationship between genotypic-correlation coefficients
and modes of IBD

On the right are the nine identity modes relating two individuals. Alleles a and b
belong to individual X, and alleles c and d belong to individual Y. Alleles that are
IBD are connected by solid lines. On the left, these nine modes can be used to obtain
the coefficients of coancestry (Q), inbreeding (f), and fraternity (D), along with the
coefficients that we introduce: the inbred relatedness (g), identity (d), and zygosity (r).
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Maximization of the genotypic correlation is unbound,
meaning that the maximization procedure examines any real
number; however, the quasi-likelihood function is undefined
or poorly defined for some parameter values, so in practice all
estimates are between 21 and 1. When the quasi-likelihood
function is undefined, a value of2N is returned. More prob-
lematic for numerical optimization is that the mutually ex-
clusive probabilities of observing specific genotypes within
Equation 13 (written more explicitly in Table S2 in File S1)
can become less than zero or greater than one for some pa-
rameters and data. While there are a number of potential
ways to address this problem, currently we arbitrarily set
PðGX ¼ i;GY ¼ jjuÞ to 0 when it becomes negative and nor-
malize the remaining probabilities. Because this behavior
occurs most frequently when minor-allele frequencies are
small, we recommend ignoring sites with minor-allele
frequencies ,0.05, although this procedure has minimal ef-
fect on the bias andmean squared error (MSE) of simulations
(Table S7 in File S1).

Simulations

Twokinds of simulationswere performed to test ourmethods.
The first simulation was designed to examine the statistical
performance of mapgd’s estimation procedure. For these sim-
ulations, mapgd was given simulated sequence from two in-
dividuals and the allele frequencies in the population from
which these individuals were sampled. These allele frequen-
cies could either represent the true population allele frequen-
cies or represent the allele frequencies in a simulated sample.
Related individuals were generated by selecting one to seven
genotypic-correlation coefficients, which were then assigned
a random value between 21 and 1. The remaining coef-
ficients were assigned a value of 0. There are some con-
straints on what values these coefficients can take (though
unlike the condensed IBD modes they do not need to sum to
one), so a check was performed to ensure that the joint
probability distribution was defined for all minor-allele fre-
quencies between 0.1 and 0.4, and a file was generated with
either 53 104; 105; or 106 SNPs at either 33 or 103 cov-
erage. Allele frequencies were drawn from a triangular dis-
tribution with mean 0.1, minimum 0, and maximum 1.
Finally, binomially distributed noise representing the sam-
pling error in estimates of allele frequencies was introduced
for sampling 10, 100, and 1000 individuals. Simulations
that compare the effects of including or excluding alleles
from the two individuals being compared are reported in
Section S5 in File S1.

We also simulated a genomics study by creating 150-bp
reads thatwerealigned toa simulated referencegenomeusing
bwa (Li and Durbin 2010). A total of 98 individuals were
simulated: 2 focal individuals with a known relationship
and 96 unrelated individuals. Allele frequencies within the
population were Pareto-distributed and were estimated from
both the 2 focal individuals and the 94 unrelated individuals.

The accuracy of our estimates of relatedness and inbreed-
ing were compared to the programs VCFtools, KING, and

PLINK. Unfortunately, no other method currently exists that
estimates the coefficients g or d; but, several these programs
can calculate the coancestry (Q) and fraternity (D) coeffi-
cients in the absence of inbreeding, denoting them as either
k1 and k2 after Cotterman (1940), or IBD1 and IBD2 after
Suarez et al. (1978). In the absence of inbreeding these terms
are equivalent to Q and D; respectively, and are usually ver-
bally described as representing the probability that one (k1 or
IBD1) or two (k2 or IBD2) alleles are identical by descent
between a pair of individuals. For details on the operation
of mapgd, see M. S. Ackerman, T. Maruki, and M. Lynch
(unpublished data); for VCFtools, see Yang et al. (2010);
for KING, see Manichaikul et al. (2010); and for PLINK, see
Purcell et al. (2007).

Data availability

Thesoftwareused in the simulationsanddataanalysis is freely
available from https://github.com/LynchLab/mapgd/. The
Daphnia pulex data are available on request.

Results

Simulation results

Our quasi-maximum-likelihood estimation procedure pro-
duces accurate and precise estimates of all seven relatedness
components, evenwhen depth of coverage is minimal (Figure
2). The bias (the expected error, E½ûi 2 u�Þ and the MSE
fE½ðûi2uÞ2�g depend on the number of loci sampled, the
depth of coverage, and the accuracy of allele-frequency esti-
mates. Individuals in typical metazoan populations may have
between 106 and 107 informative SNPs, and even at 33
coverage we can estimate all seven components with MSE
, 2:43 1025: When the number of loci used is reduced to
100,000 and 5000, the largest MSE increases to 1:53 1024

and 28:43 1024; respectively.
Linkagebetween locimeans thatadjacentSNPsare likely to

be in similar relatedness modes and do not provide inde-
pendent estimates of the pedigree relationship between indi-
viduals. As a result, the difference between the genotypic
correlations observed in a sample and the genotypic correla-
tions expected from the pedigree relationship can be sub-
stantial (Table S6 in File S1, left columns). However, loci
influencing quantitative traits share the departures from ped-
igree expectations caused by this nonindependence, so the
sample genotypic correlations are better estimates of the
state of these causal loci than the expectations based on a
known pedigree relationship (Browning and Browning 2013;
Speed and Balding 2015). Linkage has no effect on the bias or
MSE of these measures when viewed in this way (Table S6 in
File S1, right columns).

In these simulations where population allele frequencies
are known exactly, the most biased estimators are the in-
breeding coefficients fX and fY : When a very large number of
individuals are used, inbreeding is overestimated by 0.003
when coverage is low and only 5000 SNPs are used. This bias
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arises largely from the small number of SNPs used in the anal-
ysis and not from low coverage, with a similar bias occurring at
103 coverage. However, the bias of the method depends on
both the number of individuals used to estimate allele frequen-
cies (Table S7 in File S1) and whether focal individuals are
included in those estimates (Table S8 in File S1).

Errors in the estimation of allele frequencies upwardly
bias estimates of fX ; fY ; QXY ; gX€ Y; gY€ X and dX€ Y€; and down-

wardly bias DX€ Y€: This bias is roughly independent of depth of

coverage and number of loci used, but does depend on the
number of individuals sampled; resulting in an upward bias
of 0.01 to fX ; fY ; QXY ; gX€ Y; gY€ X; and dX€ Y€when 48 individuals

are used to estimate allele frequencies, and decreasing to
0.005 when 96 individuals are used in the estimates (data
not shown). Including the focal individuals being compared
in allele-frequency estimates substantially increases the mag-
nitude of the bias and MSE (Table S8 in File S1). Estimates of
inbreeding and coancestry from 33 coverage data that ex-
cluded the focal individuals from allele-frequency calculations
was less biased and more accurate than 203 coverage data
that included focal individuals included in allele-frequency
calculations.

The errors of estimates of five genotypic-correlation co-
efficients ðfX ; fY ; QXY ; gX€ Y; and gY€ XÞ are uncorrelated,
whereas the errors of the estimates of the two zygosity coef-
ficients ðDX€ Y€ and dX€ Y€Þ have a strong negative correlation to
each other ðr2 ¼ 0:67Þ; and consequently these two terms
also have the largest MSEs. However, when 104 or more loci
are used, the MSEs of both DX€ Y€ and dX€ Y€ are , 1:53 1024:

We compared the performance of mapgd to VCFtools
(Yang et al. 2010), which can estimate Q (using the –relat-
edness option) and f (using the –het option); and to KING
(Manichaikul et al. 2010) and PLINK (Purcell et al. 2007),
which estimates both Q and D; on our mock genomics study
of 98 individuals. Using the default settings of each program,
we find that the quasi-maximum-likelihood method imple-
mented in mapgd substantially reduces the bias and MSE of
identity coefficients compared to VCFtools, KING, and PLINK,
particularly when genotyping error rates are high. At a cov-
erage of 33, KING underestimates coancestry by 48%, PLINK
by 49%, and VCFtools by 27% for outbred siblings. Increasing
the coverage to 103 reduces the bias to 8, 8, and 5%, re-
spectively, and all of the programs are essentially unbiased at
303 coverage (Table 3). However, unlike the method we
present here, high coverage does not ensure accurate esti-
mates from VCFtools, PLINK, or KING, because they are all
sensitive to assumptions regarding inbreeding to various de-
grees. The program KING seems to be particularly sensitive to
these assumptions, generally estimating that inbred siblings
are unrelated (i.e., Q = 0).

In contrast to the poor performance of VCFtools, PLINK,
and KING on low coverage sequence or with relatives with
complex relationships, mapgd gives accurate and unbiased
estimates across all simulated coverage and relationships
(Table 3). This robust estimation comes with a substantial

computational cost, with estimates frommapgd taking longer
than the other methods. The major computational hurdle for
accurate estimation of relatedness is the accurate calculation
of allele frequencies. But, this investment in computational
time results in a substantial increase in the accuracy of allele-
frequency estimation (Figure 3).

The surprisingly poor performance of KING in the presence
of inbreeding arises from an attempt by the program to
compensate for population structure. While this may be suc-
cessful under other circumstances, here it infers that the single
inbredpairof siblingswe included inour simulatedpopulation
are a unique subpopulation. Disabling this option, with the
–homo argument, substantially reduces the bias of KING’s
coancestry calculations, but it still compares unfavorably
with mapgd.

Analysis of Daphnia population-genomic data

D. pulex is a microcrustacean commonly found in ephemeral
ponds. During much of the year D. pulex asexually produce
offspring that quickly mature within maternal brood cham-
bers, butD. pulex can also produce resting eggs capable of long
dormancy, called ephippia, through sexual reproduction (sex-
uals). Because only resting eggs survive the winter in ephem-
eral ponds, sexualD. pulexmust have sex at least once a year to
persist. However, some D. pulex only produce these resting
eggs asexually (asexuals), allowing them to persist between
years without sex (Hebert and Crease 1980), thought they still
produce males capable of reproducing with sexual D pulex.

Samples of 96 Daphnia pulex were collected from four
ephemeral ponds: Kickapond (KAP), Portland Arch (PA),
Busey (BUS), and Spring Pond South (see Figure S6 for a
map of locations). Early season samples were collected
to minimize the chance of sampling clone mates (genetically
identical individuals), which are produced asexually by all
female D. pulex at 1–4 week intervals but cannot survive the
winter. Each of these samples was initially evaulated using six
allozyme loci to reveal any shared multilocus genotype as a ru-
dimentary screen for asexuals. Because no population appeared
to have asexuals in high abundance, all of these populationswere
sequenced to � 153 average coverage on an Illumina MySeq.
The reads were aligned to a reference genome (Colbourne et al.
2011) and analyzed with mapgd (Section S8 in File S1).

Three of the four D. pulex populations showed mild but sig-
nificant outbreeding (Figure 4A), although some of this could
result from bias in our methods or artifacts resulting from align-
ment to the reference genome. The population displaying in-
breeding (Spring Pond South) also contained a number of clone
mates (12 genetically distinct individuals sampled 74 times).
Genetically identical individuals were also isolated from PA
(7 genetically distinct individuals sampled 17 times), but not
from the two other populations. We analyzed these individuals
for asexual markers described in previous studies (Tucker et al.
2013; Xu et al. 2015), and found that 3 of the 12 groups of clone
mates in Spring Pond South possessed asexual makers, giv-
ing a total of 24 putative asexual individuals. The putative
asexuals were outbred compared to the local population
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ð�f ¼ 20:1060:02 vs. �f ¼ 0:0360:01Þ: Two chromosomes
within asexual D. pulex are believed to originate from a hy-
bridization ofD. pulexwithD. pulicaria and appear to bemain-
tained with little recombination (Tucker et al. 2013; Xu et al.
2013, 2015); individuals should have substantial outbreeding
in these hybrid regions. We removed these chromosomes
from the analysis (Figure S1A), but individuals with asex-
ual markers still appear outbred compared to the local
population.

In addition to groups of clone mates displaying Q � 0:5
and D � 1:0, the expectation for clone mates, (Figure 4, B
and D), several other general patterns are apparent. Strongly
negative coancestry values separate the individuals with
asexual markers from other individuals in Spring Pond South
(Figure 4B). These individuals are also separated by negative
inbred-relatedness values (Figure 4C).

A group of nine individuals in KAP displayed elevated
inbred-relatedness values (Figure 4C, arrow). These individ-
uals had elevated inbreeding, coancestry, and second- and
fourth-order zygosity correlations with each other group,
and a generally negative coancestry with the rest of the pop-
ulation (Figure S1B).

The second- and fourth-order zygosity correlation compo-
nents show a strong negative correlation with each other
(Figure S2), which is consistent with the behavior of estima-
tion error in our simulations (Figure S3), and is also consistent
with the behavior of the estimators when there is population
structure (data not shown). Because of these negative corre-
lations, the zygosity correlation coefficient ðr ¼ DX€ Y€þ dX€ Y€Þ
was used in analyses.

KAPandBUSpondshadnoclonemates,butPAandBUSboth
had a pair of first-order relationships ðQ � 0:25; Table 4).

Six pairs of individuals in our samples show coancestry
coefficients consistent with half-sibling or sibling relation-
ships (Table 4), and we will briefly discuss each of these
relationships. Particular individuals from these populations
are referred to by the pond from which they are isolated, and
the order in which they were isolated from the initial sample,
though this information. The coancestry (Q) of BUS-10 and
BUS-11 is consistent with these two individuals being full
siblings, and this is supported by their relatively large frater-
nity coefficient (D), but was somewhat less than expected for
full siblings ðD ¼ 0:5Þ: However, BUS-10 has a large inbreed-
ing value and the relationship is inconsistent with some form

Figure 3 Violin plots of the errors (e) of allele-frequency estimates from
the programs mapgd and VCFtools. The horizontal width of the red bars
represents the frequency of observations with the corresponding values
of e. The black box shows the median (heavy black line), boundaries of the
upper and lower quartile (so that 50% of all errors are contained within
the box), and the whiskers denote observations within 1.5 interquartile
range of the upper and lower quartiles. Results from � 10; 000 estimates
of a population of 98 individuals with 33 coverage. Alleles are drawn from
a neutral spectrum. Allele frequencies in VCFtools are calculated by the
VCFtools –freq command.

Table 3 Bias and MSE of mapgd, VCFtools, KING, and PLINK in
estimating coancestry, fraternity, and inbreeding for outbred
and inbred siblings

Coancestry (Q) Out. ðQ ¼ 1=4Þ In. ðQ ¼ 1=2Þ
Program Cov. Bias (3103) MSE (3104) Bias (3103) MSE (3104)

mapgd 33 210 2.2 211.6 2.5
VCFtools 33 268 50 2150 230
KING 33 2120 170 2450 2000
mapgd 103 26.9 0.73 28.2 1.5
VCFtools 103 212.0 1.8 216 3.3
KING 103 221 4.7 2520 2700
mapgd 303 26.4 0.69 27.2 1.0
VCFtools 303 25.7 0.70 24.5 1.0
KING 303 23.1 0.29 2500 2500

Fraternity ðDX€ Y€Þ Out. ðDX€ Y€ ¼ 1=4Þ In. ðDX€ Y€ ¼ 3=8Þ
Program Cov. Bias (3103) MSE (3104) Bias (3103) MSE (3104)

mapgd 33 27.2 22 20.3 23
PLINK 33 220 7.1 72 52
KING 33 370 1400 230 520

mapgd 103 21.7 4.3 21.4 5.8
PLINK 103 11 2.3 110 120
KING 103 58 36 400 1700

mapgd 303 1.2 4.3 8.6 6.1
PLINK 303 1.7 1.6 120 150
KING 303 23.5 1.7 360 1300

Inbreeding ðfX Þ Out. ðfX ¼ 0Þ In. ðfX ¼ 1=2Þ
Program Cov. Bias (3103) MSE (3104) Bias (3103) MSE (3104)

mapgd 33 214 7.1 233 18
VCFtools 33 99 100 2100 110
PLINK 33 72 54 2150 220

mapgd 103 28.5 1.6 27.0 1.3
VCFtools 103 15 3.5 211 9.5
PLINK 103 12 2.4 27.4 1.2

mapgd 303 29.0 1.9 27.6 1.6
VCFtools 303 20.1 1.9 23.8 1.3
PLINK 303 22.2 1.4 22.4 0.9

The values of all seven IBD coefficients are listed in Table S5 in File S1. Results are from
100 simulations on a 400-kbp, 400-cM genome containing � 10; 000 SNPs. See Sec-
tion S7 in File S1 for SNP filtering parameters. Out., outbred; in., inbred; cov. coverage.
See figure S7 for diagram of outbred and inbred siblings.
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of inbred half siblings because the inbred-relatedness values
are too low. It may be that the low coverage ð2:53 Þ of BUS-
10 caused an overestimate of inbreeding and coancestry val-
ues, and an underestimate of fraternity, although this error
would have to be more severe than errors seen in simulation
at 33 coverage. PA-12 and PA-108 also demonstrate a rela-
tively high coancestry, but too low to be full siblings, and they
have a low fraternity as well. In this case it may be that PA-12
and PA-108 are half siblings, but that population structure is
obscuring their relationship. Two other pairs of individuals in
KAP and two pairs in PA are consistent with half siblings with
varying degrees of inbreeding (Table 4). The coancestry sta-
tistics are all � 0:125 and other genotypic-correlation coeffi-
cients are small. However, most of these relationships are still
confounded with population structure, as demonstrated by
the generally negative inbreeding coefficients. There are also
half sibling-like relationships in Spring Pond South; however,
the performance of the estimators is very sensitive to estima-
tions of allele frequencies, and the allele-frequency calcula-
tions in Spring Pond South are based on the smallest number
of individuals due to the large number of clonemates sampled.
Because estimation of the genotypic-correlation coefficients
depends on accurate allele-frequency estimates, significant
bias may exist in these estimates.

Discussion

Here we reemphasize the importance of allowing genotypic-
correlation coefficients to take on negative values—not only
because doing so decreases the bias of estimates, but also
because the expected correlations can indeed be negative.
The framework outlined here is the first method to provide
accurate estimates of zygosity correlation coefficients in the
presence of inbreeding, and also the first method to provide
estimates of inbred-relatedness coefficients from population-
genomic data. This method provides accurate and nearly
unbiased estimates on very low coverage data. The genotypic-
correlation coefficients recovered from the four populations
of Daphnia provide insight into population structure by re-
covering close family relationships and separating distinct
subpopulations.

Similar results are not obtained in the analysis of the data
with the program PLINK, which shows substantial bias in
samples with , 53 coverage (Figure S4B and Figure S5B).
Additionally, PLINK estimates close relatedness between indi-
viduals at rates substantially higher thanmapgd, which would
be consistent with the high MSE of PLINK’s estimates implied
by simulations.

Our formulation of the second-order zygosity correlation
coefficient, DX€ Y€ ¼ D2 þ D7; is novel. It differs both from
Cockerham’s notation (Cockerham 1971), and from theFigure 4 Box plots of the genotypic-correlation coefficients of (A)

inbreeding (f), (B) coancestry (Q), (C) inbred relatedness (g), and (D)
zygosity ðrX€ Y€Þ estimated in the four Daphnia populations. The arrow
in (C) indicates a group of nine individuals analyzed in more detail in
Figure S1B. The individual pairwise estimates are shown as red
points. Because Q; g, and r are pairwise estimators, � 4500 compar-
isons exist in each population for these coefficients, while only � 95

estimates exist for f. Dashed lines are placed at 1, 0.5, 0.25, 0.125, and
0 to allow easier assignment of relationship status. SPS, Spring Pond
South.

Coefficients of Pairwise Relatedness 115

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.190660/-/DC1/FigureS4.jpeg
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.190660/-/DC1/FigureS5.jpeg
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.190660/-/DC1/FigureS1.jpeg


coefficient of fraternity for inbreed individuals, D ¼ D1 þ D7

(Lynch and Walsh 1998). At biallelic loci, the second-order
zygosity correlation coefficient ðDX€ Y€Þ estimates dominance
genetic variance, unlike the coefficient of fraternity. Caution
should be exercised when estimating dominance genetic
variance, as the coefficient of fraternity is also sometimes
called the coefficient of dominance, and it would be easy to
assume that the coefficient of dominance could be relevant
to estimating dominance genetic variance. Although it will
likely be confusing to use this term in the context of quan-
titative genetics, because it is already used to refer to the
coefficient describing the dominance deviation, if the term is
used it would apply more appropriately to the second-order
zygosity correlation coefficient.

There is a long history of interpreting IBD coefficients as
correlation or regression coefficients, and it has long been
recognized that these coefficients can be extended to include
coefficients relating an arbitrary number of individuals
(Wright 1922; Cockerham 1971). For instance, Wright’s FST
can be thought of as the genotypic correlation of all members
of a defined subpopulation to each other. However, it has
generally been thought that such extensions would prove
impractical to calculate, or that the number of coefficients
would increase very quickly. But by grouping partitions of
the same order, as we do with the second- and fourth-order
zygosity correlation coefficients, the number of coefficients
can be substantially reduced. Programs capable of algebraic
manipulation may make it possible to extend this method to
groups larger than pairs of individuals.

Methods for estimating individual specific allele frequen-
cies have been developed using principal component analysis,
and such methods may be necessary to properly remove
population stratification when estimating genotypic correla-
tions (Conomos et al. 2016). The phrase individual specific
allele frequencies may seem self-contradictory, since an indi-
vidual does not in an ordinary sense of the word have an
allele frequency. But an individual does have a probability
of possessing an allele, and, as discussed in the section Cal-
culating P(A) and P(B), this probability is usually taken to be
identical with the allele frequency in the population. Because
population structure can cause this frequency to differ for
different groups of individuals, and these groups do not need
to be discrete; every individual can have a unique probability
of possessing an allele, and thus, in some sense, can have an

individually unique allele frequency. While Equations 3–9
formally allow differences in ancestral allele frequencies be-
tween individuals, we have not made an attempt to estimate
this parameter. However, even with these limitations, the
ability to detect and characterize complex relationships in
wild populations, such as that between PA-12 and PA-108,
should be a boon to researchers. While many programs can
detect some relationships in panmictic populations, mapgd is
unique in that its estimates are accurate in the presence of
inbreeding, and it provides additional genotypic-correlation
coefficients not estimated by other programs.

The draft genome towhich readswere aligned in this study
is known to suffer from a number of artifacts, particularly
“allelic splits,” where the two alleles of a gene assemble as
paralogous genes in the reference, and “paralog collapse”
where paralogous genes are assembled at a single locus
(Denton et al. 2014). While the goodness-of-fit statistic was
developed in part to detect and remove these artifacts, its
performance has not been carefully analyzed in this article,
and it is possible that artifacts undetected by the goodness-of-
fit statistic influence our estimates. The inbreeding of an in-
dividual is the coancestry of the parents, and while slightly
negative coancestry is common in these populations, there
are few individuals with Q, 2 0:05; but many individuals
with f , 2 0:05 (Figure 4, A and B). The difference between
average coancestry and average inbreeding suggest that
there may be some bias in inbreeding estimation. The inclu-
sion of focal individuals in estimation of allele frequencies
may be responsible for some of this bias, since this inclusion
biases estimates in simulations by approximately 20.01
(Table S8 in File S1). Currently it is difficult to sequentially
exclude the focal individuals from allele-frequency calcula-
tions, but methods of removing this bias need to be explored.
Additionally, some of the bias may arise from the poor refer-
ence. High coverage increases the power of the goodness-of-
fit test, and should increase our ability to discern artifacts in
the reference. While an elevation of inbreeding is seen in low
coverage individuals, inbreeding estimates appear stable once
coverage is .53 ; implying that mapgd’s estimates are rela-
tively robust once sequencing depth is reasonable. Neverthe-
less, the robustness of these estimates needs to be reevaluated
when a better reference genome becomes available.

In this study, genotypic correlations provided insight into a
number of aspects of population structure. The two separate

Table 4 The values of genotypic-correlation coefficients for the six individuals from KAP, PA, and BUS displaying coancestry of half-sibling
relationships or higher (Q > 1/8), excluding clone mates

Clone X Clone Y fX fY QXY gX€ Y gY€ X dX€ Y€ DX€ Y€

BUS-10 BUS-11 0.14a 20.03a 0.34a 0.08a 0.01a 0.00 0.42a

PA-12 PA-108 20.07a 20.00 0.20a 20.02a 0.00 20.01a 0.08a

PA-024 PA-051 20.06a 20.08a 0.13a 0.00 20.00 0.01 0.05a

PA-112 PA-04 20.04a 20.08a 0.13a 20.02a 20.02a 20.00 0.03
KAP-048 KAP-099 20.00 0.03a 0.15a 20.01a 0.01a 20.00 0.01
KAP-113 KAP-120 20.04a 20.03a 0.13a 20.01a 20.01a 0.00 0.00

Spring Pond South is excluded due to small sample size.
aGenotypic-correlation coefficients significantly different from zero ðx2 . 10:7; corrected for the 42 comparisons in the table).
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groups of asexuals in Spring Pond South could be distin-
guished from sexuals by their large negative inbreeding,
coancestry, and inbred-relatedness values. This result is con-
sistent with limited or no crossing between the asexuals and
the sexualswithin thepond.Agroupofnine individuals inKAP
with a coancestry ofQ � 0:1 form a clear subpopulation (Fig-
ure 4 and Figure S1), although we have not explored what
factors drive this structure.

An average of two close relatives were found in the three
Daphnia populations (excluding clone mates), which may
seem surprisingly high given that only 96 individuals were
sampled. However, �4500 comparisons of relatedness were
made between individuals in each population, so the possi-
bility of obtaining related individuals is much greater than
naive intuition would suggest. Our ability to find closely re-
lated individuals in random samples highlights the potential
power of a genomic-based approach in wild populations.

One strength of amaximum-likelihood framework is that it
allows the assessment of significance of relationships through
a log-likelihood ratio test. A correctly specified likelihood
function would account for correlation between loci, rather
than assuming that loci are independent, and allow for tests of
deviations frompedigree expectations. Because ourmethod is
a quasi-maximum-likelihoodmethod, it does not test for these
deviations; nevertheless it does correctly test for the signifi-
cance of sample correlations. In theDaphnia, virtually all pairs
of individuals had highly significant departures from an un-
related status (i.e., p � 1024 after multiple correction), in
stark contrast to the behavior of our estimators in simulations
when the true value of the parameters are known to be zero.
Genotypic correlations in these samples may be created by
geographic structure of the population and temporal structure
created by the dormancy of resting eggs over many seasons. In
this case the log-likelihood-ratio test is, at least in a sense,
working correctly. Since most populations may have some
form of substructure owing to variation in family size, demog-
raphy, etc., it may be desirable to find a method that considers
some aspects of population structure as part of the null model.

While much work remains to be done, our estimators
already have excellent performance when coverage is mini-
mal. The ability to use low coverage data for population-
genomic studies will greatly reduce the cost of these studies.
Even if the additional parameters estimated by methods out-
lined here are unneeded, the ability to recover accurate and
precise estimates of coancestory, inbreeding, and fraternity
estimates on lowcoverage sequencemaybeofgeneraluse.We
hope that these properties, and others discussed in the text,
will make the general coefficients of genotypic correlation
useful to the research community.
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