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ABSTRACT Although a number of studies have shown that natural and laboratory populations initially well adapted to their
environment can evolve rapidly when conditions suddenly change, the dynamics of rapid adaptation are not well understood. Here a
population genetic model of polygenic selection is analyzed to describe the short-term response of a quantitative trait after a sudden
shift of the phenotypic optimum. We provide explicit analytical expressions for the timescales over which the trait mean approaches the
new optimum. We find that when the effect sizes are small relative to a scaled mutation rate, small to moderate allele frequency
changes occur in the short-term phase in a synergistic fashion. In contrast, selective sweeps, i.e., dramatic changes in the allele
frequency, may occur provided the size of the effect is sufficiently large. Applications of our theoretical results to the relationship
between QTL and selective sweep mapping and to tests of fast polygenic adaptation are discussed.
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IN “What Darwin got wrong,” Losos (2014) persuasively
argues that we can observe evolution in action and, in par-

ticular, that evolution can be so rapid that evolutionary and
ecological timescales are confluent. The examples range from
the peppered moth (Cook et al. 2012), insecticide resistance
in Drosophila (Ffrench-Constant et al. 2002), color of field
mice (Vignieri et al. 2010), beak size in Darwin’s finches
(Grant and Grant 2008), guppies in Trinidad (Reznick
2009), and Anolis lizards (Losos 2009) to name but a few.
The rapid changes are responses to natural and human-
induced shifts in the environment. The genetic architec-
ture underlying these traits ranges from few genes of major
effect to highly polygenic systems (van’t Hof et al. 2011;
Lamichhaney et al. 2012, 2015; Linnen et al. 2013). In this
article, we study a model that encompasses a wide range of
genetic architectures. Our aim is to understand the geno-
mic signatures of positive selection in these systems that
occur after environmental changes, with an emphasis on
rapid adaptation.

There is a growing body of literature on the detection of
adaptive signatures inmolecular population genetics. Follow-
ing the pioneeringwork ofMaynard Smith andHaigh (1974),
the impact of positive selection on neutral DNA variability
(selective sweeps) has attracted much interest. This theory
has been applied to huge data sets that emerge from modern
high-throughput sequencing. A large number of statistical
tests have been developed to detect sweep signals and esti-
mate the frequency and strength of selection (Kim and
Stephan 2002; Nielsen et al. 2005; Pavlidis et al. 2010).
To find sweep signatures in the genome, strong positive
selection is required (with Nes � 1;where Ne is the effective
population size and s is the selective advantage of a benefi-
cial allele) (Kaplan et al. 1989; Stephan et al. 1992). Thus,
sweeps are characteristic signals of fast adaptation. They are
expected to be found at individual genes or at major loci if a
trait is controlled by multiple genes.

This raises the question whether fast evolution is also
possible in highly polygenic systems and, if so, which genomic
signatures arise. A number of genome-wide association stud-
ies (GWAS) have shown that quantitative traits are typically
highly polygenic (e.g., Turchin et al. 2012) and there is grow-
ing evidence that the molecular scenario of sweeps only cov-
ers part of the adaptive process and needs to be revised to
include polygenic selection (Pritchard and Di Rienzo 2010).
As GWAS yield information about the distribution of single
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nucleotide polymorphisms (SNPs) relevant to quantitative
traits (Visscher et al. 2012), it is important to understand
the models of polygenic selection in terms of the frequency
changes of molecular variants, i.e., with reference to popula-
tion genetics (Bürger 2000).

Although theequilibriumstructureof theallele frequencies
and the stationary variance have been the subject of research
in a large number of such studies (Bürger 2000), the dynamics
have received relatively little attention. Perhaps the most
well-studied model in this context is Lande’s model (Lande
1983) in which the changes in the allele frequency at a major
locus in the background of a large number of minor loci are
considered (Chevin and Hospital 2008; Gomulkiewicz et al.
2010). However, in Lande’s model, the background is not
explicitly modeled and it is assumed that the background
variance does not evolve. Pavlidis et al. (2012) have studied
a more detailed model but their analysis is restricted to a very
small number of loci.

Following our preliminary study (Jain and Stephan 2015),
here we perform a population genetic analysis of the dynam-
ics of a polygenic trait after a sudden environmental shift of
the phenotypic optimum. We consider a quantitative trait
that is determined additively by a large number of diallelic
loci of unequal effects. The population is assumed to be in-
finitely large and to evolve under stabilizing selection and
mutation. This model was first proposed by Wright (1935)
and more recently revisited by Barton (Barton 1986; de
Vladar and Barton 2014). We carry out a detailed study
of this model to understand the dynamics of allele frequen-
cies as well as of the trait mean and variance. In particular,
to describe rapid adaptive evolution, we concentrate on the
short-term period after the environmental change, which
may be defined as the time until the phenotypic mean rea-
ches a value close to the new optimum.

We find that the short-time dynamics arewell described by
a directional selection model which is analytically tractable.
Working within the framework of this simpler model, we
reproduce some results obtained using different models or
assumptions (Lande 1983; Chevin and Hospital 2008; Jain
and Stephan 2015) when most effects are small relative to a
scaled mutation rate (de Vladar and Barton 2014). In addi-
tion, we obtain several new results, in particular when most
effects are large.

Model

Weconsider an infinitely large population of diploids inwhich
a trait z is determined by ℓ diallelic loci. At the ith locus, let
the + allele have an effect gi=2 and frequency pi and, corre-
spondingly, the 2 allele have an effect 2gi=2 and frequency
qi ¼ 12 pi (de Vladar and Barton 2014; Jain and Stephan
2015). The effect at each locus is assumed to be exponentially
distributed with mean g; as is often the case in quantitative
genetic studies (Mackay 2004; Goddard and Hayes 2009).
Then, on neglecting dominance and epistasis, the trait z is
determined additively and its mean c1 can be written as

c1 ¼
Xℓ
i¼1

ðgipi2 giqiÞ¼
Xℓ
i¼1

gið2pi2 1Þ: (1)

For a phenotypic trait under stabilizing selection, assuming
that the deviation of the fitness from its optimum z9 is qua-
dratic (Bürger 2000), we can write the phenotypic fitness as
wðzÞ ¼ 12 ðs=2Þðz2z9Þ2;where smeasures the strength of sta-
bilizing selection on the trait. Averaging over the phenotypic-
trait distribution (which is not necessarily Gaussian), one finds
the average fitness to be

�w ¼ 12 ðs=2Þ�z2 2 c21
�þ �c212 2zz9þ z92

�
; (2)

� exp
�
2ðs=2Þ

�
c2 þ

�
c12z9

�2�	
; (3)

where c2 is the variance of the trait and is given by (see
Appendix A)

c2 ¼ 2
Xℓ
i¼1

  g2i piqi: (4)

When selection is weak and recombination rate is high [link-
age equilibrium (LE); see alsoAppendix B], andmutations are
absent, the allele frequency pi evolves according to Wright’s
equation as (Bürger 2000, Chap. 6)

_pi ¼
pið12 piÞ

2�w
@ �w
@pi

; (5)

where the dot denotes the derivative with respect to time. For
the model described above, we then have (de Vladar and
Barton 2014; Jain and Stephan 2015)

_pi ¼ 2 sgipiqi
�
c12 z9

�
2
sg2i
2
  piqiðqi 2 piÞ þ mðqi 2 piÞ  ;

i ¼ 1; . . . ; ℓ:

(6)

In the above equation, the first two terms on the right-hand
side (RHS) follow from (3) and (5). The first term tends to
stabilize the phenotypic mean to the optimum trait value, and
the second termresults in thefixationof oneof thealleles, thus
depleting genetic variation. The last term on the RHS models
the mutation process restoring genetic variance (Barton
1986), and describes changes between the + and 2 allele
at locus i with locus-independent, symmetric rate m. In the
following, we refer to the model defined by (6) as the full
model.

In this article, we are interested in the response of the
phenotypicmeanandvariancewhen thephenotypic optimum
is suddenly shifted to a new value zf in a population initially
equilibrated to zo ¼ 0: A preliminary investigation of such a
situation has been carried out numerically by de Vladar and
Barton (2014), and our goal here is to provide an analytical
understanding of the dynamics. We will thus focus on the
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dynamics of the allele frequency that evolves according to (6)
when the phenotypic optimum z9 ¼ zf ; starting from the
stationary state frequency p*i of the population that is equil-
ibrated to a phenotypic optimum at zero.

Unless stated otherwise, in this article, we assume that
zf . 0 so that the initial mean deviation from the phenotypic
optimum, Dc1ð0Þ ¼ 2 zf ; is negative. We also restrict the
magnitude of the shift such that zf , ℓg; this is because the
first term on the RHS of (6) acts to minimize the deviation of
the trait mean from its optimum. But, from (1), the magni-
tude of the mean cannot exceed

Pℓ
i¼1gi � ℓg; and therefore

a shift beyond the total effect of all loci is not within evolu-
tionary reach.

Results

Stationary state of the full model

Beforeproceeding further,webriefly review theknownresults
for the stationary state that are pertinent to the later discus-
sion. In the stationary state where the allele frequencies are
independent of time, setting the left-hand side (LHS) of (6) to
zero and performing some simple algebra, we find that the
equilibrium allele frequency p*i is a solution of the following
equation,

p*3i 2 p*2i

 
3
2
þ Dc*1

gi

!
þ p*i

1
2
þ Dc*1

gi
þ 1
4

 
ĝ

gi

!2
2
4

3
52 1

8

 
ĝ

gi

!2

¼ 0;

(7)

where ĝ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2m=s

p
andDc*1 is the deviation of themean from

the optimum in equilibrium.
When the stationary mean deviation Dc*1 is zero, Equation

(7) for the equilibrium allele frequency has three solutions
that are given by de Vladar and Barton (2014):

p*i ¼

1
2
; gi, ĝ

1
2
6
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

ĝ2

g2i

s
; gi. ĝ:

8>>>><
>>>>:

(8)

While the solution p*i ¼ 1=2 is stable when the effect is
smaller than the threshold effect ĝ; the two latter ones hold
when the effect is larger than ĝ: The threshold ĝ between
large- and small-effect alleles arises because of mutation.
When selection is much weaker than mutation, the equilib-
rium frequency is one half; i.e., when the stationary trait
mean is at the optimum, mutation and selection balance each
other at an intermediate allele frequency. The value of one
half arises because we assumed that mutation in both direc-
tions is symmetric (see above). Relaxing this symmetry as-
sumption would lead to different equilibrium frequencies.
However, since we focus in the following on the short-term
behavior of the dynamics, detailed mutation models are of
relatively little importance compared to selection andwill not
be considered here. For exponentially distributed effects, as

the fraction of loci with large effects is given by
g21

RN
ĝ dx   e2x=g ¼ e2ĝ=g; most effects are large when

ĝ � g;while most effects are small in the opposite param-
eter regime.

Furthermore, on separating the contribution from lociwith
small and large effects and using the stationary state fre-
quency (8), we obtain the stationary state variance to be
(de Vladar and Barton 2014; Jain and Stephan 2015)

c*2 ¼ ℓg2
�
12

�
1þ ĝ

g

�
e2ĝ=g

�
: (9)

The above result shows that when most effects are small,
c*2 � ℓg2; while in the opposite case, it is well approximated
by ℓĝ2:

The correction to the equilibrium allele frequency in (8),
when the stationarymeandeviation is nonzerobut small, can
be found in Appendix B of de Vladar and Barton (2014). For
future reference, we note that these corrections are negligi-
ble except when the effect is close to the threshold ĝ (see
Figure 2 below).

Dynamics when most effects are small

Wenowstudy the dynamics of the allele frequencywhenmost
effects are small ðg � ĝÞ: Since the population is initially
equilibrated to the phenotypic optimum at zero, the initial
frequency at the ith locus is well approximated by (8), and
close to one half when most effects are small. Then, as
piðtÞ � qiðtÞ at short times, we can neglect the last two terms
on the RHS of (6) compared to the first term to get (Jain and
Stephan 2015)

_pi ¼ Sipiqi; (10)

where Si ¼ 2 sgiDc1 and Dc1 ¼ c1 2 zf :When the final mean
deviation is negligible, the final allele frequency is also close
to one half, and we expect that (10) can describe the bulk
of the allele frequency dynamics as is indeed supported by
Figure 1 and Figure 2.

Directional selection model: In the following,wewill refer to
the model defined by (10) as the directional selection model.
Appendix C details the prescription for calculating relevant
quantities analytically in this model. As shown in Appendix C,
the trait mean can be written as

c1ðtÞ ¼
Xℓ
i¼1

  gi 2
Xℓ
i¼1

2gi
1þ pið0Þ

qið0Þe
bgi=g

; (11)

where the parameter b defined in (C6) is proportional to
the logarithm of the ratio of allele frequencies and evolves in
time as

_b ¼2 sgDc1: (12)

Thus a closed equation forbðtÞ can be obtained by eliminating
the mean using (11), and on plugging the result for bðtÞ back
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in (11), the mean can be found. Furthermore, it is shown in
Appendix C that in the directional selection model, the nth
cumulant of the effect evolves according to (Bürger 1991)

_cn ¼2 sDc1cnþ1; n$1; (13)

which shows that the nth cumulant cn; n$ 2; can be found
once cn21 is known. Thus to describe the short-time dynam-
ics, we will focus on the key Equations 11 and 12.

We now return to (11) for themean c1 and analyze it when
the number of loci is large. When most effects are small
ðĝ � gÞ; as mentioned above, the initial allele frequency is
one half. Furthermore, as explained in the Discussion, the
sum over the contribution from individual loci in (11)
amounts to averaging over the distribution of effects when
the number of loci is large. For large ℓ; on approximating the
sum in (11) by an integral, we thus get

c1ðtÞ ¼ ℓg2
ℓ
g

Z ĝ

0
dg

2ge2g=g

1þ ebg=g
: (14)

Writing x ¼ g=g in the above integral, we get

c1ðtÞ ¼ ℓg½12 2IsðbÞ�; (15)

where

IsðbÞ ¼
Z ĝ=g

0
dx

xe2x

1þ ebx
: (16)

Our main task is to find the time dependence of b using (12)
and (15), which is dealt with in Appendix D.

Qualitative patterns of the cumulant dynamics: Before
turning to explicit expressions, we first make some general
remarks on the behavior of the cumulants in the directional
selection model. Since the variance is always nonnegative, it
follows from (13) that the magnitude of mean deviation
decreaseswith time.Asweare considering the scenariowhere
Dc1ð0Þ, 0; the mean deviation Dc1ðtÞ increases monotoni-
cally with time toward zero, as shown in Figure 1A. Due to
(12), this also means that bðtÞ initially increases and then
saturates to a constant.

Furthermore, due to (12) and (13), the variance can be
written as

c2 ¼ 2 2ℓg2I9sðbÞ; (17)

where prime denotes the derivative with respect to b. To
arrive at the above expression, we have used that
_c1 ¼ 2 2ℓgI9sðbÞ _b due to (15). Equation 17 gives the rate of
change of variance as _c2 ¼ 2 2ℓg2 _bI$s ðbÞ: It is easy to check
that the integrand of I$s is always positive from which it fol-
lows that I$s ðbÞ. 0: Therefore the directional selectionmodel
predicts that when most effects are small, the variance de-
creases with time as indeed verified in Figure 1B. From this
result and (13), it immediately follows that the skewness c3
defined in (A6) is always negative.

Figure 1 Most effects are small: Dynamics of the (A) mean deviation and (B)
variance (relative to its initial value) for ĝ � 3:2g ¼ 0:128 and zf ¼ ℓg=4 ¼ 2:
The other parameters are s ¼ 531023; m ¼ 1025; and g ¼ 0:04: The inset
in (A) shows the mean deviation in the full model at large times. The gray and
black curves are obtained for a single realization of effects in which 197 out of
ℓ ¼ 200 loci have effects smaller than the mean. The orange and red curves, on
the other hand, are averaged over the distribution of effects. The results from
the two procedures match when the number of loci is very large as explained in
Discussion.

Figure 2 Most effects are small: Dynamics of the allele frequency for
locus with effect gi ¼ 0:121 (main) and gi ¼ 0:024 (inset). All the
parameters are the same as in Figure 1. Note that while the initial
allele frequency in the inset is closely approximated by (8), the allele
trajectory starts at a value much lower than one half in the main
panel as the effect size is close to ĝ � 0:126: In the latter case, the
corrections to (8) are substantial and given by (B2) of de Vladar and
Barton (2014).
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Quantitative dynamics of the mean and higher cumu-
lants: As shown in Appendix D, the mean deviation vanishes
exponentially fast,

Dc1ðtÞ ¼ Dc1ð0Þe2sc2ð0Þt; (18)

where c2ð0Þ � ℓg2 is the initial variance given by (9) when
most effects are small. The above result has been previously
obtained by assuming that the variance and higher cumu-
lants do not evolve in time (Lande 1983; Chevin and
Hospital 2008; Jain and Stephan 2015). The basis of this
assumption lies in phenotypic data (Lande 1976) or is
motivated by mathematical tractability (Chevin and Hospital
2008; Gomulkiewicz et al. 2010; Jain and Stephan 2015).
Here, in contrast, we have obtained (18) without any addi-
tional assumptions.

Using the solution (18) in (13) for cumulant dynamics, we
find that the variance stays at its initial value c2ð0Þ and the
higher cumulants vanish. The corrections to these behav-
iors at late times are given by (D13) and (D14), and we
find that the variance remains a constant at short times
� ½sc2ð0Þ�21 but decreases thereafter to a smaller value:

c2ðtÞ
c2ð0Þ � 12 3

�
zf
ℓg

�2h
12e2sc2ð0Þt

i2
: (19)

The above expression shows that the drop in the variance is
larger for large shifts in the optimum and can be quite
significant, as shown in Figure 1B, for a moderate shift (rel-
ative to the maximum mean). A comparison between the full
model, directional selection model, and the analytical results
is also shown in Figure 1 for mean and variance. The reason
for the difference observed in Figure 1 between the cumu-
lants obtained using (10) and the large ℓ approximation (15)
is explained in the Discussion.

The main panel of Figure 1A shows that the mean is very
close to the stationary state at time t � 5000: However, as
shown in the inset, the mean continues to change, albeit very
slowly, until t � 23 105 when the true stationary state is
reached. A similar pattern is seen for variance (and allele
frequency shown below in Figure 2). These observations
suggest that the dynamics of the mean can be divided into
a short-term phase, in which the mean approaches a value
close to the new optimum; and a long-term phase, in which
it reaches the exact stationary state. To explore fast evolu-
tion, we will concentrate in the following on the short-term
phase.

Dynamics of the allele frequencies: From (10) for allele
frequency dynamics, we first note that for Dc1ð0Þ, 0; all
the + allele frequencies increase in the short-term phase
[note that so far, we have argued that (10) holds for small-
effect loci only, but in the next section we will also find this to
be true for large-effect loci]. This simple result has potentially
useful application as explained in the Discussion.

Using (18) in (10), the time dependence of the allele
frequency for small deviations in the phenotypic optimum

can be obtained analytically (Chevin and Hospital 2008; Jain
and Stephan 2015):

piðtÞ ¼ pið0Þ
pið0Þ þ qið0Þexp

�
2

zfgið12 e2sℓg2 tÞ
ℓg2

�: (20)

Thus in the directional selection model, the allele frequency
reaches the stationary state over a time period � ðsℓg2Þ21:

These shifts in allele frequency are small to moderate, as
verbally predicted by several authors (e.g., Pritchard and Di
Rienzo 2010). However, this directional behavior may
change in the long-term period, as we will discuss next.

The allele frequency dynamics in the full model and di-
rectional selection model are compared for some loci in
Figure 2 and we see that while the two match well at short
times, in the full model, the allele frequency at large times
can vary in a nonmonotonic fashion (see inset of Figure 2)
and approaches a stationary state value given by the solu-
tion of (7). The long-time dynamics of the allele frequency
can be understood by solving (6) with zero mean deviation
and the initial condition given by the stationary state solu-
tion of the directional selection model (Jain and Stephan
2015). A succinct way of expressing such a prescription is
to write

Dc1ðtÞ ¼ Dc*1 þ Dc1ð0Þe2sc2ð0Þt (21)

in (6). Numerical integration of the resulting equation
matches well with the full model as shown in Figure 2. An
analytical understanding of the long-time dynamics can also
be obtained as described in Appendix E.

Dynamics when most effects are large

We now turn to the situation when most effects are large
ðg � ĝÞ: Due to (8), the initial allele frequencies are close to
either zero or one. When the final mean deviation is close to
zero, either the final allele frequency stays close to the initial
one or sweeps to fixation as shown in Figure 3. Thus, unlike in
the case where most effects are small, in the full model the
factor qi 2 pi in the last two terms on the RHS of (6) is not
negligible. However, the directional selection model defined
by (10) describes the short-time dynamics when most effects
are large, as explained below.

Since we are dealing with the case where ĝ � gi; we
can ignore the effect of mutations. Furthermore, as
jqi 2 pij cannot exceed one, (6) shows that as long as
2
c1ðtÞ2 zf

[ 2jDc1ðtÞj � gi; the second term on the RHS
can be neglected to yield (10) for the allele frequency at
the ith locus. Therefore we expect the directional selec-
tion model to apply at short times. But as time progresses,
the mean deviation decreases in magnitude, and the above
condition for the validity of the directional selection model
fails.

Using the initial frequency given by (8) for gi � ĝ; Equa-
tion 11 for the mean yields
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c1ðtÞ ¼
Xℓ
i¼1

gi 2
X
i2Pþ

2gi
1þ pþi ð0Þ

qþi ð0Þ  e
bgi=g

2
X
i2P2

2gi
1þ p2i ð0Þ

q2i ð0Þ  e
bgi=g

;

(22)

where P6 refers to the set of loci with initial frequencies
p6i ð0Þ given in (8). From symmetry considerations, we expect
the number of loci with initial frequency above and below
one half to be equal. Furthermore, for gi � ĝ; the initial
allele frequency given by (8) can be approximated as
p2i ð0Þ � ðĝ=2giÞ2; pþi ð0Þ ¼ 12 p2i ð0Þ: We thus arrive at

c1ðtÞ �
Xℓ
i¼1

gi 2
X
i2Pþ

2gi

1þ
�
2gi
ĝ

�2
ebgi=g

2
X
i2P2

2gi

1þ
�

ĝ
2gi

�2
ebgi=g

:

(23)

Then, as in the last section, approximating the sums in (23) by
integrals for large ℓ; we get

c1ðtÞ ¼ ℓg
�
12 Iþl 2 I2l

�
; (24)

where

Iþl ¼ 1
2g

Z N

ĝ
dg

2ge2g=g

1þ
�
2g
ĝ

�2
ebg=g

(25)

¼
Z N

2=a
dx

xe2x

1þ ðaxÞ2ebx; (26)

and

I2l ¼ 1
2g

Z N

ĝ
dg

2ge2g=g

1þ
�

ĝ
2g

�2
ebg=g

(27)

¼
Z N

2=a
dx

xe2x

1þ ðaxÞ22ebx
: (28)

In the above equations, the parameter a ¼ 2g=ĝ:

Qualitative patterns: In the directional selection model, as
(12)and(13)hold irrespectiveofwhethermosteffectsare small
or large, the mean deviation Dc1ðtÞ and the allele-frequency-
dependent variableb increase with time as discussed in the last
section, and the variance is given by c2 ¼ 2 ℓg2ðIþ9

l þ I29
l Þ:

However, unlike when most effects are small, here the rate of
change of variance, _c2 ¼ sℓg3Dc1ðIþ$

l þ I2$
l Þ; is not amonotonic

function of time; this is because the sum Iþ$
l þ I2$

l is negative
when b is small and positive for larger b. Thus the directional
selection model predicts that initially the variance increases
with time, and then decreases toward the stationary state at
the new phenotypic optimum.

Quantitative dynamics: Equation 24, alongwith (12), forms
a closed system of equations and allows us to find the mean.
The integrals I6l are estimated in Appendix F; we find that the
integral Iþl does not contribute substantially to the mean
since it includes the loci with initial frequency close to one
and we are dealing with the case when the initial mean de-
viation is negative [see also (32) below], and I2l is well ap-
proximated by Jl given by (F8). When the initial deviation
from the phenotypic optimum is small, using (F14) and
(F21), we find that at large times the mean deviation de-
creases exponentially fast,

Dc1ðtÞ � e2sℓg2ðln  aÞ21
rðln  rÞ2t (29)

¼ e2szfgðln  aÞ21ðln  rÞ2t; (30)

where r ¼ zf=ðℓgÞ is the phenotypic shift relative to the max-
imum mean magnitude. The above result shows that the
timescale over which the mean approaches the stationary
state depends weakly on the number of loci, unlike the case
whenmost effects are small [see (18)]. However as the mean
of the distribution is large here, the relaxation in the direc-
tional selection model occurs faster than in the small-effects
case.

When most effects are large, the variance changes consid-
erably, evenwhen the relativephenotypic shift is quite small as
Figure 4B shows. The peak variance cðmaxÞ

2 can be estimated
by the stationary state variance in the directional selection
model. At large times, using (F16) and (F21), we find that

cðmaxÞ
2 ¼ ℓg2ðln  aÞ21rðln  rÞ2 (31)

and therefore cðmaxÞ
2 =c2ð0Þ � a2 � 1: This result can also be

seen by noting that the allele frequencies at loci with an initial

Figure 3 Selective sweeps when most effects are large: Dynamics of the
scaled absolute mean deviation jDc1ðtÞj=zf (dotted, orange) and allele
frequency (solid and dashed curves) for some loci that satisfy the neces-
sary condition gi , 22Dc1ð0Þ; where Dc1ð0Þ ¼ 22:99 and zf ¼ 3: The
numerical solution of the full model (6) (solid) and directional selection model
(10) (dashed) are shown for the effect size gi¼1;...;6 ¼ 0:776 (gray), 0.340
(brown), 0.319 (red), 0.272 (magenta), 0.092 (blue), and 0.060 (black). The
other parameters are s ¼ 0:1; m ¼ 1024; g ¼ 0:2; and ℓ ¼ 20: Except for
the locus with effect g4; the allele frequency for the directional selection
model exceeds one half at loci whose allele frequency for the full model
sweeps. The allele frequency for the locus with effect g6 also increases nearly
to fixation, but at very long times where the directional selection model is not
valid. Because this frequency increase is relatively slow, a genomic signature
similar to a selective sweep cannot be expected.

394 K. Jain and W. Stephan



frequency close to zero shift to intermediate values at short
times. Then, from (4), the maximum variance is obtained
when the allele frequency is close to one half leading to
cðmaxÞ
2 � ℓg2:

The dynamics of the allele frequency at long times are
discussed in Appendix E and at short times in the next section.

When do selective sweeps occur?

Belowwe obtain a criterion on the size of effects for which the
allele frequency at a major locus can sweep. When pið0Þ � 0;
at short enough times, keeping only the lowest order terms in
pi on the RHS of the full model (6) and neglecting the effect
of mutations, we get

_pi � 2
sgipi
2

½2Dc1ð0Þ þ gi�: (32)

When the initial mean deviation Dc1ð0Þ, 0; the above equa-
tion shows that only the loci with effect gi , 2jDc1ð0Þj can
potentially sweep, since their frequency increases with time.
On repeating the above analysis for loci with initial frequency
close to one, we find that the frequency at such loci does not
sweep to zero. Thus, when Dc1ð0Þ,0; only the loci with small
initial frequency and effect , 2jDc1ð0Þj are likely to undergo
large changes in frequency. These criteria are necessary, but as
Figure 3 shows, they are not sufficient for a selective sweep to
occur.

For the major loci that meet the above necessary conditions
for selective sweeps, the secondand the third termon theRHSof
the full model (6) can be neglected in comparison to the first
term, thereby reducing (6) to the directional selection model
(10).For the restof the (major) loci, theallele frequencychanges
are not appreciable and the frequencies remain close to zero or
one, a solution satisfied by (10). Let~t denote the time when the
allele frequencies evolving according to the directional selection
model equilibrate. Figure 3 shows that the mean deviation
obtained using the full model is close to zero at time ~t: Then
for subsequent times t.~t; we can ignore mutations and set
Dc1 ¼ 0 in the fullmodel (6) to obtain (Jain and Stephan 2015)

_pi ¼
sg2i
2
  piqið2pi 2 1Þ; t.~t: (33)

The above differential equation is subject to the initial con-
dition pið~tÞ;which is the allele frequency in the steady state of
the directional selection model.

From the definition (C6) of b, we have

pi
�
~t
�

12 pi
�
~t
� ¼ pið0Þ

qið0Þ
exp

 
gi~b

g

!
(34)

which simplifies to give the frequency pið~tÞ as

pi
�
~t
�
¼
"
1þ qið0Þ

pið0Þ exp
 
2
gi~b

g

!#21

; (35)

where ~b[bð~tÞ: It is clear from (33) that if the frequency pið~tÞ
is greater than one half, the allele frequency at the ith locus
will increase monotonically toward one. Thus we predict that
the allele frequency at a locus would sweep when pið~tÞ. 1=2:
Combining this criterion with the necessary condition men-
tioned above, we find that a sweep can occur when the effects
lie in the following range:

g

~b
ln
�
q2i ð0Þ
p2i ð0Þ

�
, gi , 2zf : (36)

This expectation is indeed seen to be consistent with the
numerical solution of the full model as shown in Figure 3,
except for one case.

When most effects are small: While considering the dynam-
ics of mean and variance when most effects are small in an
earlier section, we ignored the contribution of (few) loci that
have large effect. However, the results obtained earlier can be
used to understand the dynamics of the allele frequency at
major loci too. As (D11) shows, the auxiliary parameter in
the stationary state of the directional selection model is
~b ¼ zf=ðℓgÞ: Using this in (36), we find that a selective sweep
can occur at a major locus if its effect

2zf . gi.
ℓg2

zf
ln
�
q2i ð0Þ
p2i ð0Þ

�
; (37)

Figure 4 Most effects are large: Dynamics of the (A) mean deviation and
(B) variance for ĝ � 0:028; g ¼ 10ĝ; and zf ¼ 10 � 0:18ℓg: For the re-
alization of effects used in this figure, 183 out of ℓ ¼ 200 loci have effects
larger than the mean. The other parameters are s ¼ 0:1 and m ¼ 1025:
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¼ c2ð0Þ
jDc1ð0Þj ln

�
q2i ð0Þ
p2i ð0Þ

�
; (38)

which matches the criterion (26b) of Chevin and Hospital
(2008). Furthermore, using (8), we find that

2c2ð0Þ
jDc1ð0Þj ln

�
2gi
ĝ

�
, gi , 2zf : (39)

For the parameters in Figure 1 where the average effect size
g ¼ 0:04 and the threshold effect ĝ ¼ 0:128; the above cri-
terion requires that the effect size at a major locus be.0.81.
For exponentially distributed effects, as is assumed in this
article, the probability for the effect size to exceed this crite-
rion is extremely low ð� 1029 for the parameters in Figure 1)
and therefore selective sweeps at major loci are prevented
when most effects are small (Chevin and Hospital 2008;
Pavlidis et al. 2012).

When most effects are large: The criterion for short-time
sweeps is more involved in this case; using (8) in (36), we
obtain

2zf .gi.
2g
~b

ln
�
2gi
ĝ

�
; (40)

� 2g

ln
�
2g
ĝ

� ln�ℓg
zf

�
ln
�
2gi
ĝ

�
; (41)

where we have used (F20) for ~b in the last expression. For the
parameters in Figure 4, using ~b � 2:32 in (40), we find that
for a selective sweep to occur, gi . 1:04 is required whose
probability is � 0:024: In other words, for these parameter
values, we expect as many as 0:024  3   200 � 5 sweeps to
occur over the timescale themean deviation approaches zero.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Discussion

Dynamic regimes in the full model

Figure 3 shows an example of the dynamics of the mean and
allele frequencies when an infinitely large population in LE
and equilibrated to a phenotypic optimum is suddenly shifted

to a new optimum. We observe a short-term phase ðt ≲ 103Þ;
where the mean deviation increases quickly to a value close
to zero; followed by a long-term phase ð103 , t, 105Þ;where
the mean deviation undergoes minor changes at a slow pace.
The former phase where the adaptation process is rapid is the
focus of this article since (i) much of the action happens in
this early phase (for example, in Figure 3, the allele frequen-
cies at 13 out of 20 loci were close to the stationary state at
the end of the short-term phase), (ii) these timescales are
experimentally observable, and very importantly, (iii) all +
alleles increase in frequency in a synergistic manner.

Directional selection model

Although the full model defined by (6) can be investigated
numerically (de Vladar and Barton 2014), as the allele fre-
quency dynamics at a single locus are related to all the other
ℓ2 1 loci via the phenotypic mean [first term on the RHS of
(6)], it is difficult to obtain analytical results. Moreover, the
full model results in equations for the cumulants that do not
close, and therefore one resorts to an often unjustified and
uncontrolled approximation of setting all the cumulants
above a certain number to zero (see Barton and de Vladar
2009 for a discussion of this approach). This approximation,
however, works quite well when most effects are small (Jain
and Stephan 2015) but fails completely when most effects
are large (see Supplemental Material, File S1 for a detailed
explanation).

Here we have devised an approximate model (directional
selection model) defined by (10) in which the allele frequen-
cies are coupled but, nonetheless, one can make analytical
progress without truncating the cumulants arbitrarily. The
central equations in the directional selection model are (11)
and (12) that relate the mean deviation and an auxiliary
parameter b which is a function of a single allele frequency.
As explained in Appendix D and Appendix F, it is possible to
obtain explicit expressions for the time dependence of b and
thereby that of the mean. Higher cumulants such as the var-
iance can be then found using (13).

Distribution of effects

All the numerical examples shown in the figures use a single
realization of the effect at a locus, i.e., one set of effects
fgig; i ¼ 1; . . . ; ℓ; are chosen from an exponential distribu-
tion. For additive quantities, such as mean and variance, that
are obtained by summing the contribution over a number of
loci, we expect that a single realization of effects is a good
representative when the number of loci are sufficiently large
(in physics literature, this concept is known as self-averaging;
Castellani and Cavagna 2005). A similar idea has been used

Table 1 Summary of the results for the dynamics of phenotypic mean, variance, and allele frequency when the phenotypic optimum is
suddenly shifted

Mean dynamics determined by Variance dynamics characterized by Selective sweeps at major loci

Small effects Initial variance (18) Small variations (19) Unlikely (39)
Large effects Effect size (30) Large variations (31) Probable (41)
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recently in a model of stabilizing selection with the same
effects at all loci in which the phenotypic mean for one set
of initial allele frequencies is approximated by the corre-
sponding average (Charlesworth 2013). Figure S1 in File
S1 shows that the quantitative agreement between the re-
sults for the mean deviation obtained for a single realization
of phenotypic effects for ℓ ¼ 50; 200; 400; and the analytical
result for large ℓ gets better as the number of loci increases.

Main results

The key conclusions of this article are discussed below and
summarized in Table 1.

Response of the mean to a sudden shift of the phenotypic
optimum: How does the timescale over which the mean
reaches the stationary state depend on various factors such
as the number of loci, initial phenotypic mean deviation, and
size of the effects? We find that the mean deviation becomes
negligible on a timescale that is inversely proportional to the
number of loci ðℓÞ when most effects are small, but depends
weakly on ℓ when most effects are large [cf. (18) and (30)].
This difference in the behavior may be understood as follows:
when most effects are small, there is sufficient genetic varia-
tion initially for selection to act on because a large number of
loci are initially polymorphic. Therefore, with increasing ℓ;
the equilibration time decreases. In contrast, when most ef-
fects are large, the initial genetic variation is negligible and
the adaptation dynamics are determined by the size of the
effects. As the availability of large-effect loci depends on the
mean of the effect distribution, it follows that the larger
the mean, the faster the adaptation dynamics.

Figure 5 shows that the relationship between the equili-
bration time and the initial mean deviation depends on the
size of effects (see also Gomulkiewicz et al. 2010). When

most effects are large, selective sweeps occur at some loci
that result in drastic changes in the allele frequencies, thus
accelerating the approach to the phenotypic optimum. But
when most effects are small, the equilibration time remains
roughly constant as selective sweeps do not occur, but small
changes in the allele frequencies at a large number of loci
drive the adaptation process. Figure 5 also shows that when
the number of loci contributing to a trait are the same, adap-
tation is faster when the effect size is larger, which makes
intuitive sense.

However, onemay also compare situations inwhich a large
number of small effects control a phenotypic traitwith the one
in which few loci with large effects contribute to a trait. An
example shown in Figure 6 suggests that the adaptation at
short times is faster when effects are small, but at longer
times, larger effects lead to rapid adaptation. This conclusion
is borne out by our analysis as well: on comparing (18) and
(30), we find that for identical zf and ℓg; the timescales are
inversely proportional to g and therefore it takes a shorter
time to equilibrate in the large-effect case.

An important omission in the above discussion is random
genetic drift as we have considered infinitely large popula-
tions. Some progress in this regard has been made recently
(Matuszewski et al. 2015; Bod’ová et al. 2016); however, a
detailed analysis is currently not available and would be in-
teresting to consider in the future.

Dynamics of the variance and allele frequencies: Besides
the dynamics of the mean, we also studied the time depen-
dence of the variance.Wefind that at short times, the variance
does not vary much and decreases monotonically with time
whenmost effects are small. This behavior canbeexplainedby
the fact that the allele frequencies show small to moderate
changes. In the opposite case, the variance changes consid-
erably and its variation is nonmonotonic in time: it increases at
short times and then decreases to the stationary state value.
The selective sweeps at major loci are responsible for this
effect. The rate of change of average fitness given by (C9)

Figure 5 Small vs. large effects when the number of loci is the same:
Time at which the mean reaches 0.9 of the exact stationary state mean c*1
for various values of zf when most effects are small (small symbols) and
large (large symbols). For the former (latter) case, the rest of the param-
eters are the same as in Figure 1 (Figure 4). To show the data in the two
cases on the same scale, the time for the large-effect case has been
multiplied by 70.

Figure 6 Many loci with small effects vs. few loci with large effects:
Mean deviation as a function of time when most effects are small
ðg ¼ 0:04; ℓ ¼ 400Þ and large ðg ¼ 0:32; ℓ ¼ 50Þ. In both cases,
ĝ � 0:126 ðs ¼ 53 1023; m ¼ 1025Þ and the new phenotypic optimum
is shifted to zf ¼ ℓg=4 ¼ 4:
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receives contributions from the square of the mean deviation
and the rate of change of variance. Thuswhenmost effects are
large, at short times, the averagefitness increasesmore slowly
in the short-term phase than at longer times (Gomulkiewicz
et al. 2010).

The directional selection model describes the bulk of the
meandynamics in theshort-termphase.Therefore, at late times
where themeandeviation isclose tozero, theallele frequencyat
each locus evolves independently [the first term on the RHS of
(6) is zero] and the dynamics are much slower, as described in
Appendix E. At short times, the allele frequency dynamics
involve the same timescales as for the mean and variance.

Applications

The analysis of our model relates to various important ques-
tions that are currently discussed in evolutionary genetics.

Rapid adaptation: The approximations we have presented
here describe the short-term evolution of a phenotypic trait
after a sudden environmental change very well. We have
shown that the mean of a phenotypic trait may respond very
quickly after an environmental shift. In the case that most
effects are small, this is possible because the time to the new
optimum is inversely proportional to the number of loci
controlling the trait. In the opposite case of mostly large
effects, rapid fixations (leading to selective sweeps) may
produce fast phenotypic responses. In the examples of fast
adaptation mentioned in the Introduction, both of these
extremes and combinations thereof have occurred.

QTL and selective sweep mapping: Selective sweepmapping
has been used to dissect QTL (Svetec et al. 2011; Rubin et al.
2012; Axelsson et al. 2013; Wilches et al. 2014). However,
the success of this approach was varied. Nonetheless, there
seems to be a tendency that it worked better in domesticated
than in natural populations (Rubin et al. 2012; Axelsson et al.
2013), probably due to the action of artificial selection during
domestication. In artificial selection, the shift to the new op-
timum zf may be larger than under natural conditions; our
criterion (36) thus indicates an enhancement of sweeps in
domesticated populations.

More generally, our analysis also provides some new in-
sights into the question whether selective fixations (and thus
sweeps) occur at QTL. While Chevin and Hospital (2008)
predicted that the probability of selective sweeps is extremely
low at QTL (based on a model with one major locus and
infinitely many minor loci), others have found sweeps at ap-
preciable frequencies using simulations of various multi-
locus models (Pavlidis et al. 2012; Wollstein and Stephan
2014). The prediction of Chevin and Hospital is consistent
with our study for mostly small-effect loci and small shifts
in the phenotypic optimum.

Testing for fast polygenic adaptation: Using standardized
frequencies, one can construct tests to detect SNPs that de-
viate strongly from a neutral population structure (e.g., Coop

et al. 2010). However, this approach only works if there are
relatively large extended gradients of ecological variables,
which may not be the case in rapid adaptation. Shortly after
a population occupies a new habitat, we expect that the allele
frequency shifts between the parental and derived popula-
tions are relatively small. This also means that available soft-
ware, such as BayeScan-like methods (Foll and Gaggiotti
2008; Riebler et al. 2008), is not able to detect significant
frequency shifts for individual SNPs between populations.
Therefore, for detecting small allele frequency shifts after
environmental changes in fast adapting populations, it may
be best to consider the frequency shifts of alleles simulta-
neously at all loci involved (instead of individual SNPs).
Our results suggest that this may be a promising approach,
as all + alleles shift their frequencies in the same direction in
the short-term phase, which should increase the power of the
test. In human population genetics, this approach has been
used to analyze recent polygenic adaptation of height, for
instance (Turchin et al. 2012).

Acknowledgments

We thank the International Centre for Theoretical Sciences,
Bangalore, for their hospitality during the Second Bangalore
School on Population Genetics and Evolution (ICTS/Prog-
popgen/2016/01) that facilitated our discussions. Further-
more, we are grateful to Graham Coop and two anonymous
reviewers who made valuable suggestions to improve the
article. The research of W.S. was supported by the Deutsche
Forschungsgemeinschaft (grant STE 325/17-1 from the Prior-
ity Program 1819).

Literature Cited

Abramowitz, M., and I. A. Stegun (Editors), 1964 Handbook of
Mathematical Functions with Formulas, Graphs, and Mathemati-
cal Tables. Dover, New York.

Arfken, G., 1985 Mathematical Methods for Physicists. Academic
Press, New York.

Axelsson, E., A. Ratnakumar, M. L. Arendt, K. Maqbool, M. T. Webster
et al., 2013 The genomic signature of dog domestication reveals
adaptation to a starch-rich diet. Nature 495: 360–364.

Barton, N. H., 1986 The maintenance of polygenic variation
through a balance between mutation and stabilizing selection.
Genet. Res. 47: 209–216.

Barton, N. H., and H. P. de Vladar, 2009 Statistical mechanics and
the evolution of polygenic quantitative traits. Genetics 181:
997–1011.

Barton, N. H., and M. Turelli, 1991 Natural and sexual selection
on many loci. Genetics 127: 229–255.

Bod’ová, K., G. Tkacik, and N. H. Barton, 2016 A general approx-
imation for the dynamics of quantitative traits. Genetics 202:
1523–1548.

Bürger, R., 1991 Moments, cumulants, and polygenic dynamics.
J. Math. Biol. 30: 199–213.

Bürger, R., 2000 The Mathematical Theory of Selection, Recombi-
nation, and Mutation. Wiley, Chichester, United Kingdom.

Castellani, T., and A. Cavagna, 2005 Spin-glass theory for pedes-
trians. J. Stat. Mech. Theor. Exp. 2005: P05012.

398 K. Jain and W. Stephan



Charlesworth, B., 2013 Stabilizing selection, purifying selection,
and mutational bias in finite populations. Genetics 194: 955–
971.

Charlesworth, B., and D. Charlesworth, 2010 Elements of Evolu-
tionary Genetics. Roberts and Company Publishers, Greenwood
Village, CO.

Chevin, L.-M., and F. Hospital, 2008 Selective sweep at a quanti-
tative trait locus in the presence of background genetic variation.
Genetics 180: 1645–1660.

Cook, L. M., B. S. Grant, I. J. Saccheri, and J. Mallet, 2012 Selective
bird predation on the peppered moth: the last experiment of
Michael Majerus. Biol. Lett. 8: 609–612.

Coop, G., D. Witonsky, A. Di Rienzo, and J. K. Pritchard,
2010 Using environmental correlations to identify loci under-
lying local adaptation. Genetics 185: 1411–1423.

de Vladar, H. P., and N. H. Barton, 2014 Stability and response of
polygenic traits to stabilizing selection and mutation. Genetics
197: 749–767.

Ffrench-Constant, R. H., M. Bogwitz, P. Daborn, and J. Yen,
2002 A single P450 allele associated with insecticide resis-
tance in Drosophila. Science 27: 2253–2256.

Foll, M., and O. Gaggiotti, 2008 A genome-scan method to iden-
tify selected loci appropriate for both dominant and codominant
markers: a Bayesian perspective. Genetics 180: 977–993.

Goddard, M. E., and B. J. Hayes, 2009 Mapping genes for complex
traits in domestic animals and their use in breeding programmes.
Nat. Rev. Genet. 10: 381–391.

Gomulkiewicz, R., R. D. Holt, M. Barfield, and S. L. Nuismer,
2010 Genetics, adaptation, and invasion in harsh environments.
Evol. Appl. 3: 97–108.

Grant, P. R., and B. R. Grant, 2008 How and Why Species Multiply:
The Radiation of Darwins Finches. Princeton University Press,
Princeton, NJ.

Jain, K., and W. Stephan, 2015 Response of polygenic traits under
stabilising selection and mutation when loci have unequal ef-
fects. G3 (Bethesda) 5: 1065–1074.

Kaplan, N. L., R. R. Hudson, and C. H. Langley, 1989 The “hitchhiking
effect” revisited. Genetics 123: 887–899.

Kim, Y., and W. Stephan, 2002 Detecting a local signature of ge-
netic hitchhiking along a recombining chromosome. Genetics
160: 765–777.

Lamichhaney, S., A. Martinez Barrio, N. Rafati, G. Sundström, C. J.
Rubin et al., 2012 Population-scale sequencing reveals genetic
differentiation due to local adaptation in Atlantic herring. Proc.
Natl. Acad. Sci. USA 109: 19345–19350.

Lamichhaney, S., J. Berglund, M. S. Almén, K. Maqbool, M. Grabherr
et al., 2015 Evolution of Darwin’s finches and their beaks
revealed by genome sequencing. Nature 518: 371–375.

Lande, R., 1976 Natural selection and random genetic drift in
phenotypic evolution. Evolution 30: 314–334.

Lande, R., 1983 The response to selection on major and minor
mutations affecting a metrical trait. Heredity 50: 47–65.

Linnen, C. R., Y. P. Poh, B. K. Peterson, R. D. Barrett, J. G. Larson
et al., 2013 Adaptive evolution of multiple traits through mul-
tiple mutations at a single gene. Science 339: 1312–1316.

Losos, J. B., 2009 Lizards in an Evolutionary Tree: Ecology and
Adaptive Radiation of Anoles. University of California Press,
San Francisco, CA.

Losos, J. B., 2014 What Darwin got wrong. Chron. High. Educ.
B13–B15.

Mackay, T. F. C., 2004 The genetic architecture of quantitative
traits: lessons from Drosophila. Curr. Opin. Genet. Dev. 14:
253–257.

Matuszewski, S., J. Hermisson, and M. Kopp, 2015 Catch me if
you can: adaptation from standing genetic variation to a moving
phenotypic optimum. Genetics 200: 1255–1274.

Maynard Smith, J., and J. Haigh, 1974 The hitch-hiking effect of a
favourable gene. Genet. Res. 23: 23–35.

Nielsen, R., S. Williamson, Y. Kim, M. J. Hubisz, A. G. Clark et al.,
2005 Genomic scans for selective sweeps using SNP data. Ge-
nome Res. 15: 1566–1575.

Pavlidis, P., J. D. Jensen, and W. Stephan, 2010 Searching for
footprints of positive selection in whole-genome SNP data from
nonequilibrium populations. Genetics 185: 907–922.

Pavlidis, P., D. Metzler, and W. Stephan, 2012 Selective sweeps in
multilocus models of quantitative traits. Genetics 192: 225–239.

Pritchard, J. K., and A. Di Rienzo, 2010 Adaptation - not by
sweeps alone. Nat. Rev. Genet. 11: 665–667.

Reznick, D. N., 2009 The Origin Then and Now: An Interpretive
Guide to the Origin of Species. Princeton University Press, Prince-
ton, NJ.

Riebler, A., L. Held, and W. Stephan, 2008 Bayesian variable se-
lection for detecting adaptive genomic differences among pop-
ulations. Genetics 178: 1817–1829.

Rubin, C. J., H. J. Megens, A. Martinez Barrio, K. Maqbool, S. Sayyab
et al., 2012 Strong signatures of selection in the domestic pig
genome. Proc. Natl. Acad. Sci. USA 109: 19529–19536.

Sornette, D., 2000 Critical Phenomena in Natural Sciences. Springer,
Berlin.

Stephan, W., T. H. E. Wiehe, and M. W. Lenz, 1992 The effect of
strongly selected substitutions on neutral polymorphism: ana-
lytical results based on diffusion theory. Theor. Popul. Biol. 41:
237–254.

Svetec, N., A. Werzner, R. Wilches, P. Pavlidis, J. M. Alvarez-Castro
et al., 2011 Identification of X-linked quantitative trait loci
affecting cold tolerance in Drosophila melanogaster and fine
mapping by selective sweep analysis. Mol. Ecol. 20: 530–544.

Turchin, M. C., C. W. K. Chiang, C. D. Palmer, S. Sankararaman, D.
Reich et al., 2012 Evidence of widespread selection on stand-
ing variation in Europe at height-associated SNPs. Nat. Genet.
44: 1015–1019.

van’t Hof, A. E., N. Edmonds, M. Daliková, F. Marec, and I. J.
Saccheri, 2011 Industrial melanism in British peppered moths
has a singular and recent mutational origin. Science 332: 958–960.

Vignieri, S. N., J. G. Larson, and H. E. Hoekstra, 2010 The selec-
tive advantage of crypsis in mice. Evolution 64: 2153–2158.

Visscher, P. M., M. A. Brown, M. I. McCarthy, and J. Yang,
2012 Five years of GWAS discovery. Am. J. Hum. Genet. 90:
7–24.

Wilches, R., S. Voigt, P. Duchen, S. Laurent, and W. Stephan,
2014 Fine-mapping and selective sweep analysis of QTL for
cold tolerance in Drosophila melanogaster. G3 (Bethesda) 4:
1635–1645.

Wollstein, A., and W. Stephan, 2014 Adaptive fixation in two-
locus models of stabilizing selection and genetic drift. Genetics
198: 685–697.

Wright, S., 1935 Evolution in populations in approximate equilib-
rium. J. Genet. 30: 257–266.

Communicating editor: G. Coop

Rapid Adaptation 399



Appendix A: Cumulants of the Effects and Their Dynamics

The effect ei at the locus i is distributed according to a Bernoulli distribution

pðeiÞ ¼ pidei;gi2 þ qidei;2gi
2
: (A1)

The generating function of the distribution of the effects at the ith locus is given by

FiðjÞ ¼
X
ei

pðeiÞe2eij ¼ pie2
gi
2 j þ qie

gi
2 j: (A2)

The logarithm of the generating function defines the nth cumulant cðiÞn at locus i as (Sornette 2000)

ln  FiðjÞ ¼
XN
n¼1

cðiÞn
ð2jÞn
n!

¼ jgi
2

þ ln
�
qi þ pie2gij

�
: (A3)

The nth cumulant is then obtained as

cðiÞn ¼ ð21Þnd
nln  FiðjÞ
djn


j¼0

: (A4)

In LE, since the cumulants for the n-locus problem are additive, we get

cn ¼ 2
Xℓ
i¼1

cðiÞn ; (A5)

where the factor of two on the RHS takes care of diploidy. Using the last three equations above, we find that the mean and
variance are given by (1) and (4), respectively. The skewness c3;which is a measure of asymmetry of a distribution, can also be
found and given by

c3 ¼ 2
Xℓ
i¼1

g3i ðqi 2 piÞpiqi: (A6)

Appendix B: Quasi-LE Approximation

For the additive genotype-phenotype map, the trait z ¼Pℓ
i¼1giðXi þ X*

i 2 1Þ where Xi;X*
i ¼ 1ð0Þ if the þð2 Þ allele is pre-

sent at the locus i. Following Barton and Turelli (1991), we first find the association coefficients by writing
Xi ¼ hXii þ di;X*

i ¼ hX*
i i þ d*i ; where hXii ¼ hX*

i i ¼ pi and expanding the relative fitness to lowest orders in s,

wðfX;X*gÞ
�w

¼ 12 ðs=2Þ�z2z9
�2

�w
(B1)

� 1þ
Xℓ
i¼1

ai;fðdi 2 hdiiÞ þ
Xℓ
i¼1

aii;f
�
d2i 2

�
d2i
��

þ
Xℓ
i¼1

a*i;f
�
d*i 2

D
d*i

E�
þ
Xℓ
i¼1

a*ii;f
�
d*

2
i 2

D
d*

2
i

E�

þ
X
i, j

aij;f
�
didj2

�
didj
��þX

i, j

a*ij;f
�
d*i d

*
j 2

D
d*i d

*
j

E�
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þ
Xℓ
i;j¼1

ai;j
�
did

*
j 2

D
did

*
j

E�
: (B2)

In the above equation, the average is taken with respect to the joint distribution of the frequencies at all the loci and the
coefficients

ai;f ¼ 2 s
�
c1 2 z9

�
gi; aii;f ¼ 2 ðs=2Þg2i ; aij;f ¼ ai;j ¼ 2 sgigj: (B3)

The average allele frequency change after selection (and recombination) is given by [see (10a) in Barton and Turelli 1991]

_pi ¼ ai;f
�
d2i
�þ aii;f

�
d3i
�þX

j6¼i

aj;f
�
didj
�þX

j6¼i

ajj;f
D
did

2
j

E
þ
X
j 6¼k

akj;f
�
didjdk

�
: (B4)

All but thefirst two terms on theRHSvanish in LE; herewe focus on the lowest order corrections to LEwhich are contained in the
third and fourth terms. Using X2

i ¼ Xi and hdii ¼ 0; it is easy to show that hd2i i ¼ piqi; hdid2j i ¼ ð12 2pjÞhdidji: Inserting these
expressions in (B4), we verify that the first two terms on the RHS match the corresponding ones in (6). The two-locus linkage
disequilibrium evolves according to [see (12) in Barton and Turelli 1991]

_�didj� ¼ 2 rij
�
didj
�þ 2aij;f

�
d2i
�D

d2j

E
þ higher order terms; i 6¼ j; (B5)

where rij denotes the recombination rate between the loci i and j and we have dropped terms that are nonlinear in the
parameters s and r on the RHS of the above equation. Then at quasi-LE (QLE) where the LHS is of Oðs2Þ or higher, we have

�
didj
�
QLE �

2aij;f
rij

D
d2i

E
LE

D
d2j

E
LE

(B6)

¼ 2
2sgigj
rij

�
piqipjqj

�
LE
; (B7)

where the allele frequencies in the last equation are in LE.
Using the above result in (B4) and assuming that all the recombination rates are equal to r, we find thatwithinQLE, the allele

frequency obeys the following equation:

_pi �2 sgipiqi
�
c12 z9

��
12

s
r
  c2;LE

�
2
sg2i
2
  piqiðqi 2 piÞ

�
12

s
r
c3;LE
gi

�
; (B8)

where c2;LE and c3;LE are the variance and skewness, respectively, in LE. Thus, as expected, the corrections to the model defined
by (6) are of order s=r which can be neglected when selection and linkage are weak.

Appendix C: Directional Selection Model

The dynamics of the allele frequency pi are described by (10), where the effective selection coefficient Si ¼ 2 sgiDc1 depends
on all the allele frequencies through themean c1: This propertymakes it difficult to solve for the allele frequencies; however, we
note that for two arbitrary loci i and m, (10) gives

_pi
_pm

¼ dpi
dpm

¼ Sipiqi
Smpmqm

; (C1)
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which, on using the identity d½lnðp=qÞ� ¼ dp=ðpqÞ; simplifies to

d  lnϱi
d  lnϱm

¼ gi
gm

; i 6¼ m; (C2)

where ϱiðtÞ ¼ piðtÞ=qiðtÞ: As the above equation does not involve the phenotypic mean, it can be easily solved to give

ϱiðtÞ ¼ ϱið0Þ
�
ϱmðtÞ
ϱmð0Þ

� gi
gm

: (C3)

We note that the simple idea used in (C1) to eliminate the global variable Dc1 is quite similar to that employed in single-locus
directional selection models to get rid of the average fitness (see, e.g., Charlesworth and Charlesworth 2010, p. 73).

Equation C3 is useful since it allows us to express the mean c1ðtÞ in terms of a single allele frequency, say, at locusm. Using
(C3) in (1), we can write the mean as

c1ðtÞ5
Xℓ
i51

gi

�
ϱi2 1
ϱi1 1

�
(C4)

5
Xℓ
i51

gi 2
Xℓ
i51

2gi
11 pið0Þ

qið0Þ e
bgi=g

; (C5)

which simplifies to give (11). In the above equation,

bðtÞ ¼ g

gm
ln
�
ϱmðtÞ
ϱmð0Þ

�
¼ g

gm
ln
�
pmðtÞ
pmð0Þ

qmð0Þ
qmðtÞ

�
: (C6)

Note that in the expression (C5), although the dynamics of the mean deviation are determined by that of the allele frequency
pm; the rest of the ℓ2 1 frequencies are not redundant as the mean also depends on their initial state.

Furthermore, from the evolution Equation 10 for the allele frequency, we also have _b ¼ 2 sgDc1;where themean is given by
(C5); we have thus obtained a closed equation for bðtÞ: Using the result for bðtÞ in (C5), the dynamics of the phenotypic mean
can be calculated. This knowledge then allows us to find higher cumulants using (13) which is derived below.

To obtain the evolution Equation 13 for the nth cumulant, we take the derivativewith respect to time in (A3) and use (10) for
the allele frequency dynamics to obtain (Bürger 1991)

XN
n¼1

_cðiÞn
ð2jÞn
n!

¼ sgipiqiDc1
�
12 e2gij

�
qi þ pie2gij

: (C7)

But, on taking a derivative of (A3) with respect to j, after some simple algebra, we also have

XN
n¼1

cðiÞnþ1
ð2jÞn
n!

¼ 2
gipiqi

�
12 e2gij

�
qi þ pie2gij

: (C8)

On comparing the last two equations and using (A5), we arrive at the promised result (13). The rate of change of the logarithm
of the average fitness can be found using the above results and given by

d  ln�w
dt

¼
_�w
�w
¼ 2

s
2
  _c2 þ c2ðsDc1Þ2: (C9)
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Appendix D: Cumulant Dynamics When Most Effects Are Small

Here we study the differential Equation 12 obeyed by b,

_b ¼ 2 sℓg2½12 r2 2IsðbÞ�; (D1)

where r ¼ zf=ℓg and the integral

Is ¼
Z ĝ=g

0
dx

xe2x

1þ ebx
(D2)

¼
Z N

0
dx

xe2x

1þ ebx
2

Z N

ĝ=g
dx

xe2x

1þ ebx
: (D3)

The first integral on the RHS is exactly solvable in terms of special functions and we have

Ið1Þs ¼
Z N

0
dx

xe2x

1þ ebx
(D4)

¼ V2
�
cð1Þ

�
Vþ 1

2

�
2cð1ÞðVþ 1Þ

�
(D5)

¼ 1þ 2cð1Þð2VÞ2cð1ÞðVÞ
2b2 ; (D6)

where V ¼ ð2bÞ21 and cð1ÞðzÞ are the second derivatives of the logarithm of the gamma function [(6.4.1) in Abramowitz and
Stegun 1964]. Since g � ĝ when most effects are small, the second integral on the RHS of (D3) can be estimated by carrying
out an integration by parts and we have

Ið2Þs � ~xe2~x

1þ eb~x
; (D7)

where ~x ¼ ĝ=g: The above integral is thus exponentially small in ~x and can be neglected in comparison to Ið1Þs : Using the series
expansion for the polygamma function cð1ÞðzÞ for small arguments [(6.4.10) and (6.4.11) in Abramowitz and Stegun 1964],
we obtain

Is �

8>>><
>>>:

12bþ b3

2
þ . . . ; b � 1 ðD8Þ

p2

12b2 þO�b23�; b � 1: ðD9Þ

As both the initial and stationary state frequencies are close to one half, the functionbðtÞ given by (C6) stays close to zero. Using
the result (D8) in the Equation D1 for bðtÞ; we get

db
dt

� 2bþ b3 þ r; (D10)

where t ¼ sℓg2t: As b � 1; ignoring the term b3 on the RHS of the above equation and integrating, we obtain the zeroth order
solution b0 given by

b0ðtÞ ¼ rð12 e2tÞ; (D11)

Rapid Adaptation 403



where we have used that bð0Þ ¼ 0: An approximate solution of (D10) can be found iteratively by writing b ¼ b0 þ b1 in (D10)
and retaining the leading order term in b1 to obtain

db1

dt
þ b1 � b3

0; (D12)

which yields b � b0 þ r21b4
0: Using this result in (D8), we get 2Is � 12b0 þ b3

0e
2t: Equations 15 and 13 then yield the first

two cumulants to be

Dc1ðtÞ ¼ 2 zf e
2t
�
1þ r21b3

0
�

(D13)

and

c2ðtÞ ¼ ℓg2
�
12 3b2

0
�
: (D14)

Appendix E: Long-Time Dynamics of the Allele Frequency

When most effects are small, as shown in Figure 1A, the mean deviation is close to zero when t � 104: But the exact stationary
state for the mean and the allele frequency (shown in Figure 2) is reached much later at t � 105: A similar qualitative behavior
of the allele frequencies when most effects are large is seen in Figure 3. To understand the slow dynamics at long times when
the effect size can be small or large, here we study (6) for the allele frequency dynamics in the full model approximating the
mean deviation by its stationary state value Dc*1: We thus have

_pi � 2 sgipiqiDc*1 2
sg2i
2
  piqiðqi 2 piÞ þ mðqi 2 piÞ: (E1)

Anexact solutionof theaboveequation requires solvinga cubicequationwhich ispossible todobutnotparticularlyenlightening.
To find the behavior of the allele frequency close to the stationary state, we write piðtÞ ¼ p*i þ y21

i ðtÞ; yi � 1 in the above
equation and obtain

2 _yi ¼ 2 sg2i y
21
i ðtÞ þ D12D2yiðtÞ; (E2)

where p*i is the exact solution of (7) with nonzero Dc*1; and the constants D1 and D2 are functions of gi; s;m;Dc*1: As we are
interested in large times where the allele frequency is close to the stationary state, the first term on the RHS of the above
equation can be neglected and we arrive at a first-order differential equation for yi which can be easily solved. For large times,
we then obtain piðtÞ2 p*i � e2D2t; where

D2 ¼ sg2i

"
1
2
þ
�

ĝ

2gi

�2

2 3p*i
�
12 p*i

�
þ
�
12 2p*i

�
Dc*1

gi

#
: (E3)

Thus after the directional selection phase, the allele frequency at the locus with effect gi reaches a stationary state over a
timescale � D21

2 : For small mean deviation from the optimum, which results in negligible Dc*1; we can use (8) to obtain

D2 }

�
sĝ2; gi � ĝ ðE4Þ
sg2i ; gi � ĝ: ðE5Þ

The above equation shows that when most effects are small, the dynamics at long times are driven by mutations (recall that
ĝ2 ¼ 8m=sÞ while in the opposite case, the effect size continues to play a role even at long times.

Appendix F: Cumulant Dynamics When Most Effects Are Large

Consider first the integral Iþl defined by (26) that includes the contribution from loci with initial frequency close to one and given by
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Iþl ¼
Z N

2=a
dx

xe2x

1þ ðaxÞ2ebx (F1)

� 1
a2

Z N

2=a
dx

e2ð1þbÞx

x
; (F2)

where a ¼ 2g=ĝ is large. The last integral can be written as an exponential integral E1ðzÞ ¼
RN
1 dt  t21e2zt and we have

Iþl ¼ 1
a2E1

�
2
a
ð1þ bÞ

�
(F3)

� 2
1
a2 ln

�
2
a
ð1þ bÞ

�
; (F4)

on using that the argument of E1ðzÞ is small (Abramowitz and Stegun 1964). We next consider the integral I2l defined by (28)
that contains the contribution from loci with small initial frequencies,

I2l ¼
Z N

2=a
dx

xe2x

1þ ðaxÞ22ebx
(F5)

¼
Z N

2=a
dx   xe2x þ

Z 2=a

0
dx

xe2x

1þ ðaxÞ2e2bx
2 Jl (F6)

� 12
�
2
a

�2

2 Jl; (F7)

where we have used that a � 1 to obtain the last expression and defined

Jl ¼
Z N

0
dx

xe2x

1þ ðaxÞ2e2bx
: (F8)

As shown in Table S1 in File S1, the integral Jl decreases as 1=a or slower. Thus, for large a, Equation (24) for the mean gives

c1ðtÞ ¼ ℓg
�
12 Iþl 2 I2l

� � ℓgJlðbÞ: (F9)

In the above equation, the integral Iþl does not contribute to the mean since, as discussed after (32), the allele frequency at loci
with high initial frequencies does not change significantly while the mean is evolving.

The time dependence of b is obtained from Equation 12,

db
dt

� r2 JlðbÞ: (F10)

The functionb increases with time and saturates to its steady state value ~bwhere _b ¼ 0:Correspondingly, as Table S1 in File S1
indicates, the integral JlðbÞ is close to zerowhen b � 1 and approaches r asb/~b: Thus at short times, we can neglect the term
Jl on the RHS of (F10), and at large times, we can expand Jl about r to write (F10) as _b � 2 sℓg2J9l ð~bÞðb2 ~bÞ: Denoting the
time below and above which these two solutions are valid by t3 and setting bðt3 Þ ¼ 1; we obtain
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b �
(
sℓg2rt; t � t3 ðF11Þ
~bþ

�
12 ~b

�
e2vðt2t3 Þ; t � t3 ðF12Þ

where t3 ¼ ðsℓg2rÞ21; Jlð~bÞ ¼ r; and v ¼ sℓg2J9l ð~bÞ: Using this result in (F9), we find the mean deviation to be

2Dc1ðtÞ �
(
zf ; t � t3 ðF13Þ
ℓgJ9l

�
~b
��

~b2 1
�
e2sℓg2J9l

�
~b
�
ðt2t3 Þ; t � t3 : ðF14Þ

Using the above expressions in (13), we find that the variance is given by

c2ðtÞ �
(
0; t � t3 ðF15Þ
ℓg2
h
J9l
�
~b
�
2
�
~b2 1

�
J$l
�
~b
�
e2vðt2t3 Þ

i
; t � t3 : ðF16Þ

To express the mean and the variance in terms of the model parameters, we first need to determine ~bwhich is a solution of the
equation Jlð~bÞ ¼ r: The integral JlðbÞ is not exactly solvable but we can estimate it by a saddle-point method [see (F17) below]
(Arfken 1985). Denoting the integrand of Jl in (F8) by jðxÞ ½i:e:; Jl ¼

RN
0 jðxÞdx� and the maximum of jðxÞ by xo; we obtain

Jl � jðxoÞ
"
2d2lnjðxÞ

dx2


xo

#21

; (F17)

where xo is a solution of the equation dj=dxjxo ¼ 0;

e~bxo
�
~bxo2 ~b

�
þ a2

~b

�
~bxo
�2�

1þ xo2 ~bxo
�
¼ 0: (F18)

As our numerics indicate that ~bxo is large and constant for a given a, using the above equation, we obtain ~bxo � 2lna for large
a. Using this solution in (F17), after some simplifications, we find that

Jl } xoe2xo : (F19)

Setting Jlð~bÞ ¼ r in the above expression yields

~b � ln  a
ln  r21: (F20)

Taking the derivative with respect to b in (F19), we arrive at

J9l
�
~b
�
¼ rðxo2 1Þ

~b
� rðln  rÞ2

ln  a
: (F21)

Our numerics are consistent with the above functional form and a numerical fit shows J9l ð~bÞ ¼ ð0:69=lnaÞr ½ln  ð1:7=rÞ�2:
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