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ABSTRACT We address the task of genotype imputation to a dense reference panel given genotype likelihoods computed from
ultralow coverage sequencing as inputs. In this setting, the data have a high-level of missingness or uncertainty, and are thus more
amenable to a probabilistic representation. Most existing imputation algorithms are not well suited for this situation, as they rely on
prephasing for computational efficiency, and, without definite genotype calls, the prephasing task becomes computationally
expensive. We describe GeneImp, a program for genotype imputation that does not require prephasing and is computationally
tractable for whole-genome imputation. GeneImp does not explicitly model recombination, instead it capitalizes on the existence of
large reference panels—comprising thousands of reference haplotypes—and assumes that the reference haplotypes can adequately
represent the target haplotypes over short regions unaltered. We validate GeneImp based on data from ultralow coverage sequencing
(0.53), and compare its performance to the most recent version of BEAGLE that can perform this task. We show that GeneImp
achieves imputation quality very close to that of BEAGLE, using one to two orders of magnitude less time, without an increase in
memory complexity. Therefore, GeneImp is the first practical choice for whole-genome imputation to a dense reference panel when
prephasing cannot be applied, for instance, in datasets produced via ultralow coverage sequencing. A related future application for
GeneImp is whole-genome imputation based on the off-target reads from deep whole-exome sequencing.
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THE cost of next-generation sequencing has fallen remark-
ably since its first adoption by sequencing centers in

2008 (van Dijk et al. 2014; Wetterstrand 2016)—from
$1,352,982 per genome in April 2008 to $1245 in October
2015. This profound cost reduction, and the ongoing improve-
ment of experimental and computational pipelines, have made
next generation sequencing a competing technology to the
historically more established micro-array platforms (Hurd
and Nelson 2009; Baker 2013). In a proof-of-concept study,
Pasaniuc et al. (2012) demonstrated that ultralow coverage
DNA-sequencing (sequencing at 0.1–0.53), followed by impu-
tation to a dense reference panel, captures almost as much of
the common (minor allele frequency.5%) and low-frequency

(1–5%) variation as single-nucleotide polymorphism (SNP) ar-
rays, and argued that this paradigm could become cost-effective
for genome-wide association studies (GWAS) as sample prepa-
ration and sequencing costs would continue to fall.

The cost-efficiency of ultralow coverage sequencing pre-
dicted by Pasaniuc et al. (2012) is not yet realized, primarily
due to the concurrent reduction in the cost of whole-genome
SNP arrays. Nevertheless, their proof-of-concept has impor-
tant implications not only for the design of new genomic
studies, where one needs to consider the trade-off between
sample size and sequencing read depth (Sims et al. 2014)
before comparing to SNP-array alternatives, but also for
existing whole-exome sequencing datasets, where off-target
reads can be used to acquire whole-genome imputation data.
In recent years, whole-exome sequencing has been used ex-
tensively in translational research studies (Majewski et al.
2011; Rabbani et al. 2014; van Dijk et al. 2014), owing to
its reduced cost per sample and easier interpretation of find-
ings compared to whole-genome sequencing. For many
exome capture systems, a 0.2–0.63 coverage of the whole
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genome can be acquired from off-target reads (Chilamakuri
et al. 2014), if we assume a recommended 803 average cov-
erage of the exome (Sims et al. 2014).

Genotype imputation methods use a reference panel com-
prising haplotypes of individuals at a large set of genetic
variants to infer the untyped genotypes in target samples that
have been assayed for only a subset of the variants. Accurate
imputation of untyped variants allows for joint analysis of
individual-level data (or summary statistics) from samples
typed at a different set of genetic loci; a detailed account of
imputation uses in the context of GWAS is given in Marchini
and Howie (2010). This has greatly facilitated the meta-
analysis of GWAS [Franke et al. 2010; Berndt et al. 2013;
Global Lipids Genetics Consortium 2013; Al Olama et al.
2014; DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) Consortium et al. 2014], and has led to the
robust identification of hundreds of genetic variants associ-
ated with various phenotypes.

In this work, we address the computational challenge of
scaling up the imputation task to the whole genome and to
large reference panels when the data come from ultralow
coverage sequencing. In Pasaniuc et al. (2012), the experi-
mental feasibility of this procedure was demonstrated by im-
puting 10 distinct 5 Mb regions (�0.015% of the genome)

using BEAGLE [algorithm v.4.0 (Browning and Browning
2007, 2009)] and a relatively small reference panel, com-
prising 381 haplotypes. However, the computational tracta-
bility of extending this task to genome-wide scale was not
examined.

Genotype imputation is a computationally expensive task,
and this cost is exacerbatedwhen the data have a probabilistic
representation, due to a high-level of missingness or uncer-
tainty. The complexity of genotype inference is driven by the
computation of the hidden state, which is typically defined in
terms of the underlying pair of haplotypes. For data with a
deterministic representation, a key methodological advance-
ment that made whole-genome imputation computationally
efficient was to split the task of genotype imputation into two
steps: phasing, followed by haploid imputation (Howie et al.
2009, 2012). Refinement of the original algorithms and com-
putational speed-ups have since been developed in software
tools implementing these two steps.

The common procedure for genotype imputation using
definite genotype calls with a low level of missing data is to
prephase the genotypes using a program such as SHAPEIT2
(Delaneau et al. 2013), which infers phase from the target
genotypes with or without a reference panel, and then use
the phased genotypes with an imputation program such as

Table 1 Summary of imputation methods

Name Description Hidden State Approximation

BEAGLE v.4.1 (Browning
and Browning 2016)

Li and Stephens (2003) haplotype frequency model with
parsimonious state-space

HMM calculations restricted to clusters of markers
(aggregates) within small regions

BEAGLE v.4.0 (Browning
and Browning 2007,
2009)

Iterates between building a suffix tree from current-guess
haplotypes and updating haplotypes based on proba-
bilities from the tree. The suffix tree resembles a
“cluster-haplotype model,” but has a variable number
of clusters depending on LD in each region

Suffix tree is pruned to produce parsimonious
representation of the data

fastPHASE (Scheet and
Stephens 2006)

EM algorithm that iterates between fitting hyper-pa-
rameters of a “haplotype-cluster HMM” and running
forward-backward algorithm in fitted HMM to get
imputed genotypes

Hidden state modeled by haplotype clusters (20 clusters
good empirically)

IMPUTE (v.1) (Marchini et al.
2007)

HMM similar to Li-Stephens model. Forward-backward
algorithm to compute hidden state probabilities, then
analytically integrate over all hidden states

Can restrict computation to reference panel haplotypes

IMPUTE2 (v.2) (Howie et al.
2009, 2011)

MCMC iterating between phasing and imputing. Phasing
done with IMPUTE v.1 HMM (HMM forward path
sampling). Imputation done by haploid HMM (HMM
forward-backward)

Only subset of haplotypes with smallest Hamming
distance to current-guess haplotypes in phasing step

MaCH (Li et al. 2010) HMM similar to Li-Stephens model. Iteratively update
phase of each individual based on haplotypes of other
individuals (HMM forward-backward). Additionally
update HMM hyper-parameters at every iteration

Only a subset of haplotypes randomly selected

MiniMac (Howie et al. 2012) Fast implementation of MaCH model using prephased
data

NA (phasing precomputed)

MiniMac2 (Fuchsberger
et al. 2015)

Computational speed-ups to the MiniMac software NA

SNPTools (Wang et al. 2013) “Constrained” Li-Stephens method Only four parental haplotypes, selected based on
metropolis-hastings MCMC sampling

GeneImp Haplotype-pair sequence within window is exact copy of
reference haplotype-pair. Reference haplotype-pairs
compatible with genotype likelihoods are analytically
integrated over

Only a subset of “filtered” reference haplotypes
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IMPUTE2 (Howie et al. 2009, 2011), Minimac (Fuchsberger
et al. 2015), or, more recently, BEAGLE v.4.1 (Browning and
Browning 2016). Imputation without prephasing is usually
substantially slower. We summarize the algorithms and list
key properties of the most established imputation software
packages in Table 1 and Table 2.

When the data are produced via ultralow coverage whole-
genome sequencing, a probabilistic representation such as
genotype likelihoods is more suitable. Making definite geno-
type calls in this setting would result in either a high level
of missingness or high genotype misspecification. Without
definite genotype calls, phasing has a substantially higher
computational cost, as there is no single haplotype recon-
struction that contains all the information in the original
genotype data. This makes the two-step pipeline computa-
tionally inefficient for this setting. In addition to the algorith-
mic complexity, genotype likelihoods are alsonot supported at
the software level, withmost existingmethods for prephasing
requiring a low proportion of missing data (Browning and
Browning 2011).

An exception to this is the BEAGLE v.4.0 algorithm,
which performs phasing and imputation simultaneously.
Nevertheless, BEAGLE’s v.4.0 algorithm scales quadrati-
cally with the number of samples in the reference panel
(Browning and Browning 2016), and it is thus computa-
tionally too expensive to apply on a genome-wide scale.
We note that BEAGLE’s v.4.1 algorithm, which is substan-
tially faster than v.4.0, cannot be used with genotype like-
lihoods, and recedes to v.4.0 when genotype likelihoods
are specified as inputs. IMPUTE2 can also accept genotype
likelihoods as inputs, but, without prephasing, it is substan-
tially slower, as it implements a Markov Chain Monte Carlo
scheme that iterates between phasing and haploid imputa-
tion, which is also computationally intractable for whole-
genome imputation.

SNPTools (Wang et al. 2013) is another software package
that accepts genotype likelihoods as inputs. However, SNPTools’
imputation algorithm is designed to improve the task of
variant-calling in next-generation sequencing data rather
than to impute completely untyped loci. The hidden state
is represented by only four parental haplotypes at each re-
gion, selected using a Markov Chain Monte Carlo sampling
scheme. It is unclear whether the algorithm could efficiently
impute untyped loci based on a reference panel. Currently
this cannot be evaluated, as the software package does not
support usage of a reference panel.

MarViN (Arthur et al. 2015) was recently proposed for
genotype imputation of low-coverage sequencing data,
where the average coverage is�73. MarViN’s recommended
usage is for low and intermediate coverage data, where some
reads are recorded in the majority of sites, rather than ultra-
low coverage data, where many sites have no reads. In the
latter case, MarViN’s Expectation-Maximization algorithm is
likely to take considerably more iterations to converge. More-
over, as reported in Arthur et al. (2015), its homogeneity
assumption for Linkage Disequilibrium (LD) is likely to break

when the reference panel consists of a heterogeneous mix of
populations with finer LD substructure, such as the 1000 Ge-
nomes panel (1000 Genomes Project Consortium 2015).

Finally, imputation methods from the animal breeding
community, such as FINDHAP (VanRaden et al. 2011), typi-
cally exploit long-range Identity-By-Descent, and thus are not
well suited when the target cohort comprises unrelated sam-
ples, as is often the case in human genetics.

In this paper,wedescribe andvalidateGeneImp, aprogram
that imputes genotypes at reference sites from ultralow cov-
erage sequencing, or any other platform that generates ge-
notype likelihoods, and has subquadratic complexity in the
number of individuals in the reference panel.

Our algorithm is motivated by a second pivotal advance-
ment in genotype imputation, i.e., the availability of large
reference haplotype panels. Most imputation programs were
originally developed at a time when reference panels were
small compared with the typical size of a GWAS cohort. The
original HapMap panel (International HapMap Consortium
2007) consisted of only 120 gametes in each of three con-
tinental groups. Therefore, imputation quality depended
heavily on information coming from the target individuals
for estimating the hidden state-space of true underlying
haplotypes and performing phasing.

Larger reference panels with wider coverage of local
genetic variation are now available. The most widely used
reference panel is the one produced by the 1000 Genomes
Project (1000 Genomes Project Consortium 2015), which
contains haplotypes for 2504 individuals. Recently, the
Haplotype Reference Consortium (McCarthy et al. 2015)
has produced a panel comprising .32,000 individuals
from 20 cohorts. In these situations, the extra informa-
tion about haplotype frequencies contributed by the
target cohort is likely to be small compared with the in-
formation in the reference panel. Therefore, we can
phase or impute one target individual at a time without
losing too much information. In GeneImp, we exploit this
independence assumption, and parallelize imputation of
target individuals.

Wehypothesize that, givena large referencepanel fromthe
same ancestral population as the target cohort, the reference
haplotypes represent haplotypes in the target individuals over
short regions adequately, without an explicit model of re-
combination. We infer genotype probabilities over short re-
gions based on how probable each reference haplotype-pair is
given the genotype likelihoods in the region. In the following
sections, we outline the GeneImp algorithm and its tuning
parameters, and evaluate its performance on imputing ultra-
low coverage sequence data.

Materials and Methods

The GeneImp algorithm

GeneImp imputation is based on a sliding window—where
each window corresponds to a short region of the genome—
and is performed for one target individual at a time. Ourmain
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hypothesis is that the reference haplotypes adequately repre-
sent target haplotypes within each window.

Let w ¼ ½1; . . . ;W� index a sequence of W consecutive,
nonoverlapping windows across the genome; let fHg denote
the set of haplotypes in the reference panel, and let K be the
number of haplotypes in the set fHg: Then, the two haplotype
sequences of a target individual can be represented by two
W-dimensional vectors z1 and z2; with each element being a
categorical variable, mapping the haplotype of the target
sample in window w to K available haplotypes in the refer-
ence panel, z1w; z

2
w 2 f1; . . . ;Kg:

The joint probability distribution under GeneImp is given
by:

P
�
Z1; Z2;G;B

��fHg� ¼
YN

i¼1

P
�
z1i
��fHg�P�z2i

��fHg�

3 P
�
gijz1i ; z2i ; fHg

�

3 P
�
bijz1i ; z2i ; fHg

�

¼
YN

i¼1

P
�
z1i
��fHg�P�z2i

��fHg�

3 P
�
gijz1i ; z2i ; fHg

�

3
Y
j

P
�
bijjz1i ; z2i ; fHg

�
;

(1)

where z1i and z2i are the hidden haplotype sequences for
individual i, gi is a vector of genotypes with elements
gij 2 f0; 1; 2g; j indexes sites across the genome, and bi is a
data-derived vector representing observed sequence reads
across the genome, so that PðbijjgijÞ is the data likelihood at
site j for genotype gij: A glossary of technical terms we use to
describe sequencing data is given in Table 3.

We make two assumptions regarding data dependen-
cies when we formulate the probabilistic model of GeneImp.
The joint probability distribution of observed sequencing reads
and latent haplotype states factorizes over samples. This
ignores information about the phase coming from other
target samples, and allows us to impute each target indi-
vidual independently. Second, the genotype likelihoods
factorize over sites given the hidden haplotype sequences.
This is equivalent to assuming that sequencing errors
are independent at different sites of the sequencing
read, an assumption commonly made by widely adopted
variant calling algorithms (Li et al. 2008). A graphical
model depicting the conditional independence assump-
tions under GeneImp is given in Supplemental Material,
Figure S1.

Inference: In the following, we describe the inference pro-
cedure for one target sample. To simplify the notation, we
drop the index i for individuals.

For everypairof referencehaplotypes,wefirst calculate the
posterior probability of being theunderlyinghaplotype-pair in
a target window given the sequencing reads. This is propor-
tional to the product of genotype likelihoods for genotypesTa
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consistent with the haplotype-pair at sites within the window,
and two flanking regions left and right of the window. Then,
at each site within the window, we calculate the probability
distribution over the three possible genotypes by summing the
posterior probabilities of reference haplotype-pairs giving rise
to each of the three genotypes.

Specifically, we are interested in the posterior probability
distribution over the sequence of genotypes g; given a set of K
reference haplotypes, fHg; and the data vector b represent-
ing sequencing reads:

Pðgjb; fHgÞ ¼
X
z1

X
z2

P
�
gjz1; z2;b; fHg�P�z1; z2��b; fHg�:

(2)

The first factor is the probability of the genotype sequence
given the sequences of latent state assignments for the two
haplotypes. Given the haplotype-pair assignment, we define
the genotype deterministically, so that this term factorizes
over windows and is given by:

P
�
gjz1; z2;b; fHg� ¼

YW

w¼1

P
�
gwjz1w; z2w; fHg

�

¼
YW

w¼1

I

�
gw ¼ fHgz1w;w þ fHgz2w;w

�
;

(3)

where gw denotes the vector with the genotypes at all sites
belonging to window w, fHgz1w;w and fHgz2w;w are the haplo-
type sequences of latent states z1w and z2w at window w, with
fHgk;w 2 f0; 1gcw for a reference haplotype k and a windoww
with cw sites, and Ið�Þ is an indicator function evaluating to
one if the condition holds and to zero otherwise. The condi-
tion is satisfied for the vector of genotypes arising by the
reference haplotypes corresponding to latent states z1w and
z2w within window w.

The second factor in Equation 2 is the posterior distribu-
tion of the sequence of latent state assignments given the
data. This term is computationally expensive to compute
exactly, as conditioning on the data vector, b; introduces

dependencies between hidden state assignments in consec-
utive windows.

To perform inference we approximate the full joint distri-
bution over hidden state assignments with a simpler distri-
bution that factorizes over windows:

P
�
z1; z2

��b; fHg� ¼
YW

w¼1

P
�
z1w; z

2
w
��b; fHg�: (4)

This approximation allows us to decompose the summation
over the whole sequence of hidden states in Equation 2 into
summations of the hidden states in each window:

Pðgjb; fHgÞ ¼
YW

w¼1

XK

z1w¼1

XK

z2w¼1

P
�
z1w; z

2
w
��b; fHg�

3 I

�
gw ¼ fHgz1w;w þ fHgz2w;w

�
:

(5)

Finally, the distribution over thehidden statewithin awindow
can be computed using Bayes rule:

P
�
z1w; z

2
w
��b; fHg� ¼ P

�
z1w; z

2
w
��bJw; fHg

�

¼ P
�
z1w; z

2
w
��fHg�P�bJw

��z1w; z2w; fHg
�

Z

¼
Q

j2JwP
�
bjjfHgz1w;j; fHgz2w;j

�

Z
; (6)

where Jw is the set of sites whose sequence reads depend on
the haplotype assignment in window w (sequence reads
within the window and the two flanking regions), Z is a nor-
malizing constant summing over the K2 hidden states for the
haplotype-pair assignment, PðbjjfHgz1w;j; fHgz2w;jÞ is the geno-
type likelihood at site j for the genotype given by adding
haplotypes z1w and z2w at site j, and we have assumed, a priori,
that the haplotype assignments are independent, and that all
haplotypes in the reference set have equal prior probability.

Overall, inference is performed in a single pass over win-
dows, with the joint distribution over hidden state assign-
mentsbeingapproximatedby theproductofdistributionsover
hidden states in each window (Equation 4). This resembles a

Table 3 Glossary of terms for sequencing data

Term Description

Reads Data recording nucleotide signal strengths for short DNA fragments. These
data are used for base calling

Base calling The process of assigning nucleotide bases to reads. Encompasses a
measure for the uncertainty and quality of assigning a nucleotide at
each site

Genotype likelihoods Probability of observing the reads given each possible genotype. Uses the
uncertainty and quality scores for all reads at a given site for a given
individual. For a diallelic SNPs with reference allele denoted by r and alternate
allele denoted by a, the genotype likelihood for an individual i at site j is the
three-dimensional vector ½Pðbij jgij ¼ rrÞ Pðbij jgij ¼ raÞ Pðbij jgij ¼ aaÞ�;
where bij and gij denote reads and genotype at site j for individual i,
respectively
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cluster-based mean-field approximation (Jordan et al. 1999),
where a complex graph is divided into small clusters, each of
which can be inferred by exact inference.

Time complexity: The complexity of the inference procedure
is quadratic in the number of reference haplotypes, and linear
in the number of target individuals and in the number of
windows. In the section Filtering reference haplotypes, we re-
duce the state-space over hidden haplotype-pairs by consid-
ering only a subset of ℓ haplotypes in each window. This is a
second approximation to the posterior distribution, and
keeps the complexity of GeneImp subquadratic in the number
of reference haplotypes, as the summation over haplotype-
pairs in Equation 5 is now over ℓ2 pairs instead of K2:

Splitting into windows: Our objective is to keep windows
short, so that the underlying haplotypes in each window can
bematched to haplotypes in the reference panel, while ensuring
that each window contains enough sequencing reads (i.e., ob-
servations) to perform inference reliably. To mitigate this trade-
off,we adopt a data-driven approach,where the informativeness
of the observed reads is used to split each individual’s genome
into the smallest windows that contain sufficient information.

We use the following heuristic approach to quantify the
information content of sequencing reads. Consider a simple
model where the genotype gj at a site j is independent of
genotypes at other sites. A prior distribution for gj can be
defined in terms of allele frequencies in the reference panel,
PðgjÞ ¼ ½p2j 2pjqj q2j �; where pj and qj are the frequencies of
the reference and the alternate allele, respectively. Using
genotype likelihoods PðbjjgjÞ derived from the sequencing
data, we can apply Bayes rule to get the posterior probability
for gj under this fully factorized model.

We define the information content, cj; at site j, as the
Kullback–Leibler divergence between the posterior and the
prior distributions of this simple factorized model:

cj ¼ DKLðPðgjjbjÞkPðgjÞÞ ¼
X
a

Pðgj ¼ ajbjÞlog
Pðgj ¼ ajbjÞ
Pðgj ¼ aÞ

¼
P

aPðbjjgj ¼ aÞPðgj ¼ aÞlog  Pðbjjgj ¼ aÞ
Z

2 logZ;

(7)

where a indexes the three possible genotypes (ref/ref, ref/
alt, alt/alt), and Z ¼ P

aPðbjjgj ¼ aÞPðgj ¼ aÞ is a normaliz-
ing constant.

To divide each chromosome intowindows, we require that
each subsequent window is the smallest possible, while the
total information content of reads in each window is above a
fixed threshold. The threshold for the total information con-
tent in a window is a tuning parameter of GeneImp. Smaller
values result in smaller average windows, as fewer sequence
reads are needed to reach the required level.

Flanking regions: The posterior distribution over the haplotype-
pair assignment in a window considers sequencing reads

from two flanking regions left and right of the window—in
addition to reads within the window (Equation 6). The
flanking regions allow us to use more observations for in-
ferring the underlying haplotype-pair, while keeping the
imputation window short. Furthermore, they smooth out
boundary effects that would occur if each window was pro-
cessed independently of its two bordering regions.

In this work, we set the size of each flanking region to be
roughly half the size of the window, which we empirically
found to work well in preliminary experiments. This means
that, when computing the posterior distribution over haplo-
type-pairs in a window (Equation 6), �25% of sequencing
reads in the set Jw come from the preceding window, �50%
come from within the window, and �25% come from the
following window.

Averaging over window splits: Due to LD,we expect that the
sequence of hidden haplotypes will have a block dependency
structure. If the blocks were known, we could group sequenc-
ing reads from each block in a single window, and perform
inference in each window in isolation. However, the “correct”
grouping into windows is unknown. Therefore any arbitrary
grouping based on heuristic approaches will misrepresent
some of the dependency structure in the target haplotypes.

To alleviate this problem, we employ a simple averaging
scheme. We run GeneImp a number of times, each time
splitting the genome into different windows by choosing a
different value for the window-size parameter. This results in
different subsets of loci being grouped together in each run.
Then, we compute the posterior distribution over haplotype-
pairs at a single locus j by taking a flat average of the corre-
sponding distributions from each run:

P
�
z1j ; z

2
j
��b; fHg� ¼ 1

S

XS

s¼1

P
�
z1wðsÞj j2wðsÞ ; z2wðsÞjj2wðsÞ

���b; fHg
�
;

(8)

where s indexes different splits into windows, and S is the
total number of different splits,wðsÞ is thew-th window of the
s-th split, and zwðsÞjj2wðsÞ denotes the haplotype assignment in
the wðsÞ-th window, where wðsÞ is the window the j-th locus
belongs to.

Averaging over a large number of approximations is often
used for the optimization of nonconvex functions. Our ap-
proach is motivated by structuredmean-field approximations
of loopy graphs (distributions), where we approximate a
complex structured distribution by an average over multiple
simpler approximations such as trees or chains (Jordan et al.
1999; Xing et al. 2003).

Filtering reference haplotypes: Similarly tomost imputation
algorithms, the computational complexity of GeneImp is
reduced by introducing an approximation to the state space
over the hidden haplotype-pair assignment. Specifically, in
Equation 5, instead of summing over allK2 possible haplotype-
pair combinations from the reference panel, we select a subset
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of ℓ haplotypes, and sum over the ℓ2 possible haplotype-pair
combinations.

We perform thefiltering step at eachwindow (and for each
individual). Since we are directly imputing diploid sequences
(genotypes), our objective is to choose haplotypes that give
rise to “good” haplotype-pairs, i.e., haplotype-pairs that
are compatible with the genotype likelihoods for the window
we are imputing. However, we also want the selected haplo-
types to cover the state space adequately, i.e., to also assign
probability mass to hidden configurations that are less likely,
but still compatible with the sequencing reads. Therefore,
we also want the selected haplotypes to give rise to diverse
haplotype-pairs.

In order to choose “good” haplotype-pairs, we perform
filtering in two steps. In the first step, we select ℓ=2 haplo-
types at random. In the second step, we select the remaining
ℓ=2 haplotypes that give rise to haplotype-pairs with high
posterior probability (Equation 6) when paired with the
ℓ=2 haplotypes already selected.

Data description and preprocessing

Target sample:Our target sample comprises 16 individuals of
Scottish ancestry who were included in the Scottish Early
Rheumatoid Arthritis (SERA) cohort (Kronisch et al. 2016).
The SERA study was reviewed and approved by the West of
Scotland Research Ethics Committee Number 4, REC refer-
ence number 10/S0704/20. Written informed consent was
obtained from all participants. Ultralow coverage sequencing
for study participants was available through an industry col-
laboration, but chip genotyping was not available for the
majority of samples. Therefore, imputation to a dense refer-
ence panel was necessary for performing downstream anal-
yses with the genetic data.

The raw sequencing reads were aligned to the HG19
reference genome using the Torrent Mapping Alignment Pro-
gram for Ion TorrentData (TMAP) software program.Aligned
reads were stored as BAM files. We removed duplicate reads
using the MarkDuplicates tool from the Picard suite (Data
availability). After removing duplicate reads the average se-
quencing coverage in the 16 individuals was 0.62, ranging
from 0.45 to 0.76.

To evaluate the quality of the sequencing and alignment,
we considered the aligned reads from chromosome 22, and
compared the variant alleles inferred at loci in dbSNP with
the variant alleles given in dbSNP. The agreement was.99%,
compared with 33% that would be expected by chance. Spe-
cifically, only 43 out of 36,846 SNPs with an alternate (ALT)
allele called in chromosome 22 had different alternate allele
to that reported in dbSNP.

Weused theUnifiedGenotyper tool of theGATK suite (Data
availability) to compute genotype likelihoods at sites with se-
quencing reads. We restricted genotype calling to diallelic SNP
sites from the 1000 Genomes reference panel, since calling of
indels andmultiallelic variants fromultralow coverage sequenc-
ing can be unreliable, and sites not typed in the reference panel
do not contribute any information to the imputation model.

To tune and evaluate the quality of imputation from the
sequencing data, the 16 pilot individuals in our target sample
were also typedwith the IlluminaHumanOmniExpressExome-
8-v1-2-B chip.

Reference panels: We evaluated two reference panels: the
1000 Genomes Phase 3 (1000 Genomes Project Consortium
2015) panel of 2504 individuals, and a larger reference panel
formed by combining the 1000 Genomes Phase 3 panel with
2432 individuals from the UK10K panel (UK10K Consortium
2015), and398individuals fromtheORCADESstudy(McQuillan
et al. 2008). We refer to the former reference panel as
“1000G,” and to the latter as “Combined.” We note that
the representation of mainland Scottish population in the
two added cohorts is low, individuals in the UK10K panel
were primarily recruited in England, while the ORCADES
population is a genetic isolate.

Measuring imputation quality

Multiple evaluation metrics have been proposed in the
literature for measuring imputation quality. Here, we used
two of the most establishedmetrics, (a) the allelic mean R2;

which is the squared Pearson’s correlation coefficient be-
tween true genotypes and imputed dosages at each site,
averaged over sites; and (b) the calibration of the posterior
genotype probabilities, which compares the probability
of predicted genotypes to the concordance rate between
predicted and true genotypes (Browning and Browning
2009). We assume that the true genotypes are the ones
recorded by the SNP-chip platform. We describe these im-
putation metrics in more detail below.

Mean-R2: We measure imputation quality using the squared
correlation between the expected value for the genotype
dosage under the posterior probability distribution inferred
by the imputationalgorithm,and thegenotype recorded in the
SNP-chip array. Specifically, for individual i and for a diallelic
locus jwith alleles r and a, let daij denote the genotypic dosage
for the alternate allele a, i.e., the number of a alleles that
individual i carries at locus j. Then, the expected dosage un-
der the imputation model is defined as:

E
�
daij
�
Pðgjjb;fHgÞ ¼ 23 Pðgj ¼ 2jb; fHgÞ þ Pðgj ¼ 1jb; fHgÞ:

(9)

We then compute the squared correlation coefficient between
the expected dosage and the true genotype at each locus and
averageacross loci,whereweassume that the truegenotype is
the one recorded by the SNP-chip.We refer to this measure as
the mean-R2: The mean-R2 is a standard measure for impu-
tation quality. It can be interpreted as the reduction in effec-
tive sample size for a GWAS due to imperfect imputation
(Browning and Browning 2009).

Calibration: To assess whether the imputation probabilities
are well-calibrated, we first compute the concordance rate
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between the most likely genotype and the true genotype. For
well-calibrated probabilities, we expect that predicted geno-
types with posterior probability awill have concordance rate
of approximately a.

BEAGLE settings

To run BEAGLE, we used the following parameter values:

Xmx64G
nthreads = 32 (default = 1)
windowsize = 25,000 (default = 50,000)

The smallerwindow-sizewas used in order to reducememory
usage. We used the default settings for all other parameters.

Data availability

The GeneImp code is available as an R package that can be
downloaded from https://pm2.phs.ed.ac.uk/geneimp/. The
target samples used in this work are from the SERA study. The
data custodian is the StratifiedMedicine Scotland Innovation
Centre (SMS-IC). Managed access to the raw sequence data
and the chip genotypes can be negotiated with SMS-IC, who
may be contacted at Admin@stratmed.co.uk. The software
packages and reference datasets we used in the analyses re-
ported in this manuscript, including data preprocessing steps,
can be accessed as follows.

1000 Genomes project, June 2013 phase 3 release down-
loaded from the ftp server at ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/release/20130502/.

UK10K project: ALSPAC cohort accession number
EGAD00001000195, TWINSUK cohort accession num-
ber EGAD00001000194.

ORCADES study: http://www.orcades.ed.ac.uk/orcades.
BEAGLE v.4.0 software (beagle.r1399.jar): https://faculty.

washington.edu/browning/beagle/b4_0.html.
Picard Tools (v 1.128): http://broadinstitute.github.io/picard/.
Genome Analysis ToolKit (GATK) suite (McKenna et al. 2010)

v3.3-0-g37228af: http://www.broadinstitute.org/gatk.

Results

In this section, we present results based on (a) imputation
of the whole genome; and (b) imputation of chromosome
22, which is �1% of the human genome. In both cases,
we assessed imputation quality (mean-R2 and calibra-
tion) by considering the subset of SNPs that are included
in the combined reference panel, and are also typed in
the SNP-chip genotyping platform. This was a total of
810,219 SNPs across the whole genome, and 8911 SNPs
on chromosome 22.

Figure 1 Mean-R2 and calibration for im-
putation based on GeneImp. (A) Mean-R2

as a function of window-size. Results are
from chromosome 22. A smaller window
and the Combined panel lead to higher
mean-R2; while more filtered haplotypes
lead to very small gains. (B) Mean-R2 as a
function of MAF. Results are from the
whole genome using ℓ ¼ 200 filtered hap-
lotypes. Single window-split corresponds
to median window-size of 58.2 kb, aver-
age of two window-splits is taken over re-
sults with median window-sizes of 58.2
and 78.9 kb. Mean-R2 increases as a func-
tion of the MAF, leveling-off around
MAF ¼ 0:05: Averaging posterior proba-
bilities from two window-splits leads to
higher mean-R2; especially for rarer SNPs.
(C) Mean-R2 in different chromosomes.
Results are based on ℓ ¼ 200 filtered hap-
lotypes. Single window-split corresponds
to median window-size of 58.2 kb, aver-
age of two window-splits is taken over re-
sults with median window-sizes of 58.2
and 78.9 kb. Imputation is marginally
worse in shorter chromosomes. (D) Cali-
bration of posterior probabilities from a
single window-split corresponding to me-
dian window-size of 58.2 kb, and an av-
erage of two window-splits taken over
results from median window-sizes of
58.2 and 78.9 kb. To evaluate calibration
we split imputed genotypes into bins

according to their posterior probability distribution. We plot the mean posterior probability in each bin (x-axis) against the percentage of correctly
predicted genotypes in each bin (y-axis). Averaging across window-splits leads to well calibrated posterior probabilities (most points lie close to the
diagonal), while imputation probabilities based on a single window-split are over-confident (points lie below the diagonal).
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GeneImp imputation quality

We first evaluated a number of settings for the window-size
parameter, and thenumber offilteredhaplotypes, using either
the 1000G or the Combined reference panel, by comparing
imputation quality achieved by GeneImp on chromosome 22
(Figure 1A). We then selected a smaller subset of settings, and
performed imputation of the whole genome (Figure 1, B–D).

In the following sections, we examine imputation quality
with respect to (a) GeneImp tuning parameters, (b) minor
allele frequency, (c) chromosome, and (d) choice of reference
panel.

Window size: GeneImp performance is relatively robust
across different settings, with the mean-R2 ranging from
0.870 to 0.922 on chromosome 22 (Figure 1A). Table 4
shows the median and the 10 and 90% quantiles of window
lengths in kilobases corresponding to the five window-size
values displayed in Figure 1A. The maximum mean-R2 is
achieved with a median length of 58.2 kb. Imputation qual-
ity is similar for a median length of 78.9 kb, and starts de-
creasing when we further increase the window size.

We report the length of the total region that is used to
compute the posterior probabilities over haplotype-pair
assignments, i.e., the length of the imputation window,
plus the lengths of the two flanking regions left and right
of the window. We only impute the middle part of this
region, which corresponds to imputation blocks with me-
dian length of 29–39 kb. The haplotype blocks shared be-
tween unrelated individuals in European populations
are typically of length 20–100 kb (Daly et al. 2001; De La
Vega et al. 2005), suggesting that smaller windows could
lead to better imputation quality if the information content
of the sequencing reads was increased (e.g., through deeper
sequencing).

In the whole-genome experiments, we used the window-
size settings corresponding to median length of 58.2 and
78.9 kb. Generally, the optimal window size will depend
on the size of the reference panel, on how closely the target
individual is related to the individuals in the reference panel,
and on the depth of sequencing coverage. With deeper se-
quencing, a smaller window size may be optimal. With a
reference panel containing many individuals closely related
to the target individual, a larger window size may be optimal.

Number of filtered haplotypes: The number of filtered hap-
lotypes, ℓ; controls the trade-off between computational com-
plexity and the degree of the approximation in the posterior
distribution over genotypes when we reduce the state-space
from K2 to ℓ2; where K is the total number of reference hap-
lotypes (Equation 5). We assessed imputation quality using
ℓ ¼ 200 and ℓ ¼ 500 filtered haplotypes, depicted by circles
and diamonds in Figure 1A. Using more haplotypes leads to
an increase in the mean-R2; however, this increase is always
marginal. Therefore, if the computational cost is a key con-
sideration, setting ℓ ¼ 200 haplotypes is a good baseline for
imputation of European populations to the 1000 Genomes

reference panel. In the whole-genome experiments, we used
ℓ ¼ 200 haplotypes.

Evaluation per minor allele frequency: Figure 1B plots im-
putation mean-R2 as a function of minor allele frequency
(MAF), where we have divided the SNPs from the whole
genome into bins according to their MAF in the Combined
panel. The first bin shows imputation quality for SNPs with
MAF # 1%. The mean-R2 initially increases sharply as we
consider bins with higher MAF, and levels out when we reach
MAF. 5%. For rare SNPs (MAF# 1%), imputation quality is
still at a reasonable level, especially if we consider results
from the average over two window-splits (square markers).

Evaluation per chromosome: Figure 1C shows imputation
mean-R2 for different chromosomes. Performance is relative-
ly robust across chromosomes, with the mean-R2 ranging
from 0.90 to 0.93 for imputation based on a single window-
split, and from 0.91 to 0.94 for imputation based on the
average of two window-splits. Imputation quality is margin-
ally worse for shorter chromosomes.

Averaging over window splits: Any single split intowindows
willmisrepresent somedependencies in the targethaplotypes,
as the “correct” grouping into windows is unknown. To alle-
viate this problem, we compute imputation probabilities by
taking a flat average over genotype probabilities from differ-
ent splits into windows. Results from taking an average over
two window-splits, corresponding to median window-sizes of
58.2 and 78.9 kb, are presented in Figure 1, B and C in terms
ofmean-R2; and in Figure 1D in terms of calibration (circles vs.
squares). Results are based on SNPs from the whole genome.

Themean-R2 achieved by averaging over the twowindow-
splits is always higher compared to the mean-R2 from the
single window-split. The improvement is only marginal
for common SNPs (MAF . 5%), but becomes substantial
for rarer SNPs (Figure 1B). Averaging over window-splits
is also important for calibration, with imputation probabil-
ities giving overconfident predictions when we use geno-
type posterior probabilities from a single window-split,
while being well-calibrated when we take the average over
two window-splits (Figure 1D).

Choice of reference panel: We have used two reference
panels denoted by 1000G (1000 Genomes Phase 3) and
Combined (1000GenomesPhase 3 + UK10K + ORCADES).

Table 4 Median, 10 and 90% quantiles of window length (kb) for
different settings of the window-size parameter

10% Quantile Median 90% Quantile

23.2 58.2 131.3
33.0 78.9 173.8
42.4 99.6 216.8
53.0 120.6 258.2
63.7 141.9 302.3
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These are depicted by red and blue colors, respectively, in
Figure 1. For common SNPs, imputation based on the com-
bined panel results in higher mean-R2 compared to the
1000G panel (Figure 1, A and B). However, the improve-
ment is generally marginal. We believe that this is due to
the fact that the added samples from the UK10K and the
ORCADES panels are roughly as representative of the sam-
ples in our target cohort as samples from the 1000 Genomes
panel. Therefore, our approximation of the state-space of
haplotype-pair assignments for the target samples, which is
based on the available reference haplotypes, does not im-
prove substantially by adding haplotypes from the UK10K
and the ORCADES panels.

Interestingly, for rare SNPs (MAF # 1%), imputation
based on the 1000G panel results in slightly higher mean-
R2 compared to the combined panel (Figure 1B). A possible
explanation is that, in the 1000G Phase 3 panel, all individ-
uals were sequenced using both whole-genome sequencing
with a mean depth of 7.43, and targeted exome sequenc-
ing with a mean depth of 65.73, while the UK10K and
ORCADES cohorts were only whole-genome sequenced at
a mean depth of 73. Therefore, SNPs with low MAF are
likely to be better tagged in the 1000G Phase 3 panel. It is
worth noting that Huang et al. (2015) proposed a method
for rephasing the UK10K panel, and showed that this
rephasing improved imputation of low MAF variants. In this
work, we have used a version of the UK10K panel without
the proposed rephasing.

Overall, if the interest is in commonvariation (MAF.1%),
we recommend using the 1000 Genomes Phase 3 reference
panel for imputing samples of European ancestry, since the
computational burden increases with a larger reference
panel. If the interest is in rare variation, a combination of
the rephased UK10K panel (Huang et al. 2015) with the
1000 Genomes Phase 3 panel would be more suitable. Add-
ing the current-guess haplotypes of target individuals to the

reference panel and rerunning GeneImp is unlikely to in-
crease accuracy substantially, unless the target sample con-
tains related individuals.

Comparison with BEAGLE

Figure 2 compares imputation quality of GeneImp to BEAGLE
v.4.0 in terms of mean-R2 and calibration. Results are based
on imputation of chromosome 22 using the 1000G reference
panel. For GeneImp, we used ℓ ¼ 200 filtered haplotypes.
The single window-split corresponds to median window-size
of 58.2 kb, and the average of five window-splits is taken
over results corresponding to the median window-sizes re-
ported in Table 4. BEAGLE has the highest mean-R2 at all
MAF bins, followed closely by GeneImp, when averaging
posterior probabilities over five window-splits. The differ-
ence in mean-R2 between BEAGLE and GeneImp-5-window-
average is�0.02 at all MAF bins. GeneImp based on a single
window-split has the lowest mean-R2; and the difference to
the other two methods is higher for rarer SNPs (Figure 2A).
As there is only a small number of rare SNPs in chromosome 22,
we cannot estimate the mean-R2 for smaller MAF bins re-
liably in this case.

The imputation probabilities of BEAGLE and GeneImp-5-
window-average arewell-calibratedwithmost points lying on
the diagonal, while the imputation probabilities of GeneImp-
single-window are over-confident, i.e., the mean posterior
probability is higher than the corresponding percentage of
correctly predicted genotypes (Figure 2B).

Overall, combining results from different window splits
improves imputation quality both in terms of mean-R2 and
calibration, but has diminishing returns. The mean-R2 for
GeneImp imputation of chromosome 22 using a single split
into windows, and an average over 2, 3, 4, and 5 windows is
ð0:907; 0:917; 0:920; 0:922; and 0:922Þ; respectively. There-
fore, averaging over two window splits is a good trade-off
between quality and efficiency.

Figure 2 Comparison of GeneImp
with BEAGLE. (A) Imputation
mean-R2 as a function of MAF. Each
point is computed by averaging
the R2 values for SNPs within a
MAF bin. The size of the marker
reflects the number of SNPs in
the MAF-bin. BEAGLE has the
highest mean-R2 followed closely
by GeneImp-5-window-average.
(B) Calibration of genotype poste-
rior probabilities. Imputed geno-
types are split into bins according
to their posterior probability distri-
bution. We plot the mean poste-
rior probability in each bin (x-axis)
against the percentage of correctly
predicted genotypes in each bin
(y-axis). BEAGLE and GeneImp-5-
window-average are well-calibrated,
while GeneImp-single-window is
overconfident.
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We report the mean-R2 averaged over all SNPs, to-
gether with the running time and allocated CPUs for
BEAGLE and the two GeneImp experiments in Table 5.
GeneImp is 15, and up to 90, times faster than BEAGLE,
with only a small drop in imputation quality, which makes
it a practical choice for real-world applications. For this
comparison, we ran BEAGLE with twice as many allocated
CPUs (specified through the nthreads option) as GeneImp. In
terms of memory complexity, BEAGLE needed at least 64 GB
of pre-allocated memory (through the -Xmx Java option)
and gave out-of-memory errors when we used smaller values
(see also BEAGLE settings). On the other hand, GeneImp is
implemented using the bigmemory R package to create,
store, and access the reference panel. This allows the pro-
gram to use RAM, when there is sufficient RAM available,
but can also create file-backed data structures, which are
accessed in a fast manner when not enough RAM is avail-
able. The timings reported here are based on file-backed
versions of the reference panels.

Finally, we also compared the running time of BEAGLE to
that of GeneImp as we increase the number of target indi-
viduals. For this comparison,weusedanadditional 112 sam-
ples with ultralow coverage sequencing from the SERA
cohort. These samples could not be used to assess imputa-
tion quality, as they had not been typed with the SNP-chip.
Table 6 shows the time BEAGLE and GeneImp-single-window
took to impute a chunk from chromosome 22 comprising
100,000 variants in the 1000G reference panel (�1/7th
of chromosome 22). Again, we ran BEAGLE with twice as
many allocated CPUs as GeneImp, and with other settings
as specified in section BEAGLE settings. For GeneImp-single-
window, we used the same settings as in the previous com-
parison (median window-size ¼ 58:2kb, ℓ ¼ 200 filtered
haplotypes, and file-backed data structure for the reference
panel). The GeneImp single-window was 90 times faster
than BEAGLE when imputing 16 target individuals, which
is consistent with the previous comparison based on impu-
tation of the whole chromosome 22. The GeneImp single-
window was 108 times faster than BEAGLE when imputing
128 target individuals. Thus the scaling of computational
time with respect to target sample size is slightly favorable
for GeneImp over BEAGLE.

Minimum sequencing coverage

Imputation quality is proportional to the sequencing coverage
of each sample. Figure 3 plots the concordance between true
and predicted genotypes against the average coverage for

each of the 16 samples. As expected, imputation quality im-
proves with higher sequencing coverage.

Discussion

We described GeneImp, an algorithm that performs geno-
type imputation to a dense reference panel using genotype
likelihoods as inputs, and evaluated its performance on data
produced via ultralow coverage sequencing. Although im-
putation fromultralow coverage sequencing has been shown
to be experimentally feasible (Pasaniuc et al. 2012), this is
the first study to demonstrate a computational method that
can scale up to whole-genome imputation in this setting.

Wecompared the imputationquality ofGeneImp to thatof
BEAGLE v.4.0, the algorithmused in Pasaniuc et al. (2012) to
demonstrate the proof-of-concept that imputation from ul-
tralow coverage sequencing data is possible. Our results
show that, although BEAGLE v.4.0 remains state-of-the-art
for imputation quality, GeneImp achieves imputation qual-
ity very close to that of BEAGLE, using one to two orders of
magnitude less time, and without an increase in memory
complexity.

Recently, Davies et al. (2016) developed STITCH, a method
for imputing genotypes from sequencing data without the use
of a reference panel. Their method is motivated by the need for
genotype imputation in nonhuman species where SNP geno-
typing arrays have not been developed, or do not work well,
and large reference panels are not available. They showed that
STITCH was able to impute genotypes from ultralow coverage
sequencing (0.153) in outbred mice with high accuracy
(mean-R2 between 0.948 and 0.972). Furthermore, they
showed that in a human cohort of 11,670 Han Chinese se-
quenced to 1:73 coverage, STITCH outperformed BEAGLE
without a reference panel (mean-R2 of 0.922 and 0.886,
respectively), and was slightly outperformed by BEAGLE
with a reference panel (mean-R2 of 0.943), though in the latter
case BEAGLE took 7.3 times longer to run. When the sequenc-
ing depth was reduced to the 0:53 coverage examined in this
work, the performance of STITCH dropped (mean-R2 between
0.8 and 0.82 for 0:73 coverage, and between 0.58 and 0.7
for 0:33 coverage for target sample sizes ranging from
2000 to 12,000 individuals). Therefore, in the case of ultralow
coverage sequencing (,13), and an available reference panel,
GeneImp would give the best trade-off between imputation
quality and efficiency, with a mean-R2 above 0.9.

Similar to many imputation algorithms, GeneImp’s infer-
ence complexity is driven by the computation of the hidden

Table 5 Performance and running time for GeneImp and BEAGLE imputation of chromosome 22 (16 target samples)

Method Mean-R2 Time in hra Allocated CPUsb

GeneImp; single-window 0.907 1.5 16 parallel processes (doMC R package)
GeneImp; five-window-average 0.922 9.0 16 parallel processes (doMC R package)
BEAGLE 0.939 135.6 32 parallel threads (nthreads option)
a We report the elapsed time between start and finish of the experiment. This was recorded using the time unix command for BEAGLE and the proc.time() R function for
GeneImp. The server was solely used for this job during this time.

b Experiments performed on a server with 43 Intel Xeon E7-4870 processors, with 2.40 GHz and 10 cores (20 threads) each and 256 GB RAM.
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state space. Our effective reduction of the diploid hidden
state-space introduced by the haplotype filtering step keeps
GeneImp’s time complexity subquadratic in the number of
reference haplotypes, making it a practical choice when
large reference panels are available. In addition to its com-
parably low algorithmic complexity, GeneImp is also highly
parallelizable, since we can perform inference indepen-
dently for each sample, each window and each window-
split, and we only need to combine results from different
window-splits in the end. This is in contrast to many iterative
schemes, for instance based on Markov-Chain Monte Carlo
or Expectation-Maximization, where results typically need
to be combined after each iteration, and convergence of the
iterative process must be evaluated. Therefore, additional
scalability of GeneImp can be achieved by taking advan-
tage of existing computing infrastructures that offer large,
shared-memory supercomputers, while further computa-
tional speed-ups can be developed through a GPU implemen-
tation, which can take advantage of this type of parallelizable
computation.

The settings for the GeneImp tuning parameters reported
here shouldworkwell for imputation of European individuals
with ultralow coverage sequencing (0.53). Guidelines on
how to set the window-size parameter when deeper sequenc-
ing is available are given in the GeneImp R package (Data
availability). We recommend running GeneImp two or three
times, each time with a different value for the window-size
parameter, and computing the imputation probabilities as a
flat average over runs. To evaluate the quality of imputation
in the absence of SNP-chip data, we suggest “masking” a
number of loci with confident genotype calls, i.e., setting their
genotype likelihoods to missing, and assessing how well the
imputed genotypes match the original calls. This only needs
to be performed in a small region of the genome.

A useful extension for GeneImp, which we plan to imple-
ment in the future, is an option for phasing. The program
already finds the most likely haplotype pair within each
window, and thus we only need to add a method for stitching
together the most likely haplotype pairs based on the over-
lapping segments of adjacent windows.

Our evaluation of GeneImp was based on imputation of
ultralow coverage sequencing data. In contrast to SNP arrays,
the cost of sequencing depends on the required read depth,
which leads to a trade-off between sample size and read depth
for a fixed amount of resources (Sims et al. 2014). Although
the cost of SNP arrays has fallen more rapidly than the cost of

sequencing in recent years, it is not clear how these costs will
compare in the future. Therefore, the capability offered by
GeneImp to impute ultralow coverage sequencing data to a
dense reference panel accurately and efficiently on a genome-
wide scale is an important consideration when examining the
cost-effectiveness of different technologies for the design of
new genomic studies.

The successful application of GeneImp to ultralow cover-
age sequencing data motivates an interesting future usage:
acquiring whole-genome imputation in existing deep whole-
exome sequencing datasets based on their off-target reads. In
recent years, whole-exome sequencing has been used exten-
sively to explore rare variation (Norton et al. 2012; Tennessen
et al. 2012; Lek et al. 2016), since it is more cost-effective, and
findings are easier to interpret compared to whole-genome
sequencing. According to a recent review (Sims et al. 2014),
whole-exome sequencing would require an 803 average
read depth of targeted regions to cover �90% of targeted
bases by at least 10-fold. At this level of average coverage
for the exome, wewould expect a 0.2–0.63 average coverage
of the rest of the genome from off-target reads, depending
on the exome capture system, with Illumina’s Nextera and
TrueSeq technologies giving the highest expected whole-
genome coverage (Chilamakuri et al. 2014). A 0.53 average
read depth was used for the ultralow coverage whole-genome
sequencing data analyzed in this work.

Table 6 Running times for GeneImp and BEAGLE imputation with different target sample sizes (100 kb from
chromosome 22)

Method
Time in Minutes for
16 Target Samplesa

Time in Minutes for
128 Target Samples Allocated CPUsb

GeneImp; single-window 6.9 24.4 16 parallel processes (doMC R package)
BEAGLE 615 2646 32 parallel threads (nthreads option)
a We report the elapsed time between start and finish of the experiment. This was recorded using the time unix command for BEAGLE and the proc.
time() R function for GeneImp. The server was solely used for this job during this time.

b Experiments performed on a server with 43 Intel Xeon E5-4650 processors, with 2.70 GHz and eight cores (16 threads) each and 1 TB RAM.

Figure 3 Concordance against sequencing coverage. Imputation quality
improves with higher sequencing coverage.
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