
RESEARCH ARTICLE

Diverse range dynamics and dispersal routes

of plants on the Tibetan Plateau during the

late Quaternary

Haibin Yu1,2, Yili Zhang1,3*, Zhaofeng Wang1, Linshan Liu1, Zhao Chen4, Wei Qi1

1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural

Resource Research, Chinese Academy of Sciences, Beijing, P. R. China, 2 School of Life Sciences, Sun Yat-

sen University, Guangzhou, P. R. China, 3 University of Chinese Academy of Sciences, Beijing, P. R. China,

4 Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, P. R. China

* zhangyl@igsnrr.ac.cn

Abstract

Phylogeographical studies have suggested that several plant species on the Tibetan Pla-

teau (TP) underwent recolonization during the Quaternary and may have had distinct range

dynamics in response to the last glacial. To further test this hypothesis and locate the possi-

ble historical dispersal routes, we selected 20 plant species from different parts of the TP

and modeled their geographical distributions over four time periods using species distribu-

tion models (SDMs). Furthermore, we applied the least-cost path method together with

SDMs and shared haplotypes to estimate their historical dispersal corridors. We identified

three general scenarios of species distribution change during the late Quaternary: the ‘con-

traction-expansion’ scenario for species in the northeastern TP, the ‘expansion-contraction’

scenario for species in the southeast and the ‘stable’ scenario for widespread species. Dur-

ing the Quaternary, we identified that these species were likely to recolonize along the low-

elevation valleys, huge mountain ranges and flat plateau platform (e.g. the Yarlung Zangbo

Valley and the Himalaya). We inferred that Quaternary cyclic glaciations along with the vari-

ous topographic and climatic conditions of the TP could have resulted in the diverse patterns

of range shift and dispersal of Tibetan plant species. Finally, we believe that this study

would provide valuable insights for the conservation of alpine species under future climate

change.

Introduction

Phylogeography has provided a way to understand the demographic history of species, which

was primarily affected by periodic climate oscillations during the Quaternary, generating vary-

ing degrees of range contraction and expansion [1]. In general, species retreated to refugia dur-

ing the glacial period, preserving multiple and original haplotypes within these regions [2].

During the postglacial period, several species recolonized in other areas, producing nearly

complete haplotype uniformity in the colonized populations [3]. Hence, the range dynamics of
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species during the Quaternary may have influenced the present-day genetic structures and

phylogeographical patterns [4, 5].

Typically, phylogeographers can use mismatch distribution analysis or neutral test to detect

whether species underwent recent demographic expansion [6–8], and occasionally to estimate

the expansion time based on the mutation rate of DNA sequences [7]. However, the detailed

changes in range during the late Quaternary and expansion routes in a spatial context have

rarely been identified. Fortunately, the available paleoclimate data and species distribution

models (SDMs) have been widely applied to determine the trends in species distribution dur-

ing the late Quaternary [9–11]. Furthermore, the least cost path method, which is often used in

the field of landscape ecology [12–14], has been used to locate past dispersal routes in combi-

nation with population genetic data and SDMs [15, 16]. Such integrative calculation would

undoubtedly supplement the demographic history of species.

The Tibetan Plateau (TP) has become a hotspot of phylogeographical studies [17–20],

owing to its complicated alpine conditions (e.g. climate and topography) and past environ-

mental changes (e.g. Quaternary climate fluctuations). Based on the demographic history

of plant taxa inferred from these studies, we found that the changes in distribution were

diverse during the late Quaternary. Because there was no formation of large and whole ice

sheet during the Last Glacial Maximum (LGM) period on the TP [21], most evidence has

shown that the LGM had a limited effect on species distribution [17, 22–24]. Thus, the dis-

tributions of numerous species remained stable status throughout the LGM. However, a few

species in the northeastern part of the TP, including Juniperus przewalskii [25] and Picea
crassifolia [26], still underwent the typical tabula rasa scenario. In contrast, several cold-

adapted species (e.g. Picea likiangensis and Taxus wallichiana) in the southeastern TP expe-

rienced range expansion during the LGM [10, 11]. Based on the above-mentioned infer-

ences, we thereby recommend three common patterns of range dynamics across the TP: i) a

contraction-expansion scenario for species in the northeastern TP; ii) an expansion-con-

traction scenario for species in the southeastern TP; and iii) a stable scenario for widespread

species throughout the TP. This assumption is only based on the phylogeography of a few

species; thus, to further verify this speculation, more species and distribution modelling

needs to be carried out.

Several plant species on the TP underwent rapid and extensive recolonization events during

the Quaternary [27, 28]. We assumed that these species might be susceptible to climatic fluctu-

ations, we thus chose them in this study to i) test whether species in different parts of the TP

had distinct range dynamics during the late Quaternary, and ii) identify the possible historical

dispersal corridors of plant species on the TP.

Data and methods

Study area

The TP is the largest (c. 2.5×106 km2) and highest plateau in the world with an average eleva-

tion of greater than 4000 m [29] (Fig 1). Several major Chinese and Asian rivers originate from

the TP, such as the Yangtze River, Yellow River, Mekong River, Salween River, Yarlung

Zangbo River, Indus River and Ganges River. These rivers could be important corridors for

the dispersal of water vapor, plants and animals [16, 30]. During the summer season each year,

both the Indian and East Asian monsoon bring warm and wet air that is critical for the growth

and reproduction of plant species on the TP [31]. In the southeastern TP, the East Himalaya

and Hengduan Mountains is a key biodiversity hotspot harboring a great number of endemic

and alpine species [32], which is regarded as the potential recent origin areas and Quaternary

refugia of many temperate plants of East Asia [33–35].

Range dynamics and dispersal routes of Tibetan plants
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Species selection and determination of shared haplotypes

To test whether species in different parts of the TP have distinct range dynamics, we chose 20

plant species from three regions of the TP (Table 1), which experienced demographic expan-

sion during the Quaternary. Based on the phylogeographical study of each species, we collected

the haplotype composition and geographical coordinate of each population. To ensure the

congruence in DNA markers, we mainly selected maternally inherited markers (e.g. cpDNA

for angiosperms and mtDNA for gymnosperms). From the spatial haplotype structures of each

plant (S1 Fig), we obtained which populations had shared haplotypes.

Modelling species distribution

We applied the available bioclimatic and occurrence data to model the species distribution.

Based on the WorldClim database (http://www.worldclim.org/) [49], we obtained 19 biocli-

matic variables (S1 Table) with a resolution of 30 s (the data from the LGM were resampled to

30 s) for the Last Interglacial (LIG, c. 140–120 ka), the Last Glacial Maximum (LGM, c. 22 ka)

Fig 1. The scope of the Tibetan Plateau and its basic geographical conditions. In this study, the area of northeastern TP includes the Hehuang Valley,

the Qilian Mountains and the Qaidam Basin in Qinghai Province, the Taohe Valley in Gansu Province and the Minshan in northern Sichuan Province; the

southeastern TP mainly covers the East Himalaya and Hengduan Mountains.

https://doi.org/10.1371/journal.pone.0177101.g001
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and the Mid Holocene (c. 6 ka) based on the Community Climate System Model (CCSM4),

and the current conditions (c. 1960–1990). We then clipped these variables according to the

approximate species range in ArcGIS 10.1 (Environmental Systems Research Institute, Inc.,

Redlands, CA, USA). Next, to eliminate highly correlated factors, we carried out an autocorre-

lation test for 19 clipped variables using the SDMtoolbox v1.1c [50] in ArcGIS 10.1 (ESRI).

Consequently, several bioclimatic variables of the four periods with low Spearman’s coeffi-

cients (r < 0.75) were retained for subsequent analysis.

The species occurrence data (S2 Table) were mainly collected from published literatures

and further supplemented with data from field surveys and online database, including the

Global Biodiversity Information Facility (GBIF, http://data.gbif.org) and the Chinese Virtual

Herbarium (CVH, www.cvh.org.cn). As spatial clusters of localities in the gathered occurrence

data may result in model’s inflation and over-fit towards environmental biases [51–53], we

applied a spatially rarefy method to filter the occurrence data [53]. Based on the climatic het-

erogeneity, localities of occurrence were spatially filtered at 5, 15 and 25 km2 in areas of high,

medium and low climatic heterogeneity, respectively. To calculate climatic heterogeneity, we

conducted a principal component (PC) analysis of 19 bioclimatic variables and then calculated

the mean standard deviation of the first three climate PCs. These analyses were implemented

using the SDMtoolbox v1.1c [50]. Finally, the remaining localities combined with low-corre-

lated bioclimatic layers were used to estimate species distribution.

In this study, we used the maximum entropy algorithm in MAXENT v3.3 [9] to model the

current and past distributions of 20 species with a convergence threshold of 10−5, 500 itera-

tions, and the localities of occurrence divided into testing data sets and training data sets (25%

Table 1. Twenty plant species in different parts of the TP were used in this study.

Species Family DNA Type Population No. Haplotype No. Shared Haplotype No. Reference

Northeast TP

Juniperus przewalskii Cupressaceae cpDNA 20 6 5 [25]

Picea crassifolia Pinaceae mtDNA 32 9 9 [26]

Metagentiana striata Gentianaceae cpDNA 14 10 2 [36]

Angelica nitida Apiaceae cpDNA 16 20 5 [37]

Bupleurum smithii Apiaceae cpDNA 22 25 9 [38]

Southeast TP

Buddleja crispa Loganiaceae cpDNA 23 13 4 [39]

Picea likiangensis Pinaceae mtDNA 42 9 7 [40]

Taxus wallichiana Taxaceae cpDNA 43 29 11 [11]

Spenceria ramalana Rosaceae cpDNA 19 17 6 [41]

Quercus aquifolioides Fagaceae cpDNA 58 36 11 [42]

Entire TP

Potentilla fruticosa Rosaceae cpDNA 52 54 17 [22]

Allium przewalskianum Liliaceae cpDNA 48 32 13 [23]

Sibiraea angustata Rosaceae cpDNA 38 8 6 [43]

Hippuris vulgaris Hippuridaceae cpDNA 47 8 4 [44]

Ranunculus bungei Ranunculaceae cpDNA 44 6 4 [45]

Pomatosace filicula Primulaceae cpDNA 24 7 5 [46]

Orinus thoroldii Poaceae cpDNA 28 7 5 [47]

Rosa sericea Rosaceae cpDNA 61 37 18 [27]

Stuckenia filiformis Potamogetonaceae cpDNA 54 13 5 [48]

Anisodus tanguticus Solanaceae cpDNA 32 6 4 [28]

https://doi.org/10.1371/journal.pone.0177101.t001
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and 75%, respectively). We then conducted simple statistics on data distribution of range

dynamics for each species and different regions in R 3.2.5 [54].

Visualizing the dispersal routes

We identified the dispersal routes of plant species on the TP under the least-cost path (LCP)

method using the SDMtoolbox v1.1c [50] in ArcGIS 10.1 (ESRI). (i) We first obtained a dis-

persal cost layer (resistance layer) by inverting the species distribution layer (1-SDM) and then

created a cost distance raster for each sample locality based on the resistance layer. (ii) Using

the cost distance raster, we obtained the corridor layers between two localities with shared hap-

lotype. (iii) In contrast to previous studies [12, 55], which generally obtained linear dispersal

routes, we applied the categorical LCP method to better represent environmental heterogene-

ity in dispersal. We classified the value of each corridor layer into four intervals (three cutoff

values); if the lowest value of corridor layer was hypothesized to be 1.00, the four intervals

were: 1.00 ~ 1.01 (1.00 + 1.00�1%), 1.01 ~ 1.02 (1.00 + 1.00�2%), 1.02 ~ 1.05 (1.00 + 1.00�5%)

and 1.05 ~ highest value. These four intervals were then reclassified as new values (5, 2, 1, 0,

respectively). (iv) We summed all of the pairwise reclassified corridor layers, and the spatial

dispersal routes for each plant were obtained. Finally, based on the routes of 20 species, we

identified the possible recolonization pathways of species on the TP during the Quaternary.

Results

During the late Quaternary, plant species in three regions of the TP had distinct range dynam-

ics (Fig 2, S2 Fig). For the species in the northeastern part, they mainly presented contraction-

expansion scenario before and after the LGM. In contrast, the species in the southeastern TP

underwent surprising range expansion during the LGM and then contracted to some extent.

Fig 2. Boxplots of distribution area of plant species in three regions of the TP over four time periods. Three types of range changes were

shown: 1) ‘contraction–expansion (northeast)’, 2) ‘expansion–contraction (southeast)’ and 3) ‘stable (entire)’. LIG, the Last Interglacial; LGM, the Last

Glacial Maximum.

https://doi.org/10.1371/journal.pone.0177101.g002
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For the widespread species across the TP, their distribution exhibited almost no change since

the LIG.

Phylogeographical studies have suggested that at least 20 plant species on the TP experi-

enced recolonization during the Quaternary. To date, we have identified the dispersal routes

of each plant (S3 Fig) and predicted several major recolonization paths for species on the TP

(Fig 3). These dispersal routes are also supported by fossil data and other evidence (summa-

rized in Table 2). We found that at least 3 dispersal corridors existed, and the Hengduan

Mountains (HM) seemed to act as the main dispersal source (i.e. glaciation refugia). These

paths included: i) the northward path from the northern part of the HM to the Qilian Moun-

tains; ii) the westward path, in which species started in the HM region and recolonized along

the Yarlung Zangbo River or Himalaya Mountains; and iii) the southward path, which went

from the northeastern part to the southern part throughout the majority of TP’s platform, con-

verged with the Yarlung Zangbo River, and moved further into the vast western region of the

TP.

Fig 3. The possible Quaternary dispersal routes of plant species on the Tibetan Plateau. Three pathways were shown: i) the northward route, ii) the

southward route, and iii) the westward route. Arrows represent the dispersal direction of species.

https://doi.org/10.1371/journal.pone.0177101.g003
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Discussion

Range dynamics of plants on the TP during the late Quaternary

Within the European and North American continents, contraction-expansion in species distri-

bution was generally predominant [66, 67], owing to the existence of a large and complete ice

sheet during the LGM. However, there was no such formation of an ice sheet on the TP [21],

and our analysis suggests that the range dynamics of species on the TP were complex during

the late Quaternary. It might be argued that these distinct shifts in distribution were associated

with the heterogeneous climate and topography across the TP.

In the northeastern TP, the tabula rasa scenario seemed to be dominant, which is consistent

with previous phylogeographical studies and pollen fossil records [25, 26, 64]. In this region,

the climate is colder and drier than that of the southern TP, and the platform is basically flat;

only the eastern part has a series of mountain ranges (e.g. the Qilian Mountains and the Min-

shan Mountains in the northern HM). During the LGM, according to the rare palaeovegeta-

tion on the platform and the climatic characteristics [68, 69], we assumed that platform

populations of species became extinct and only marginal populations survived within the east-

ern mountains. Subsequently, when the warmer and wetter Holocene period came, forest and

alpine meadow recolonized on the platform [64]. Therefore, the alternation of vegetation on

the platform suggests that the LGM might have had greater effects on species distribution in

this region.

In the southeastern TP, the species exhibited an expansion-contraction response during the

late Quaternary. We assumed that this response was closely related to regional topographic

and climatic features. This region is mainly located within the East Himalaya and Hengduan

Mountains, which provide ample altitudinal range (e.g. niche) and stable ecological environ-

ment [70]. On the other hand, the Indian monsoon produces a warmer and wetter climate

compared to other regions of the QTP [31, 71]. The pollen data indicate that the late Quater-

nary was characterized by a warm temperate climate [72], and phylogeographical studies sug-

gest that this region acted as the major glaciation refugia for many alpine species on the TP

[18, 73]. Hence, during the LGM, suitable habitats could have facilitated the persistence of

Table 2. Fossil and other evidence for supporting the existence of dispersal routes.

Path Description Evidence Source

Westward path (including the

Yarlung Zangbo Valley and the

Himilaya)

Several oryctocoenoses were found in Namling County and Gyirong

Basin;

Fossil [56, 57]

The radiation of Tripterospermum, Gentiana and Adoxaceae from the

Hengduan Mountains to the western TP;

Phylogenetic analysis [34, 58,

59]

Several species underwent extensive recolonization events from the

Hengduan Mountains to Himalaya;

Phylogeographic analysis [11, 60]

The great canyon of Yarlung Zangbo River has abundant plants, which is

a young floristic region originated from the East Asia flora since the

Tertiary;

Floristic analysis [61]

The species Pedicularis longiflora and Tsuga dumosa underwent

westward dispersal along this path;

Least-cost path analysis [16, 62]

The seed dispersal of Sophora moorcroftiana relied on the wind and

waterflow in the midstream of Yarlung Zangbo River.

Seed dispersal experiment [63]

Northward path (including the

Hehuang Valley and the Qilian

Mountains)

The alternation of grassland and forest in the northeastern TP during the

late Quaternary;

Vegetation reconstruction

based on pollen

[64, 65]

The species Juniperus przewalskii and Picea crassifolia underwent

invasion of platform after the last glaciation.

Phylogeographic analysis [25, 26]

Southward path

The species Potentilla fruticosa and Allium przewalskianum underwent

extensive recolonization events from the northeastern to the southern TP.

Phylogeographic analysis [22, 23,

34]

https://doi.org/10.1371/journal.pone.0177101.t002
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populations in low-elevation areas, and populations on the top of mountains could have

moved downward and expanded into other areas because of the abundant niche in this region.

In contrast, during the LIG and Holocene period, the warmer and wetter climate would have

driven alpine species upward, resulting in their limited distribution in an isolated area.

For the widespread species on the TP, as discussed above, during the late Quaternary, the

populations in the northeastern platform may have contracted to refugia, whereas the popula-

tions in the southeastern part may have expanded in range. For the populations in the central

and southern TP’s platform, a lot of evidence suggests that the LGM had a limited influence on

species distribution of the platform [22, 56]. In addition, there might be several microrefugia

(e.g. the Three Rivers’ Headstream Regions) within these platform areas [74, 75]. Therefore, as

a whole, widely distributed species maintained stable populations throughout the LGM.

Dispersal routes of plants on the TP

Phylogeographical studies have been able to test which species experienced rapid and extensive

range expansion. In this study, using the LCP method, in combination with SDMs and shared

haplotypes, we have identified the possible dispersal routes of Tibetan plant species during the

Quaternary. Undoubtedly, determining the historical dispersal routes is important to supple-

ment the demographic history of species on the TP.

In this study, we identified three common pathways across the TP. Among the initial loca-

tions of these routes, the East Himalaya-Hengduan Mountains seemed to be the dispersal

source, which may be associated with this region’s role as the major glaciation refugia [18, 73].

According to historical biogeographic studies, this place was also an important center of origin

and radiation of alpine plants, triggering numerous species to migrate into other areas from

this region in the Neogene or earlier period [34, 58]. Surprisingly, the migration routes esti-

mated in those studies partially overlapped with the paths during the Quaternary. Thus, it

might be argued that species on the TP tend to disperse along several constant routes. We

assumed that this could be related to the topographic and monsoon climatic features of the

TP. The northward and westward routes identified in this study were basically along the

Hehuang Valley and Yarlung Zangbo Valley. Why did species migrate along these valleys?

These valleys are not only lower elevation areas (average elevation < 4000 m), but also impor-

tant vapor channels; in particular, the Yarlung Zangbo Valley is the largest vapor channel of

the TP [30]. Hence, with lower topography and strong airflow, these valleys are likely to facili-

tate the dispersal of seeds and pollen. Additionally, many fossils found in these valleys along

with phylogenetic and floristic analysis also support the existence of these corridors (see

Table 2). Apart from these two valleys, we predicted that the Yangtze River, Mekong River and

Salween River might also be important dispersal pathways. Even not obviously identified in

our study, other evidence implied that alpine species would migrate along these valleys during

the glacial period [10, 11].

Mountain ridges are another important dispersal corridors, like the Himalaya Mountains

in this study, which is a very long-narrow mountainous area. Evidence has shown that the

Quaternary glaciations likely had a great impact on plants in this region, resulting in many spe-

cies becoming extinct [60]. However, because the Himalaya is linked with the Hengduan

Mountains, some species could have easily moved to the Himalaya during the postglacial

period. In other montane areas around the world, huge mountains (e.g. the Andes) are also

regarded as important dispersal corridors [76].

We found that the TP’s platform (average elevation > 4500 m), which has flatter topogra-

phy, could facilitate long distance dispersal of alpine species, like the southward path in this

study. Despite the existence of a series of east-westward mountains across the platform, their
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relative elevation is actually not so high. Through Barrier analysis, we have also demonstrated

that these mountains are not acted as geographical isolations (unpublished data). Thus, several

drought-tolerant species (e.g. Potentilla fruticosa and Allium przewalskianum), originating in

the northern TP or adjacent desert (e.g. the Tengger Desert), could migrate into the southern

Tibet across the entire TP [22, 23].

Conclusions

The plant species on the TP exhibited diverse demographic histories during the late Quater-

nary. There were at least three types of changes in range. Despite the detailed range shifts are

distinct across different parts of the TP, they actually had no significant difference, and as a

whole, they remained relatively stable status in response to the last glacial, suggesting that

LGM had a limited impact on species distribution. In fact, an earlier glaciation (the Naynayx-

ungla glaciation, 0.72–0.50 Ma) might have had a significant influence. After this glaciation,

species were continuously dispersed along the low-elevation valleys (e.g. the Yarlung Zangbo

Valley and Hehuang Valley), huge mountain ranges (e.g. the Himalaya) or even the flat plateau

platform. Under future climate change, the species on the TP could continue to move along

these pathways, and thereby these areas should be paid more attention. Besides, the inferences

in this study are just based on 20 species, we believe that more diverse range dynamics and dis-

persal corridors would be found if many species are involved in future studies.
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