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Abstract

An appropriate estimate of statistical power is critical for the design of intervention studies. 

Although the inclusion of a pretest covariate in the test of the primary outcome can increase 

statistical power, samples selected on the basis of pretest performance may demonstrate range 

restriction on the selection measure and other correlated measures. This can result in attenuated 

pretest-posttest correlations, reducing the variance explained by the pretest covariate. We 

investigated the implications of two potential range restriction scenarios: direct truncation on a 

selection measure and indirect range restriction on correlated measures. Empirical and simulated 

data indicated direct range restriction on the pretest covariate greatly reduced statistical power and 

necessitated sample size increases of 82%–155% (dependent on selection criteria) to achieve 

equivalent statistical power to parameters with unrestricted samples. However, measures 

demonstrating indirect range restriction required much smaller sample size increases (32%–71%) 

under equivalent scenarios. Additional analyses manipulated the correlations between measures 

and pretest-posttest correlations to guide planning experiments. Results highlight the need to 

differentiate between selection measures and potential covariates and to investigate range 

restriction as a factor impacting statistical power.
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Statistical power is an estimate of the probability that a study will detect an effect of a given 

magnitude given its design parameters. An accurate a priori estimate of the statistical power 

of a study can conserve resources and ensure that the experiment demonstrates acceptable 

Type II error rates (i.e., failure to reject the null hypothesis when the alternative hypothesis is 

true). Power analyses include the manipulation of several parameters, including the number 

of participants, the magnitude of the expected treatment effect, the effects of participant 

clustering, and the specified level of alpha (Cohen, 1977; Spybrook & Raudenbush, 2009).

One important approach for improving the statistical power of an experiment is to include 

covariates that explain variance in the outcome of interest (Bloom, Richburg-Hayes, Black, 

2007; Schochet, 2005). For example, the inclusion of pretest performance at the school and 
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person level as covariates can often explain between 80% and 90% of the variance in 

posttest performance for academic outcomes (Hedges & Hedberg, 2007). However, power 

estimates that rely on published, unrestricted correlations between pretest and posttest scores 

may not account for attenuated correlations in samples selected on pretest performance due 

to restriction of range on the measures of interest (Cole, Haimson, Perez-Johnson, & May, 

2011). If the prospective research plan fails to account for this potential range restriction, the 

power analysis may underestimate the necessary sample size to detect an effect of a given 

size and jeopardize the experiment. There are at least two types of range restriction: direct 

and indirect (Sackett & Wade, 1983). Direct range restriction occurs in situations in which 

the distribution of scores on the measure of analysis is directly truncated. For example, a 

researcher may include students who scored below the 25th percentile on a reading 

comprehension test and exclude all others. In contrast, indirect range restriction occurs in 

situations in which selection is based on a second, correlated measure and there is no direct 

truncation of the measure.

Cole et al. (2011) called attention to issues related to range restriction, attenuation of pretest-

posttest correlations, and implications for statistical power in randomized control trials 

(RCTs) utilizing state assessments at both pretest and posttest. Findings indicated that 

pretest-posttest correlations for homogenous bands of students were attenuated, particularly 

for low-performing students. The average pretest-posttest correlation for low-performing 

students was .60, lower than the average correlation of .81 for unrestricted samples. This 

attenuation of the pretest-posttest correlation has a dramatic effect on statistical power. 

Assuming a balanced group design, two-tailed t-test at .80 power, p < .05, and d = .25, an 

84% increase in sample size would be required to achieve equivalent statistical power with 

low-performing students when compared to parameters based on correlations observed in 

unrestricted samples (N = 176 vs. N = 324).

The analyses conducted by Cole et al. utilized a single test administered at multiple time 

points that served as the selection measure, pretest covariate, and primary outcome. The 

utilization of multiple measures as possible selection measures, pretest covariates, and 

outcome variables, all of which may demonstrate some degree of direct and/or indirect range 

restriction may present a more nuanced picture, as sample size requirements under direct 

and indirect range restriction differ (Hunter, Schmidt, & Le, 2006; Sacket & Wade, 1983). In 

the present studies, we investigated these scenarios to better understand the implications of 

different degrees of range restriction on statistical power and study design.

Rationale for the Present Studies

Appropriate power estimation for RCTs represents a lingering challenge across scientific 

disciplines (Lipsey, 1990; Spybrook & Raudenbush, 2009; Varnell, Murray, Janega, & 

Blitstein, 2004). Underpowered experiments yield inflated Type II error rates, resulting in 

wasted resources and limiting potentially promising lines of inquiry as positive intervention 

effects are erroneously dismissed. Thus, a nuanced understanding of factors influencing 

statistical power is of critical importance for experimental design and the advancement of 

educational science.

Miciak et al. Page 2

J Res Educ Eff. Author manuscript; available in PMC 2017 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the present studies, we investigated the effects of participant selection criteria and degree 

of range restriction on pretest-posttest correlations and subsequent implications for statistical 

power, as indicated by necessary sample sizes, minimum detectable effect sizes (MDES), 

and expected power. The goal was to provide specific guidance for researchers who conduct 

treatment experiments with selected samples. The present studies extended the work of Cole 

et al. (2011) in four primary ways. First, the studies addressed the implications for power for 

multiple measures that demonstrate direct and/or indirect range restriction, illustrating the 

differences between range restriction scenarios. Second, the implications of range restriction 

were reported in MDES, expected power, and necessary sample sizes, providing additional 

guidance for study design. Third, range restriction was considered across simulations that 

systematically manipulate the cut point for selection, the correlations of different tests, and 

the correlations of specific tests, allowing prospective researchers to identify optimal 

scenarios. Fourth, the present studies described a replicable process for simulating data and 

determining the implications of range restriction scenarios before conducting a priori power 

analyses. By improving the precision of parameter estimates for power analysis through 

simulation, researchers can design more efficient experiments.

The first study illustrates potential issues utilizing empirical results from an RCT conducted 

with struggling readers (Authors, 2014). In that work, entire schools were screened to 

identify a sample of fourth grade students at-risk for reading difficulties. The assessment 

battery included two highly correlated measures of the same latent construct (reading 

comprehension), one that demonstrated direct range restriction (Gates-MacGinitie Reading 

Test: Fourth Edition, MacGinitie, MacGinitie, Maria, & Dreyer, 2002) and one that 

demonstrated indirect range restriction (WJ-III- PC; Woodcock et al., 2001). Differences in 

the observed pretest-posttest correlations permitted an investigation of the power 

implications of different measure combinations.

In the second study, we utilized simulated data to investigate issues that may affect pretest-

posttest correlations and therefore statistical power under both direct and indirect range 

restriction, including the degree of range restriction, selection on multiple measures, the 

inter-correlations between different measures of the same latent construct, and the pretest-

posttest correlations for the measures for unrestricted samples.

Study 1: Observed Range Restriction and Statistical Power

Methods

Participants and setting—Participants for study 1 were drawn from a large-scale RCT 

investigating the effects of an intensive reading intervention with fourth grade students at-

risk for reading difficulty (Authors). Participants were drawn from one large urban district (8 

participating elementary schools) and two near-urban school districts (9 participating 

elementary schools) in the southwestern United States.

The Gates-MacGinitie Reading Test (MacGinitie et al., 2002) was administered to all 

students enrolled in the 4th grade at participating schools. Students who received a grade-

based standard score of 85 or below were eligible for participation in the study. Eligible 
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participants were randomly assigned in a 2:1 ratio to a researcher-designed treatment 

condition or control condition.

The preliminary sample included 1,695 4th grade students enrolled at a participating school. 

From this preliminary sample, 488 students scored at or below the cut point (SS ≤ 85) and 

were eligible for participation. A total of 93 students who were randomized did not complete 

posttest because they left the school or were withdrawn from the study. Attrited students did 

not differ from students who remained at pre-test on the Gates-MacGinitie Reading Test, t 
(482) = 0.05, p > .05. A total of 395 students (treatment and control combined) completed 

the posttest assessment. As the goal of the present study requires an evaluation of pretest-

posttest correlations under different degrees range restriction, only the 395 students who 

completed both pretest and posttest assessments are included in the primary analysis.

Among the 395 participants in the present study, 45% were female, and 89% qualified for 

free or reduced price lunch. The racial/ethnic composition of the sample was 29% Hispanic, 

22% African American, 8% White (not Hispanic), and 41% reported a different race or 

ethnicity, including students listing more than one race or ethnicity. The average age of the 

sample at pretest was 9.8 years old (SD =.56).

Measures—The two reading measures included in the present study were administered at 

pretest (fall) and again at posttest (spring). All testing occurred in a quiet location at the 

participating student’s school. Examiners were trained and were evaluated for proficiency 

prior to any active data collection.

Woodcock Johnson-III Passage Comprehension (WJ3 PC; Woodcock et al., 2001): The 

WJ3 Test of Achievement is a standardized, individually-administered assessment of 

academic achievement. The Passage Comprehension Subtest is a cloze-based activity in 

which students read a short passage of text and provide the missing word. Psychometric 

properties for the WJ3 PC are excellent. Test-retest reliabilities for children aged 8–13 range 

from .76–.86.

Gates MacGinitie Reading Test- 4th Edition (GMRT; MacGinitie, et al., 2002): The 

GMRT is a standardized, group-administered assessment of reading achievement and 

vocabulary. The Reading Test consists of expository and narrative passages ranging in length 

from 3–15 sentences. Students answer three to six multiple-choice questions related to the 

passage. Internal consistency coefficients range from .91–.93 and alternate form reliability is 

reported as .80–.87.

Results of Study 1

Descriptive statistics—Descriptive statistics for the sample are reported in Table 1. As 

expected, scores were lowest on the selection measure (GMRT M = 77.22, SD = 5.99). 

Scores were higher for the other reading measures, particularly at posttest. In addition to 

noting that this sample scored well below the published mean observed in the norming 

sample on all measures, it should be noted that standard deviation statistics for all reading 

measures were significantly smaller than published standard deviations.
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Correlations—We calculated correlations for the two measures, including the pretest-

posttest correlations for the measures. The GMRT, which was the selection measure and 

therefore demonstrated direct range restriction, exhibited the lowest correlations with all 

other measures. The pretest-posttest correlation for the GMRT for this restricted sample 

was .29, much lower than the published correlation of .81 in the GMRT technical report 

(MacGinitie, et al., 2002). In contrast, the pretest-posttest correlation was .78 for the WJ3 

PC, which demonstrated indirect range restriction. This is lower than the published extended 

test-retest correlation (< 1 year) for students aged 8–18 (r = .91), but is not as attenuated as 

observed for the GMRT. All correlations are presented in Table 1.

Implications for statistical power—Given the large differences in observed pretest-

posttest correlations, we calculated estimates of statistical power given specified parameters 

to better understand the implications of direct and indirect range restriction. For example, if 

the study were designed to achieve power of .80 for a two-tailed t-test with p < .05, d = .25 

given the published, unrestricted GMRT pretest-posttest correlation of .81 as a covariate, the 

estimated sample size would be 168 participants. For the observed correlation on the WJ3 

PC (.78), the estimated sample size would be 19% larger (N = 200). In contrast, for the 

observed GMRT correlation (.29), the estimated sample size would be 176% larger (N = 

464). Similarly, if the researcher planned an experiment based on published, unrestricted 

pretest-posttest correlations and recruited 168 participants (two-tailed t-test, p < .05, d = .25) 

the estimated power utilizing the observed pretest-posttest correlations for the WJ3 PC 

would drop slightly to .73. However, for the observed GMRT pretest-posttest correlation, 

estimated power drops precipitously to .39. Figure 1 provides a plot of power by sample size 

for the published GMRT pretest-posttest correlation in unrestricted samples, the observed 

WJ3 PC pretest-posttest under indirect range restriction, and the observed GMRT pretest-

posttest correlation under direct range restriction given the parameters specified above.

Study 2: Simulated Datasets under Range Restriction

In response to the observed differences between direct and indirect range restriction and its 

implications for statistical power, we created a series of data simulations to better understand 

the issue. All simulated datasets include case-specific values for two related measures 

administered at two time points (pretest and posttest). We first specified a baseline scenario 

(described below) and then manipulated four parameters to determine the effect on pretest-

posttest correlations and subsequently statistical power: (a) the cut-point utilized for 

participant selection (scenario 2); (b) the utilization of multiple tests for participant selection 

(scenario 3); (c) the correlation between the two tests (scenario 4); and (d) the pretest-

posttest correlation of the tests (scenario 5).

All data were generated using the IML procedure in SAS 9.4 (SAS Institute, 2008). For each 

condition, 100,000 simulated observations were generated to ensure adequate precision. 

Scores were generated for each variable with a mean of zero and standard deviation of one. 

The correlation matrices utilized to generate the datasets for each condition were derived 

from a baseline scenario we specified based on our own empirical work and reference to 

technical manuals of commonly administered assessments of reading. To simplify 
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interpretation, we specified that the two simulated tests would demonstrate equivalent 

psychometric properties.

For each scenario, power calculations were completed within SAS 9.4 (SAS Institute, 2008) 

utilizing Proc GLMPower. This procedure permits the calculation of necessary sample sizes 

given specified parameters or a calculation of expected power given specified parameters 

including sample size. For estimates of expected power and necessary sample size, we 

specified a balanced group design, two-tailed t-test with an alpha of .05, and an estimated 

effect size of .25, which is consistent with the mean meta-analytic effect size (d = .21) for 

standardized measures for interventions conducted with students in grades 4–12 from 1980–

2011 (Scammacca, Roberts, Vaughn, Stuebing, 2013). For estimates of sample size and 

MDES, a priori power was set at .80. Pretest-Posttest correlations for each analysis within 

each scenario were utilized to determine the amount of posttest variance explained by the 

pretest covariate. We report parameter ranges to reflect the upper and lower bounds of all 

possible correlations for Test 1 pretest and Test 2 posttest, as discussed below. We utilized 

Optimal Design software (Spybrook, et al., 2013) to verify sample size estimates and 

calculate MDES given the specified power parameters.

Scenario 1: Baseline

The baseline scenario required specification of three correlations, which were duplicated for 

both Test 1 and Test 2: (a) the correlation between Test 1 and Test 2 at the same time point; 

(b) the correlation of pretest and posttest for each test; and (c) the correlation between the 

pretest of Test 1 and the posttest of Test 2 (and conversely, the correlation of pretest 2 and 

posttest 1). We set the correlation between Test 1 and Test 2 at the same time point at .75, 

which is consistent with correlations between standardized reading comprehension measures 

in late elementary (see for example, the Kaufman Test of Educational Achievement-

Normative Update, Kaufman & Kaufman, 1997, p. 133). The same test pretest-posttest 

correlation for both Test 1 and Test 2 was set at .85, which is consistent with fall-spring 

correlations reported for the Gates-MacGinitie Reading Test (MacGinitie et al., 2002, p. 63) 

in late elementary school. We found less guidance on the value of the correlation between 

Test 1 pretest and Test 2 posttest. Thus, we simulated a range of all possible correlations 

bound on the lower end by the lowest value that would result in a positive definite 

correlation matrix and bound on the upper end by the lower value of either the correlation 

between Test 1 and Test 2 at the same time point or the pretest-posttest correlation for the 

test. Thus, we report an upper and lower range for all applicable scenarios. For the baseline 

scenario, we applied a selection criterion of an observed score less than or equal to one 

standard deviation below the full sample mean on Test 1, matching the selection criterion 

from the empirical study. The baseline scenario permitted an investigation of restriction of 

range and pretest-posttest correlations for Test 1 (direct range restriction) and Test 2 

(indirect range restriction) under a simulation of realistic parameters.

Scenario 2: Manipulating the Cut Point for Participant Selection

In scenario 2, we utilized data simulated for the baseline scenario, but systematically 

manipulated the cut point for participant selection to investigate the effect of different 
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magnitudes of range restriction on statistical power. We selected observations with observed 

z-score values less than or equal to 0, −.33, −.5, −.67, −.75, −1, −1.25, and −1.5.

Scenario 3: Selection based on Multiple Tests

In scenario 3, we applied cut points for participant selection that utilized multiple measures. 

As in scenario 2, we utilized data simulated under the baseline scenario. The first analysis 

evaluated participant selection that required observed scores less than or equal to the cut 

point on both Test 1 and Test 2. As in scenario 2, we systematically manipulated the cut 

point across a range of observed z-score values. The second analysis evaluated participant 

selection that required observed scores less than or equal to the cut point on either Test 1 or 

Test 2 across a range of observed z-score values.

Scenario 4: Manipulating the Correlation between Test 1 and Test 2

In scenario 4, we systematically manipulated the correlations between Test 1 and Test 2 to 

evaluate the effect on pretest-posttest correlations for the tests under direct and indirect 

range restriction. For this scenario, we simulated twenty datasets. As in the baseline 

scenario, three values were necessary to complete the correlation matrix if the psychometric 

properties of the two tests are equivalent: (a) the correlation between Test 1 and Test 2 at the 

same time point (manipulated variable); (b) the correlation between pretest and posttest for 

each test (held constant at .85); and (c) the correlation between Test 1 pretest and Test 2 

posttest (and the converse). Parameter a was systematically manipulated at .05 intervals from 

r = .50–.95, thus 10 intervals were evaluated. Because parameter c is dependent upon 

parameter a, we simulated an upper and lower range of all possible values for parameter c 

given specific values of parameters a and b. As in the baseline scenario, the lower bound was 

the lowest value that would yield a positive definite correlation matrix and the upper bound 

was the lower value of either the pretest-posttest correlation of the tests or the correlation 

between the tests at the same time point. The 10 intervals were evaluated at the upper and 

lower bound of parameter c, requiring 20 simulated datasets. For each of these datasets, the 

selection cut point was set to z ≤ −1, to match the baseline scenario.

Scenario 5: Manipulating the Pretest-Posttest Correlation

In scenario 5, we systematically manipulated the same test pretest-posttest correlations for 

both Test 1 and Test 2 (values were the same for each test at each interval). The correlation 

between Test 1 and Test 2 was held constant at .75. As in scenario 4, 20 datasets were 

simulated at intervals of r = .05 with values for the pretest-posttest correlation ranging from .

50–.95. As in scenario 4, we simulated an upper and lower bound for all possible values for 

the correlation between Test 1 pretest and Test 2 posttest (and the converse). For each of 

these datasets, the selection cut point was set to z ≤ −1, to match the baseline scenario.

Results

Descriptive statistics for the baseline scenario and scenario 2 are presented in Table 2 across 

the range of selection criteria. Means and standard deviations reported in Table 2 represent 

the mean value for the two datasets (the upper bound simulation and the lower bound 
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simulation for the across time/across tests correlation). Scores for the baseline scenario are 

presented in bold.

Baseline and scenario 2: Manipulating the selection criteria

Table 3 presents the pretest-posttest correlation for Test 1 (direct range restriction) and Test 

2 (indirect range restriction), as well as the MDES and the necessary sample size given the 

pretest-posttest correlations. As would be expected, as the cut point moves toward a more 

extreme restriction of range, the pretest-posttest correlation becomes more attenuated and 

statistical power is reduced. However, it is important to note that the pretest-posttest 

correlations under indirect range restrictions are less attenuated than those observed under 

direct range restriction at every cut point and the resulting required sample sizes or MDES 

are smaller.

Scenario 3: Selection based on multiple tests

Table 4 presents the pretest-posttest correlations when selection is based on multiple tests. 

Because we specified that Test 1 and Test 2 are psychometrically equivalent for all scenarios, 

results for Test 1 and Test 2 are statistically equivalent. Therefore, only estimates for Test 1 

are reported. As would be expected, when selection is based on either Test 1 or Test 2, there 

is less attenuation of pretest-posttest correlations and smaller samples or lower MDES are 

necessary. In contrast, when selection is based on both Test 1 and Test 2, both tests 

demonstrate direct range restriction and pretest-posttest correlations are more attenuated; 

larger samples or higher MDES are necessary to achieve sufficient power.

Scenario 4: Manipulating Test 1–Test 2 correlations

Table 5 presents pretest-posttest correlations under direct (Test 1) and indirect range 

restriction (Test 2) as the Test 1–Test 2 correlation is manipulated from .95–.50. The pretest-

posttest of Test 1, which demonstrates direct range restriction and is unaffected by the 

correlation with Test 2 is consistent at .58–.59, which was its value at baseline. In contrast, 

as the correlation between Test 1 and Test 2 drops, the pretest-posttest correlation for Test 2 

(indirect range restriction) becomes less attenuated, yielding increased statistical power as 

evidenced by smaller required sample sizes and lower MDES.

Scenario 5: Manipulating Pretest-Posttest Correlations

Table 6 presents pretest posttest correlations under direct (Test 1) and indirect range 

restriction (Test 2) as the same test pretest-posttest correlation for each test is manipulated 

from .95–.50. As expected, as the correlation between pretest and posttest drops, estimated 

sample sizes increase and MDES increase. Notably, Test 2 (indirect range restriction) 

demonstrates superior statistical power at all intervals. The largest pretest-posttest 

correlation is for Test 2 when both Test 1 and Test 2 demonstrate high correlations between 

pretest and posttest (good delayed test-retest reliability).

Discussion

The goal of this series of studies was to investigate the effects of participant selection 

criteria, range restriction, and the implications of these factors upon statistical power. We 
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differentiated between direct and indirect range restriction and evaluated impact upon 

statistical power with empirical and simulated data. The results of both studies demonstrated 

the dramatic effect of direct and indirect range restriction on statistical power. Under our 

simulated baseline scenario (z ≤ −1), sample sizes 128%–137% larger were necessary to 

achieve an acceptable level of statistical power under direct range restriction and sample 

sizes 42%–66% larger were necessary under indirect range restriction. Even in situations 

with a relatively high eligibility threshold (z ≤ −0), 78%–85% more participants were 

necessary to achieve adequate statistical power under direct range restriction compared to 

31%–49% more participants necessary under indirect range restriction.

These differences were sufficiently large to jeopardize an experiment if they are 

unaccounted for in a priori analyses of statistical power. If sample sizes are based on 

unrestricted pretest-posttest correlations and held constant, estimated power dropped 

precipitously from .42–.55 for any scenario with direct range restriction. For scenarios under 

indirect range restriction, estimated power dropped less, but still ranged from .57–.69, values 

which would be considered unacceptably low when planning an experiment.

Comparisons of results from direct and indirect range restriction were similarly 

unambiguous, but more encouraging. For every analysis within each scenario, statistical 

power under indirect range restriction was better than that achieved under direct range 

restriction. Across different parameters, the effect varied from small (10 fewer participants 

necessary) to substantial (180 fewer participants necessary). Further, the benefit of indirect 

range restriction in comparison to direct range restriction was marginally ignorable only in 

scenarios where the two measures were very highly correlated, a situation unlikely to occur 

if the design utilizes tests from different published test batteries. In more common designs 

(e.g. selection at z ≤ −.67 or z ≤ −1; Test 1–Test 2 r = .75), 28%–40% fewer participants 

were necessary to achieve an acceptable level of statistical power, a substantial difference in 

person-randomized experiments. Finally, it is important to note that the ranges of necessary 

sample sizes and MDES reflect all possible correlations for across test pretest-posttest 

correlations; it is not a range of equally plausible correlations. For these ranges, the higher 

sample size and MDES estimates were products of our upper bound simulation. All upper 

bound simulations were bound by either the correlation between Test 1 and Test 2 at the 

same time point, or the pretest-posttest correlation for the tests. We think it unlikely that the 

Test 1 pretest and Test 2 posttest correlation would approach these values. Our empirical 

work suggests that the lower bound and its smaller necessary sample sizes and smaller 

MDES may be more plausible, reinforcing the advantage for tests demonstrating indirect 

range restriction over tests demonstrating direct range restriction.

This advantage for the test demonstrating indirect range restriction was strongly related to 

the correlation between the two tests. As the correlation between the tests demonstrating 

direct and indirect range restriction dropped, the advantages in statistical power for the 

indirect measure became stronger. Although this advantage is theoretically maximized when 

Test 1 and Test 2 are uncorrelated, attention to theory may help the researcher strike an 

appropriate balance between maximizing statistical power and experimental coherence. 

Indeed, even at very high correlations between the two tests (~.90), there were potentially 

large advantages in statistical power for the test demonstrating indirect range restriction.
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It is also important to note the critical importance of pretest-posttest correlations for 

statistical power, even for tests that demonstrate some degree of direct or indirect range 

restriction. The results of scenario 5 demonstrated that the magnitude of advantage for tests 

under indirect range restriction was diminished as its pretest-posttest correlation dropped. 

For example, when the Test 2 (indirect range restriction) pretest-posttest correlation was .90, 

necessary sample sizes were 54%–62% of those necessary for Test 1 (direct range 

restriction). In contrast, when the pretest posttest correlation dropped to .65, necessary 

sample sizes for Test 2 were 76%–93% of those necessary for Test 1.

Implications

The results of the present studies illustrate the importance of drawing a conceptual 

distinction between selection (screening) measures, pretest covariates, and outcome 

measures. For some research projects, it may be impossible to avoid utilizing the same 

measure for selection and as the pretest covariate, as in the study design investigated by Cole 

et al. (2011) in which state assessments are utilized to evaluate large-scale programs. Studies 

with this design will require larger participant samples because of direct range restriction. 

However, for many projects investigating an intervention with selected populations, the 

research team is present in schools and could administer distinct tests for selection and as a 

pretest covariate/outcome measure. For example, a planned study could utilize a group-

administered assessment such as the GMRT as the selection measure and utilize the 

properties of the WJ3 Passage Comp under indirect range restriction for the a priori power 

analysis. Under our baseline parameters, such a design would require up to 134 fewer 

students. When split equally between control and treatment, this design would require 67 

fewer treated students, a significant savings of resources. Further, given the poor expected 

correlations between the GMRT pretest and a potential posttest, the researcher may wish to 

conserve further resources by not administering the GMRT at posttest.

Additionally, researchers planning to conduct research with selected samples could utilize 

the simulation techniques described in study 2 to estimate the expected range restriction and 

conduct an appropriate power analyses. These steps may help avoid failed studies when 

working with selected samples. Beyond individual researchers, it is important for funding 

agencies and grant review officials to understand these issues and prioritize study designs 

that appropriately address potential range restriction.

Conclusions

Through a series of studies, we investigated participant selection criteria, resulting range 

restriction, and statistical power to provide guidance for researchers planning intervention 

research with selected populations. Analyses of empirical and simulated data were 

unambiguous. Pretest-posttest correlations under direct range restriction were sharply 

attenuated, resulting in a precipitous drop in statistical power. Prospective researchers should 

differentiate between selection measures, pretest covariates, and outcome measures 

whenever possible. In this way, the researcher can maximize the efficiency of the experiment 

by ensuring that all tests demonstrate good psychometric properties and the pretest covariate 

and primary outcome do not demonstrate direct range restriction.
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Figure 1. Statistical power under observed scenarios: published correlation, indirect range 
restriction, and direct range restriction
WJ3 = Woodcock Johnson Third Edition; GMRT = Gates MacGinitie Reading Test; Note: 
The observed GMRT demonstrates direct range restriction. The observed WJ3 Passage 

Comprehension demonstrates indirect range restriction, and the published GMRT correlation 

is based on the normative sample (MacGinitie et al., 2002).
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