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Abstract

Purpose of review—Considerable HIV-1 vaccine development efforts have been deployed over 

the past decade. Put into perspective, the results from efficacy trials and the identification of 

correlates of risk have opened large and unforeseen avenues for vaccine development.

Recent findings—The Thai efficacy trial, RV144, provided the first evidence that HIV-1 

vaccine protection against HIV-1 acquisition could be achieved. The correlate of risk analysis 

showed that IgG antibodies against the gp120 V2 loop inversely correlated with decreased risk of 

infection, while Env-specific IgA directly correlated with risk. Further clinical trials will focus on 

testing new envelope subunit proteins formulated with adjuvants capable of inducing higher and 

more durable functional antibody responses (both binding and broadly neutralizing antibodies). 

Moreover, vector-based vaccine regimens that can induce cell-mediated immune responses in 

addition to humoral responses remain a priority.

Summary—Future efficacy trials will focus on prevention of HIV-1 transmission in heterosexual 

population in Africa and men who have sex with men in Asia. The recent successes leading to 

novel directions in HIV-1 vaccine development are a result of collaboration and commitment 

among vaccine manufacturers, funders, scientists and civil society stakeholders. Sustained and 

broad collaborative efforts are required to advance new vaccine strategies for higher levels of 

efficacy.
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Introduction

Globally, 34.0 million people were living with HIV-1 at the end of 2011. Sub-Saharan Africa 

remains most severely affected, accounting for 69% of the people living with HIV-1 

worldwide. The number of newly infected people and the AIDS-related mortality continue 
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to fall [1]. Despite this incremental and fragile success, the development of a cost-effective 

preventive HIV-1 vaccine remains among the best hopes for controlling the HIV-1/AIDS 

pandemic [2,3]. In 2009, vaccine efficacy against HIV-1 acquisition was demonstrated in 

humans for the first time. This breakthrough finding has opened unprecedented avenues to 

accelerating the development of a vaccine suitable for licensure. Our paper reviews the main 

advances and challenges.

Lessons learnt from clinical trials

Experimental preventive HIV-1 vaccines have been administered to over 44,000 human 

volunteers in over 187 separate trials since 1987, tested mostly in Phase I/II clinical trials. 

The different HIV-1 vaccine approaches along with their scientific and programmatic 

challenges have been reviewed elsewhere [2,4–9]. Table 1 lists the combinations, route and 

mode of administration of vaccine concepts tested more recently in Phase I/II trials, while 

Table 2 summarizes their main immunogenicity findings.

A key goal for an effective HIV-1 vaccine is to induce responses that differ qualitatively, 

quantitatively, or both from that induced by natural infection [73]. Phase I/II trials provides 

fundamental information about safety and immunogenicity, but not about the relevance of 

those immune responses to protective efficacy. In the absence of a link to sufficient efficacy 

endpoints, flurries of new vaccine concepts have aimed at inducing immune responses of 

uncertain relevance.

Modern assessments have revealed that the majority of successfully licensed vaccines 

protect through elicitation of protective antibodies [74–77]. It has been postulated that with 

our limited current knowledge on correlates of protection, induction of both humoral and 

cell-mediated immune responses are important to combat HIV-1 in the peripheral 

compartment and in the mucosal tissues, the entry point of the virus [78]. These 

considerations led to develop vaccine strategies such as the concept of ‘prime-boost’ 

vaccination aiming at inducing and augmenting both types of responses [79–81]. Innate 

immune activation has also been a desired addition and new systems biology tools have 

become available to provide a framework to compare immune signatures that might predict 

subsequent HIV-1-specific immune responses induced by vaccines [82,83*].

Safety

The vast majority of candidate vaccines were generally safe and well tolerated, including 

those delivered using new modes (Biojector and electroporation) and routes (intravaginal, 

nasal, oral) of administration. While there have been regional differences, background 

morbidity of healthy participants at low risk for HIV-1 infection selected for Phase I/II trials 

has not posed an obstacle to clinical trial conduct and interpretation [84]. The RV144 prime-

boost regimen tested for efficacy (ALVAC-HIV, vCP1521 and gp120 in alum, AIDSVAX 

B/E) exhibited a remarkable safety profile in more than 8000 Thai vaccinees [19]. ALVAC-

HIV (vCP1521) was also been found to be safe in infants born to HIV-1-infected mothers 

[85].
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Following the Step trial (HVTN 502) outcome in 2007, in which Ad5 vector-based 

vaccinees were at higher risk of HIV acquisition than placebo recipients, concerns were 

raised about the use of new vectors, in particular adenovirus-based vectors. In subjects with 

pre-existing Ad5-specific neutralizing antibody (NAb) titers, a greater number of HIV-1 

infections occurred in vaccinees. Post-hoc multivariate analysis suggested that the greatest 

increased risk was in men who had pre-existing Ad5-NAb and were uncircumcised [86]. The 

vaccine-associated risk waned with time from vaccination [87]. The increased HIV-1 

infection rate observed among uncircumcised men was not supported by a behavioral 

explanation [88]. The presence of Ad5-NAb was not linked to the risk of HIV-1 acquisition 

among unvaccinated populations at elevated risk of HIV-1 infection [89]. Anti-vector 

immunity differed qualitatively in Ad5 seropositive participants who became HIV-infected 

compared to uninfected controls; Ad5 seropositive participants who later acquired HIV had 

lower neutralizing antibodies to capsid. Moreover, Ad35 seropositivity was decreased in 

HIV-infected subjects compared with uninfected controls, while seroprevalence for other 

serotypes including Ad14, Ad28 and Ad41 was similar in both groups [90]. Given the 

unclear significance of these findings, close monitoring of such events is warranted in future 

efficacy trials with recombinant adenovirus vectors.

Increasing interest in potent adjuvants administered systemically or mucosally to bolster 

immune responses, has introduced other safety concerns. Following administration of a 

polyvalent DNA prime-protein boost HIV-1 vaccine formulated with QS21, two subjects 

developed strong delayed-type hypersensitivity reactions with cutaneous leukocytoclastic 

vasculitis and Henoch-Schonlein purpura [91]. Although such events are rare, safety and 

tolerability needs to be carefully monitored following the administration of adjuvanted 

proteins in prime-boost regimens.

Another concern, unrelated to safety, is the potential social harm that comes from vaccine-

induced seropositivity (VISP) in uninfected vaccinees. The use of vaccines expressing 

several HIV-1 proteins, as well as HIV-1 envelope subunit proteins formulated with 

adjuvants, has led to an increasing proportion of vaccinated individuals testing HIV-1 

positive with routine diagnostic tests. This has raised growing concern in communities 

targeted for HIV-1 vaccination and with health authorities regarding the differentiation of 

VISP from true HIV-1 infection [92]. For example, more than 80% of volunteers vaccinated 

with an adjuvanted envelope subunit protein still tested HIV-1 positive 8 years post 

vaccination [93]. Although Western Blot and nucleic acid tests may allow this 

differentiation, the development of cheaper and easier-to-run antibody-based diagnostic tests 

able to differentiate VISP from HIV-1 infection is actively pursued [94–96].

Correlates of risk: Lessons from Phase IIB and III Trials

Table 3 summarizes the completed and ongoing clinical efficacy trials. The detailed analysis 

of vaccine-elicited immune responses, virus sieve analysis of breakthrough infections and 

host genetics have all provided invaluable information into potentially protective immune 

responses, regardless of outcome. Each of these trials underpins the current rationale for 

planned HIV-1 vaccine trials.
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The Vax003 and Vax004 trials evaluated the efficacy of recombinant HIV-1 gp120 proteins. 

They have provided important insights into vaccine-elicited immune responses and the 

potential bar that needs to be overcome for further HIV-1 vaccine efficacy studies. In 

Vax004, higher NAb responses to an easy-to-neutralize virus (MN) corresponded with lower 

risk of infection in the vaccine group. Evidence of low-level NAb responses against more-

difficult-to-neutralize viruses suggests that level and breadth were not sufficient for 

protection [119]. However, other studies reported that antibody-dependent cellular virus 

inhibition (ADCVI) corresponded with a decreased HIV-1 infection rate [120] suggesting 

that beneficial immune responses did not reach sufficient magnitude to impact the outcome 

of the trial. Host genetics may have also played a role in the vaccinee outcome. While there 

was no evidence of increased HIV acquisition in vaccinees relative to placebo recipients, 

there has been suggestion that the vaccine may have increased the likelihood of acquiring 

HIV-1 infection in low-behavioral risk individuals with the Fcγ receptor IIIa genotype 

[121].

RV144 is the only HIV-1 vaccine efficacy trial to date that has demonstrated vaccine 

efficacy, with a modest level of protection of 31% [97]. Humoral responses were the 

predominant immune response in this trial, along with vaccine-elicited CD4+ T-cell 

responses [98,99]. A case-control study showed that IgG antibodies to the V1/V2 region of 

HIV-1 gp120 correlated with decreased risk of infection [100–102] while IgA antibodies to 

the envelope correlated with decreased vaccine efficacy in the vaccine group.

Follow-up studies further supported the role of V2-specific immunity in vaccine efficacy 

with evidence of a virus sieve effect in infected vaccine recipients at this gp120 region [103]. 

Additionally, monoclonal antibodies generated from RV144 vaccine recipients targeted a 

critical residue in V2 (K169), thus providing evidence that vaccine-induced antibodies could 

potentially mediate a virus sieve effect. These V2-specific antibodies can mediate ADCC, 

neutralization and low-level virus capture [126,127]. These studies do not prove whether the 

V2 IgG response was a mechanistic or non-mechanistic correlate [128*]. They however 

generate new hypotheses to test in further efficacy clinical trials; namely, is there a 

functional role for V2-specific IgG antibodies or are they merely a marker of another 

functional immune response?

The plasma IgA antibody combined with the lack of knowledge of whether mucosal immune 

responses were elicited by vaccination has led to renewed interest in understanding the 

different forms of IgA and their potentially protective functions. Several RV144 follow-up 

studies as well as new vaccine studies are now collecting mucosal samples to probe these 

questions and determine the functional properties of vaccine-elicited IgA responses. In 

RV144, in the presence of low vaccine-elicited IgA responses, either ADCC or NAb 

responses correlated with decreased risk of infection. ADCC responses were predominantly 

directed to the C1 conformational region of gp120 [129–131] although other epitope 

specificities (i.e., V2) also contributed to the overall response [126]. Another hypothesis is 

that C1 region Env-specific IgA could block C1-specific IgG effector function due to their 

ability to bind to different Fc receptors on effector cells. We recently demonstrated that IgA 

antibodies elicited by RV144 could block C1 region-specific IgG-mediated ADCC (via 

natural killer cells) [132]. These findings indicate that the study of Fc receptor-mediated 

Excler et al. Page 4

Curr Opin HIV AIDS. Author manuscript; available in PMC 2017 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antibody function will be important in the evaluation of HIV-1 vaccines. In addition, there is 

a remaining open question as to whether V2 antibodies might block the gp120-α4β7 

interaction and contribute at least partially to the protective effect against HIV-1 sexual 

transmission [133].

Despite the 31% protective efficacy observed in RV144 and the lack of protection in 

Vax003, NAb responses were lower in RV144 as compared to Vax003 [99*]. The 

interpretation of these findings between the two trials remains difficult, as the route of HIV-1 

transmission (heterosexual vs. IDU) was radically different. In previous clinical studies, it 

was found that gp120 induced high levels of Env-specific IgG4 antibodies [134] while 

ALVAC (vCP1452) prime and gp120 MN in alum boost elicited lower IgG4 relative to IgG1 

and IgG3 antibodies [134]. Antigen-specific IgG3 antibodies have been associated with 

control of the pathogen and clinical protection in several infectious diseases [136,137]. A 

comparative study of IgG subclasses between RV144 and Vax003 may provide additional 

clues to mechanisms of vaccine protection.

The Step (HVTN502) [108] and Phambili (HVTN503) [116] studies were the first human 

efficacy trials of a T-cell-based HIV-1 vaccine. Despite an absence of vaccine efficacy, there 

was evidence of vaccine-elicited immune pressure on the founder virus [109]. This virus 

sieve analysis suggests that there were vaccine-elicited T-cell responses potentially not 

picked up by the IFN-γ ELISpot assays and that vaccine elicited Gag- and Nef-specific 

CD8+ T cells [110] applied pressure to the virus resulting in specific escape mutations in 

those with specific HLA alleles. Moreover vaccinees with HLA alleles associated with 

HIV-1 control had a significantly lower mean viral load over time [138]. Interestingly, the 

most highly conserved epitopes were detected at a lower frequency, suggesting that stronger 

responses to conserved sequences may be as important as breadth for protection [139]. Very 

recently, HVTN 505 was stopped for futility, showing no efficacy and no statistically 

significant effect on viral load as well as a non-significant increase in the number of HIV 

infections among vaccine recipients compared to the placebo group (Table 3). Similarly, a 

recent follow-up analysis of HVTN503 participants suggests a non-significant increased rate 

of HIV infection in the vaccinees compared to placebo recipients [117]. Further analysis is 

needed to better understand the immunogenicity of the HVTN505 and HVTN503 vaccines 

and how these results might inform the development of other adenoviruses vectors.

New directions

Table 4 shows some of the clinical trials planned within the next 5 years based on lessons 

learned from recent trials.

One of the main objectives for future vaccines is to counter HIV-1 variability. Several groups 

are focused on designing novel envelope immunogens capable of inducing broadly NAb 

[140–143]. This work is being based on study of envelope structure and host-pathogen 

interactions aimed at guiding the immune response toward the vulnerable sites on the 

envelope. Improvement of existing envelope immunogens to elicit higher levels of V2 

antibodies is an approach suggested by antigenicity studies of the envelope used in RV144. 

These studies demonstrated that certain epitopes were better exposed as a result of a non-
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HIV-1 sequence inserted into the HIV-1 envelope and likely led to the elicitation of antibody 

epitope specificities in RV144 [144]. Whether V2 antibodies elicited by various envelope 

immunogens are functional in a cross-clade manner and universal correlates of risk or just 

the ‘tree hiding the forest’ remains to be demonstrated. Vaccines utilizing a combination of 

consensus and transmitter-founder envelopes may be able to induce neutralizing responses 

with greater breadth and potency than single envelope immunogens [145]. Whether the 

induction of IgA blocking ADCC is a potential ‘spine on the rose’, and how to overcome it, 

also remains to be explored.

Mucosal IgA responses are elicited in acute HIV-1 infection but are focused predominantly 

on gp41 (and not gp120) and decline rapidly after the acute phase [146]. Several studies in 

non-human primates have reported the elicitation of mucosal immunity by different vaccine 

regimens [reviewed in 147]. Interestingly, a gp41-derived peptide formulated on virosomes 

protected macaques against SHIV challenge and elicited mucosal IgA and IgG antibodies in 

the protected animals [148]. The same vaccine administered in humans via systemic and 

mucosal routes elicited limited IgG and IgA antibodies in mucosal secretions [18]. Further 

clinical trials with mucosal sampling will provide additional insights in the ability of 

different vaccine regimens to elicit mucosal antibodies. Moreover, some emerging vaccine 

strategies aim at inducing long-lived memory B-cell responses.

Combination regimens using heterologous vectors in prime-boost and inserts aiming at 

broadening CD4+ and CD8+ T-cell responses such as mosaics [149] and conserved 

sequences [150] are promising avenues. Alternative vectors that might minimize or eliminate 

the presence of pre-existing anti-vector immunity [151] such as rare serotype human [152] 

and chimpanzee [153,154] adenovirus vectors as well as replication-competent vectors [155] 

are now in early clinical development (Table 4). It remains however uncertain how the recent 

outcomes of HVTN505 and HVTN503 may impact the use of adenovirus vectors in humans.

Unmet needs and opportunities

Significant efforts are currently focused on advancing efficacy trials in sub-saharan African 

with an emphasis on South Africa, due to the ongoing devastating subtype C HIV-1 

epidemic. The HIV-1 subtype A epidemic also remains rampant in East Africa [156–158], 

which will demand similar efforts in the future. While heterosexual transmission 

predominates in sub-saharan Africa [159], an epidemic in men who have sex with men 

(MSM) is now expanding [160,161]. MSM will represent the predominant high-risk 

population for future HIV-1 vaccine efficacy trials in Asia [162–164]. The feasibility of 

efficacy testing in IDU is questionable due to the success of harm reduction programs [165] 

with decreasing HIV-1 incidence. The identification of low–intermediate-risk populations 

with predominant heterosexual transmission in Asia should however deserve heightened 

attention for the implementation of future efficacy trials [166].

Adaptive trial designs that would allow for the ongoing comparative evaluation of multiple 

vaccine concepts have been suggested as way to inform immune correlates analysis and 

enhance the efficiency of efficacy evaluation of HIV-1 vaccine candidates [167]. They may 
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also help address the complexities of evaluating the efficacy of multiple HIV prevention 

measures in combination [168,169].

Conclusion

Preventive HIV-1 vaccine clinical development is at a critical juncture due to the 

identification of correlates of HIV-1 infection risk from RV144. These findings have opened 

new avenues of research that were previously unforeseen and only made possible through 

the conduct of large-scale efficacy trials, in-depth analysis of immune response with modern 

laboratory assays, detailed statistical analysis and modeling, interdisciplinary teams, and 

strong international collaborations.
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Key Points

• Vaccine-induced protection against HIV acquisition has been demonstrated

• Correlates of risk for HIV acquisition have been identified

• Immunogens inducing broadly neutralizing antibodies are being designed

• Heterosexual populations in Africa and men who have sex with men in Asia 

are potential target for future efficacy trials

• Strong international collaborations along with sustained political and funding 

commitments are necessary to develop and bring to licensure a safe and 

efficacious HIV vaccine
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Table 1

Generic HIV-1 vaccine candidates including mode and route of administration, recently tested in Phase I/II 

trials

Vaccine Products HIV-1 Subtype Adjuvant, Formulation Mode and Route 
of Administration

References

Subunits

   Lipopeptides B IM [10,11]

   Oligomeric gp160 B DC-Chol Nasal, Vaginal ANRS VAC14

   Trimeric gp140 B’/C Carbopol, GLA, Chitosan Vaginal, IM, IN, 
Oral

[12]

   Trimeric gp140 B, C PCPP, MF59 IM [13]

   Tat protein C Alum SC, ID [14,15]

   Fusion protein Env-Nef-Tat B AS02A, AS02V, AS01B IM [16,17]

   gp41 P1 peptide Virosomes IM, IN [18]

Pox vectors

   ALVAC (vCP1521) CRF01_AE IM [19]

   Replicating vaccinia (VV Tiantan) B’/C Scarification [20]

   Modified Vaccinia Ankara (MVA) A, B, C IM [21–23]

   NYVAC C IM [24]

DNA

A, B, C IM, EP [25–28]

   Conserved epitopes Multiclades IM [29–31]

   PENNVAX B IL-12, IL-15 IM, EP [32]

Replication-defective Adenovirus Vectors

   Ad5 B IM [33,34]

   Ad35 B, A IM [35]

   Ad26 A IM [36,37]

Adeno-associated Virus Vector type 2 C IM [38–40]

Alphavirus Replicon VEE C IM [41]

Replication-competent Measles Vector B IM Ongoing

Vesicular Stomatitis Virus Vector B IM Ongoing, [42]

Prime-Boost Combinations

   DNA + Trimeric V2-deleted gp140 B PLG, MF59 IM [43]

   DNA + Env subunit A, B, C, CRF01-AE QS-21 ID, IM [44,45]

   DNA + MVA A, B, C, CRF01_AE, B 
epitopes

GMCSF IM, ID, Biojector* [46–56]

   DNA + Fowlpox B IM [57,58]

   DNA + VV Tiantan B’/C Scarification [20]

   DNA + NYVAC C IM [59–61]

   Ad5 + NYVAC A, B, C and B IM [62]

   DNA + Ad5 or Ad35 A, B, C Biojector*, IM, ID, 
SC

[63–68]

   DNA IL-12 EP + Ad35-GRIN/ENV B, A EP, IM Ongoing, [69]

   DNA + MVA + ChAdV63 Conserved sequences IM Ongoing, [70]
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Vaccine Products HIV-1 Subtype Adjuvant, Formulation Mode and Route 
of Administration

References

   DNA + VSV B IL-12 EP, IM Ongoing

   MVA + Fowlpox B IM [71,72]

   Ad35 env + Ad26 env A IM Ongoing

   ALVAC (vCP1521) + AIDSVAX B/E 
gp120

B, CRF01_AE Alum IM Ongoing

   Ad26 env A + MVA (natural vs. 
mosaic)

A, CRF01_AE, mosaic IM Ongoing

   Ad35-GRIN + adjuvanted fusion 
protein (non-Env)

A, B IM Ongoing

   Ad35-GRIN + replicating Sendai A IM, IN (Sendai) Ongoing

Pox: Recombinant Poxvirus-vectored vaccine; ALVAC: recombinant canarypox vector

Ad5: Replication-defective recombinant Adenovirus subtype 5; ChAdV63: Replication-defective recombinant Chimpanzee adenovirus subtype 63

MVA: Modified Vaccinia Ankara; VEE: Venezuelan equine encephalitis; VV Tiantan: Attenuated replicating vaccinia Tiantan developed in China

EP: Electroporation; GLA: Glucopyranosyl Lipid Adjuvant

GRIN: gag, reverse transcriptase, integrase, and nef genes from HIV-1 subtype A

GRIN/ENV: Ad35-GRIN + Ad35 expressing env gp140 from HIV-1 subtype A

PCPP: Polyphosphazene; IFA: Incomplete Freund’s Adjuvant

Sendai: replication-competent murine parainfluenza type 1 paramyxovirus

*
For DNA only
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Table 2

Main immunogenicity findings of Phase I/II trials

No broadly neutralizing antibodies are induced by current vaccines.

Binding antibodies and neutralizing antibodies against Tier-1 and limited Tier-2 HIV-1 isolates were induced by Env subunit proteins 
formulated with potent adjuvants.

Polyfunctional CD4+ and CD8+ T-cell responses measured by ICS and INF-γ ELISpot assays generally of low to moderate magnitude immune 
responses have been detected in a majority of vaccinees immunized by vectors alone and to some extent by DNA alone. These responses are 
generally significantly augmented after priming.

CD8-mediated inhibition of in vitro viral replication can be detected after vector-based vaccination.

Cell-mediated responses to DNA administered by electroporation are significantly augmented compared to intramuscular needle injection

Systems biology can identify specific gene activation immune signatures predictive of the immune responses

Pre-existing immunity to pox vectors does not or minimally impact on the pox vector vaccine-induced immune responses, in particular after 
DNA prime

Pre-existing immunity to Ad5 (high prevalence) decreases the Ad5 vaccine-induced immune responses, which led to the development of low 
prevalence rare serotype adenovirus vectors.

Env subunit protein boosts induce higher levels of serum antibodies that rapidly wane.
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Table 4

Planned and foreseen clinical trials within the next 5 years

Vaccine regimens Phase Country Concepts tested based on lessons learned

RV305: ALVAC-HIV (vCP1521) + 
AIDSVAX B/E

I Thailand Comparison of late boosts in RV144 vaccinees; memory 
of antibody response (V2); immune responses in 
peripheral and mucosal compartments

RV306: ALVAC-HIV (vCP1521) + 
AIDSVAX B/E

I Thailand RV144 regimen + one-year boost: augment and sustain 
Env antibody response, in particular V2, ADCC, IgG 
subclasses, IgA in peripheral and mucosal 
compartments; CMI in gut tissues; innate immunity

RV328: AIDSVAX B/E I Thailand Env antibodies and CMI responses in peripheral and 
mucosal compartments

RV307: Ad26 env A + MVA natural vs. 
mosaic

I Thailand, Kenya, Uganda Heterologous vector prime-boost; breadth, depth and 
memory of CMI responses induced by mosaic vs. natural 
genes; Env antibodies

Ad26 mosaic + MVA mosaic ± 
adjuvanted Env subunit protein

I–IIB Thailand, Kenya, Uganda, 
Mozambique

Heterologous vector prime-boost; breadth, depth and 
memory of CMI responses induced by mosaic genes; 
induction of Env antibodies

ALVAC + adjuvanted Env subunit 
protein

I–III Thailand, RSA Improved Env design to induce V2 antibodies; Efficacy 
and mode of transmission: heterosexual population at 
high risk in RSA and in MSM

DNA + NYVAC ± adjuvanted Env 
subunit protein

I–IIB RSA, Southern Africa DNA + pox vector for potent CMI responses; Env boost 
for antibodies; Efficacy in heterosexual population at 
high risk; adaptive trial designs

DNA + Vaccinia ± adjuvanted Env 
subunit protein

IIB China DNA + pox vector for potent CMI responses; Env boost 
for antibodies; Efficacy in MSM

New trimeric Env subunit proteins and 
adjuvants

I US, UK, Africa Induction of broadly neutralizing antibodies in peripheral 
and mucosal compartments; systemic and mucosal 
administration

Vaccine and PrEP or microbicides I–IIB To be determined Synergistic effect of prevention technologies

CMI: cell-mediated immunity; MSM: men who have sex with men; ADCC: antibody-dependent cell-mediated cytotoxicity; RSA: Republic of 
South Africa
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