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Abstract

RATIONALE—The mildly euphoric and cognitive enhancing effects of nicotine play a role in the 

initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to 

relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors 

can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in 

nicotine addiction.

OBJECTIVES—The goal of this paper is to describe the role of neuropeptide systems in the 

initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine 

seeking.

RESULTS—The reviewed studies indicate that several drugs that target neuropeptide systems 

diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. 

Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish 

withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and 

stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both 

corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and 

anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement 

of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria 

during nicotine withdrawal and melanocortin 4 receptor blockade prevents stress-induced 

reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-

induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 

receptors in cue-induced reinstatement of nicotine seeking.

CONCLUSION—Drugs that target neuropeptide systems might decrease the euphoric effects of 

smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress 

resilience.
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1. Introduction

With 1 billion tobacco users, nicotine is one of the most widely abused drugs in the world 

(WHO 2011). Smoking increases the risk for numerous diseases that decrease the quality of 

life or lead to premature death including cancer, chronic obstructive pulmonary disease, 

heart disease, dementia and Alzheimer’s (Ott et al. 1998; Pirie et al. 2013; Postma et al. 

2015; Thun et al. 2013). In the 20th century alone, 100 million people died as a result of 

tobacco smoke exposure (WHO 2015). Smoking rates in Western countries are on the 

decline and about 80% of tobacco users now live in low and middle income countries with 

limited access to smoking cessation treatments (WHO 2015).

The positive reinforcing effects of nicotine facilitate the initiation of smoking (Finkenauer et 

al. 2009). Smoking induces mild euphoria, relaxation, and enhances cognitive function in 

people who are not yet tolerant to the effects of nicotine (Ague 1973; Benowitz 1988; 

Wesnes and Warburton 1983). Nicotine is the main component of tobacco smoke that leads 

to the development of tobacco addiction. This is supported by animal studies and the 

widespread use of e-cigarettes by people who have never smoked conventional cigarettes 

(Corey et al. 2013; Corrigall and Coen 1989; Johnston et al. 2015). The e-cigarettes deliver 

nicotine but only small amounts of other tobacco smoke ingredients (Famele et al. 2014; 

Pellegrino et al. 2012).

A brief period of nicotine intake can lead to changes in brain networks that cause 

compulsive drug taking (Adermark et al. 2016; Bruijnzeel 2012). Smoking cessation leads to 

negative affective symptoms such as dysphoria, anxiety, and impaired cognitive function 

(Hughes et al. 1991; Hughes and Hatsukami 1986). The negative affective symptoms 

increase the risk for relapse (Bruijnzeel and Gold 2005). Studies with e-cigarettes and other 

nicotine delivery products (e.g., gum, patch, nasal spray) show that nicotine decreases the 

desire to use tobacco and diminishes withdrawal (Dawkins et al. 2012; Harrell et al. 2015; 

Shiffman et al. 2006). Thus, nicotine is the main component in tobacco smoke that prevents 

people from decreasing tobacco use and quitting smoking (Bardo et al. 1999; Stolerman and 

Jarvis 1995). It should be noted that conventional cigarettes are more reinforcing than e-

cigarettes because there are compounds in tobacco smoke that are rewarding on their own 

and enhance the rewarding properties of nicotine. For example, acetaldehyde is formed 

during the combustion of tobacco and is self-administered by rodents, induces conditioned 

place preference (CPP), and potentiates the rewarding effects of nicotine (Belluzzi et al. 

2005; Brown et al. 1979; Myers et al. 1982; Smith et al. 1984). Other tobacco ingredients 

such as sugar and menthol are added to tobacco to mask the harsh taste of tobacco smoke 

and diminish the irritating effects of smoke in the respiratory system (Talhout et al. 2006; 

Willis et al. 2011). Thus, although nicotine is the main psychoactive compound in 

conventional cigarettes and e-cigarettes there are significant differences between these 

products (for an overview see, Fagerstrom et al. 2015; Grana et al. 2014; Talhout et al. 

2007).

Without smoking cessation treatment, the majority of people relapse within the first week of 

abstinence when withdrawal signs are most severe (Hughes et al. 2004; Jarvis 2004). The 

relapse rate is extremely high and without pharmacotherapy only about 5% of smokers are 
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able to maintain abstinence for 12 months (Hughes et al. 2004). Smoking induces 

adaptations in the brain that contribute to craving for nicotine, withdrawal, and relapse. This 

review focuses on the role of neuropeptide systems in nicotine addiction. However, nicotine 

also leads to changes in the expression of nicotinic acetylcholine receptors (nAChRs) which 

may contribute to relapse. Tobacco use in humans and chronic nicotine or tobacco smoke 

exposure in rodents leads to an upregulation of nAChRs in the brain (Benwell et al. 1988; 

Marks et al. 1983; Small et al. 2010; Staley et al. 2006). In active smokers, the nAChRs are 

in a desensitized state but cessation of nicotine use leads a reactivation of these receptors 

which contributes to withdrawal and relapse (Dani and Heinemann 1996).

The US Food and Drug Administration (FDA) has approved several smoking cessation 

drugs that diminish withdrawal and improve the relapse rate. Approved treatments include 

nicotine-based treatments such as nicotine gum and patches. In addition, the FDA has 

approved the monoamine reuptake inhibitor bupropion and the α4β2 nAChR partial agonist 

varenicline for smoking cessation (Hurst et al. 2013). Interestingly, a recent animal study 

suggests that the co-administration of bupropion and varenicline might be more effective in 

decreasing nicotine self-administration than either drug alone (Hall et al. 2015). Another 

novel approach to prevent relapse to smoking might be the use of acetylcholinesterase 

inhibitors. These drugs enhance cholinergic transmission and have received FDA approval 

for the treatment of Alzheimer’s disease (Birks 2006). Recent studies suggest that 

acetylcholinesterase inhibitors (e.g., galantamine and donepezil) attenuate the self-

administration of nicotine in rodents and decrease smoking in humans (Ashare et al. 2016; 

Hopkins et al. 2012; Kimmey et al. 2014).

There are not yet any FDA-approved peptide-based treatments for smoking cessation, but 

there is rapid progress in this area of research. The FDA has already approved 60 peptide-

based treatments for other disorders and 140 peptide-based treatments are currently in 

clinical trials (Fosgerau and Hoffmann 2015; Kaspar and Reichert 2013). The brain 

bioavailability of most orally administered or injected peptides is relatively poor because of 

enzymatic breakdown and poor blood brain barrier penetration. However, the brain 

availability of peptides can be improved by masking enzyme cleavage sites (i.e., decreasing 

breakdown) and increasing lipophilicity to facilitate blood brain barrier passage (Egleton 

and Davis 2005). Furthermore, small molecule non-peptide drugs have been developed that 

can be orally administered and target neuropeptide receptors in the brain (Bailey et al. 2011). 

Finally, clinical studies have shown that neuropeptides can be administered intranasally and 

affect human behavior (Yatawara et al. 2015). For example, oxytocin nasal spray improves 

social interactions in children with autism (Yatawara et al. 2015).

There is strong evidence for a role of brain peptide systems in nicotine addiction. Preclinical 

studies have provided evidence for a role of CRF, dynorphin, and hypocretin-1 in nicotine 

addiction (See Table 1 for an overview). The goal of this review is to provide an overview of 

the role of neuropeptide systems in the positive reinforcing effects of nicotine, nicotine 

withdrawal, and the reinstatement of nicotine seeking. In most animal studies, experimental 

drugs are administered once immediately before the animals are tested. Therefore, details 

about the treatment regimen are not reported unless the drug is administered chronically. The 

reviewed studies indicate that neuropeptides contribute to the development and maintenance 
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of nicotine addiction, and that different peptides play a role in each stage of the addiction 

cycle.

2. Genetic variation in hypocretin and galanin receptor genes affects risk 

for smoking

Genome-wide association (GWA) studies continue to provide important insight into the 

neuronal mechanisms underlying smoking in humans. Some of the first GWA studies 

showed that variations in the sequence of α3, α5, and β4 nAChR subunit genes affects the 

risk for developing and maintaining a nicotine addiction (Berrettini et al. 2008; Chen et al. 

2009; Liu et al. 2010; Wen et al. 2016). More recent genetic studies revealed that variability 

in the α4 nAChR subunit gene affects the risk for developing nicotine addiction in humans 

(Hancock et al. 2015; Thorgeirsson et al. 2016).

Interestingly, GWA studies also point to a role for neuropeptide systems in nicotine 

addiction. One study, in which only Japanese subjects were included, reported that an SNP 

(rs2653349) in the hypocretin-2 receptor gene (HCRTR2) affects the severity of nicotine 

dependence. Smokers with the A/G genotype of the rs2653349 SNP were more likely to 

have severe nicotine dependence than smokers with the G/G genotype (Nishizawa et al. 

2015). Interestingly, carriers of the A/G genotype were also more likely to use 

methamphetamine at a young age than carriers of the G/G genotype. This suggests that this 

rs2653349 SNP may predispose people for drug use. A study with US smokers (Yale 

University Transdisciplinary Tobacco Use Research Center) provides strong evidence for 

variation in the galanin-1 receptor (GALR1) gene in the development of nicotine addiction. 

Cubells and colleagues showed that an SNP in the GALR1 gene (rs2717162) increased self-

reported craving during a quit attempt (Lori et al. 2011). The same rs2717162 SNP 

decreases the effectiveness of bupropion as a smoking cessation aid (Gold et al. 2012). 

Smokers who carried at least one minor C allele and were treated with bupropion were more 

likely to report severe cravings and less likely to maintain abstinence than smokers with TT 

alleles. Another study reported that variations in the GALR1 gene affect the likelihood of 

heavy smoking (Jackson et al. 2011). In conclusion, these studies indicate that variations in 

nAChR genes and neuropeptide receptor genes (GALR1 and HCRTR2) affect the likelihood 

of developing a tobacco addiction, the effectiveness of smoking cessation aids, and the risk 

for relapse.

3. Neuropeptides and the rewarding effects of nicotine

3.1 CRF and the rewarding effects of nicotine

The activation of nAChRs plays a critical role in the self-administration of nicotine and 

nicotine-induced CPP (Corrigall et al. 1994; Walters et al. 2006; Watkins et al. 1999). After 

the development of dependence, the endogenous release of CRF and the resulting negative 

mood state can drive nicotine intake (i.e., negative reinforcement). Corticotropin-releasing 

factor is a neuropeptide and is expressed in several brain sites including the paraventricular 

nucleus of the hypothalamus, central nucleus of the amygdala (CeA), bed nucleus of the 

stria terminalis (BNST), ventral tegmental area (VTA), and locus coeruleus (LC)(Grieder et 
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al. 2014; Swanson et al. 1983; Vale et al. 1981). Hypothalamic CRF neurons project to the 

median eminence and mediate the release of ACTH into the periphery. Extrahypothalamic 

CRF orchestrates behavioral and autonomic responses to stressors (Koob and Heinrichs 

1999; Nijsen et al. 2001), and many of these effects are independent of CRF’s effects on the 

hypothalamic–pituitary–adrenal (HPA) axis (Eaves et al. 1985; Sutton et al. 1982). Two CRF 

receptors have been discovered, namely the CRF1 and CRF2 receptor (Chen et al. 1993; 

Lovenberg et al. 1995; Perrin et al. 1993). Corticotropin-releasing factor serves as 

endogenous ligand for the CRF1 receptor and urocortin 2 and 3 are ligands for the CRF2 

receptor (Lewis et al. 2001). Urocortin 1 binds with a slightly higher affinity to the CRF1 

than the CRF2 receptor (Lewis et al., 2001). Drug withdrawal-induced behavioral and 

physiological changes are predominantly mediated via the activation of CRF1 receptors 

(Bruijnzeel and Gold 2005; Koob 1999; Steckler and Holsboer 1999). The activation of 

CRF2 receptors counteracts the effects of stress responses and CRF1 receptor activation 

(Bale and Chen 2012).

The great majority of the nicotine/CRF studies investigated the role of CRF in withdrawal 

and relapse, but several studies have also investigated the role of CRF in the rewarding 

effects of nicotine. These studies mostly suggest that CRF increases nicotine intake in 

dependent, but not in non-dependent, animals. Rats with extended access to nicotine develop 

dependence and display increased nicotine intake after a period of abstinence (George et al. 

2007). Blockade of CRF1 receptors with MPZP prevents this increase in nicotine intake, but 

does not affect nicotine intake in control rats with limited access to nicotine (George et al. 

2007). Chronic nicotine intake increases CRF levels in the VTA and this could contribute to 

high levels of nicotine intake in dependent animals (Grieder et al. 2014). This is supported 

by the observation that downregulation of CRF mRNA in the VTA decreases nicotine self-

administration in an extended access paradigm (21 h/day access) (Grieder et al. 2014). 

Decreasing CRF levels in the VTA does not affect nicotine intake in rats with limited access 

to nicotine. On a similar note, blockade of CRF1 receptors does not affect nicotine-induced 

CPP but prevents stress-induced potentiation of nicotine-induced CPP (Brielmaier et al. 

2012). In conclusion, these studies indicate that CRF1 receptor antagonists decrease nicotine 

intake in dependent animals. Furthermore, stressors potentiate the reinforcing properties of 

nicotine and this is prevented by CRF1 receptor antagonists. Corticotropin-releasing factor 

type 1 receptor antagonists may help to reduce smoking in dependent smokers and in non-

dependent smokers who use tobacco to cope with stressful situations.

3.2 Other peptides than CRF and rewarding effects of nicotine

Corticotropin releasing factor mainly plays a role in nicotine intake in dependent animals, 

but numerous other neuropeptides regulate nicotine intake in non-dependent animals. Kenny 

and colleagues have provided insight into the role of hypocretin transmission in nicotine 

intake (Hollander et al. 2008). Their studies showed that the hypocretin-1 receptor 

antagonist SB-334867 decreases nicotine self-administration in rats with limited access (1 h) 

while not affecting responding for food pellets. Pretreatment with the hypocretin-1 receptor 

antagonist also prevented the nicotine-induced lowering of brain reward thresholds in the 

intracranial self-stimulation (ICSS) paradigm. A decrease in brain reward thresholds is 

indicative of a potentiation of brain reward function (i.e., euphoria) (Der-Avakian and 
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Markou 2012a). Therefore, this indicates that hypocretin-1 receptor antagonists decrease the 

acute rewarding effects of nicotine. Hypocretin fibers and hypocretin-1 receptors have been 

detected in the insular cortex. Blockade of the hypocretin-1 receptors in this brain site 

attenuates the self-administration of nicotine (Hollander et al. 2008). Therefore, activation of 

hypocretin-1 receptors in the insular cortex may play a role in the initiation of smoking.

Several other neuropeptides have been implicated in the rewarding effects of nicotine 

including nociceptin/orphanin FQ, neurotensin, galanin, and ghrelin (Boules et al. 2011; 

Cippitelli et al. 2016; Jerlhag and Engel 2011). Nociceptin mediates its effects in the brain 

by acting upon the nociceptin receptor. Stimulation of the nociceptin receptor with AT-202 

increases nicotine self-administration and blockade of this receptor with SB612111 

decreases nicotine self-administration in rats (Cippitelli et al. 2016). Similar effects were 

observed in dependent and non-dependent rats. Nociceptin is a member of the opioid 

receptor family and blockade of this receptor prevents drug-induced dopamine release in the 

nucleus accumbens (Nacc)(Lutfy et al. 2001; Vazquez-DeRose et al. 2013). Dopamine 

release in the NAcc plays a critical role in the reinforcing properties of nicotine and 

therefore nociceptin receptor antagonists may decrease nicotine intake by inhibiting the 

nicotine-induced increase in dopamine signaling (Corrigall and Coen 1991).

Neurotensin is another neuropeptide that could affect the rewarding properties of nicotine by 

modulating dopamine release. The neurotensin receptor agonist NT69L reduces nicotine 

self-administration in rats and inhibits nicotine-evoked dopamine release in the NAcc 

(Boules et al. 2011; Liang et al. 2008). However, NT69L also inhibits the nicotine-induced 

increase in norepinephrine levels in the prefrontal cortex (PFC)(Liang et al. 2008). 

Norepinephrine release in the PFC plays a critical role in the reinforcing properties of drugs 

of abuse (Ventura et al. 2003). Therefore, neurotensin agonists may decrease nicotine intake 

by modulating dopamine signaling in the NAcc and norepinephrine signaling in the PFC.

Ghrelin is produced in high levels by the stomach during fasting and its levels decrease after 

food intake (Perello and Dickson 2015). Ghrelin is also produced by neurons in the arcuate 

hypothalamic nucleus (Kojima et al. 1999; Mondal et al. 2005). The release of ghrelin 

increases food intake and enhances the rewarding properties of food (Perello and Dickson 

2015). It has been suggested that ghrelin modulates the activity of reward systems and 

thereby regulates food intake. Blockade of ghrelin receptors attenuates nicotine-induced 

CPP and nicotine-induced dopamine release (Jerlhag and Engel 2011). Therefore, ghrelin 

receptor blockade could potentially decrease the positive reinforcing effects of smoking.

Galanin positive neurons have been identified in the bed nucleus of stria terminalis (BNST), 

central amygdala (CeA), medial septum, thalamus, hypothalamus, dorsal raphe nucleus, and 

brain stem areas (Melander et al. 1986). Galanin plays a role in a wide range of biological 

functions including energy homeostasis, reproduction, arousal, sleep, and cognition 

(Gundlach 2002; Lang et al. 2015). Several studies with smokers indicate that galanin plays 

a role in nicotine craving and withdrawal (Jackson et al. 2011; Lori et al. 2011). Preclinical 

studies suggest that galanin also mediates the rewarding effects of nicotine. Picciotto and 

colleagues used galanin knock-out mice to study the role of galanin in nicotine reward 

(Neugebauer et al. 2011). Nicotine induced CPP in the galanin knock-out mice and the wild-
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type mice but higher doses were needed to induce CPP in the knock-out mice. This suggests 

that galanin knock-out mice are less sensitive to the rewarding effects of nicotine and that 

galanin signaling contributes to nicotine reward. The findings of this study are not in line 

with a study that used a pharmacological approach to investigate the role of galanin in the 

rewarding effects of nicotine. In this study, the galanin receptor agonist galnon blocked the 

rewarding properties of nicotine in the CPP test (Jackson et al. 2011). It is somewhat 

surprising that a study with KO mice suggests that galanin enhances the rewarding effects of 

nicotine and that a pharmacologic study suggests that galanin receptor activation inhibits 

nicotine reward. It has been suggested that these differences are due to compensatory 

mechanisms in the KO mice or due to strain differences (Jackson et al. 2011). It might also 

have been possible that that galnon affects nAChR signaling and diminishes the rewarding 

effects of nicotine via this off-target effect (Jackson et al. 2011).

In conclusion, the present studies indicate that several neuropeptides play a role in the 

rewarding effects of nicotine. There is strong evidence that hypocretin-1 and nociceptin 

receptor blockade diminishes the rewarding effects of nicotine. Stimulation of neurotensin 

and galanin receptors also attenuates the rewarding effects of nicotine. Therefore, these 

studies suggest that modulating hypocretin-1, nociceptin, neurotensin, and galanin systems 

may decrease smoking in people in whom smoking is mainly driven by positive 

reinforcement processes.

4. Dysphoria and nicotine withdrawal

During the last decades, a wide range of animal models have been developed to investigate 

the dysphoria associated with smoking cessation. In most of these studies, animals were 

rendered nicotine dependent using intermittent injection protocols or minipumps that 

continuously deliver nicotine (Epping-Jordan et al. 1998; Malin 2001). Nicotine withdrawal 

can be observed after the administration of non-selective nAChR antagonists (precipitated 

withdrawal) and after the cessation of nicotine administration (spontaneous withdrawal)

(Epping-Jordan et al. 1998). Spontaneous withdrawal has greater face validity than 

precipitated withdrawal as it more closely models human smoking cessation. The 

precipitated withdrawal method has, however, some significant advantages over the 

spontaneous withdrawal method. One of the advantages of the precipitated withdrawal 

method is that nAChR blockade induces withdrawal rapidly and withdrawal signs subside 

quickly because of the short half-life of nAChR antagonists (Debruyne et al. 2003). 

Furthermore, the magnitude and duration of precipitated withdrawal symptoms are 

consistent across sessions and therefore several doses of an experimental drugs can be tested 

in each animal (Bruijnzeel et al. 2012; Skjei and Markou 2003).

Cessation of chronic nicotine administration induces a stress response, increases 

corticosterone levels, and decreases operant responding for food pellets, which might be 

indicative of a negative mood state (Benwell and Balfour 1979; Corrigall et al. 1989; LeSage 

et al. 2006). Cessation of nicotine administration also leads to immobility in the forced swim 

test, which might be indicative of a depressive-like state (Mannucci et al. 2006; Roni and 

Rahman 2014). This increase in immobility in the forced swim test has been observed for up 

to 60 days after the cessation of nicotine administration (Mannucci et al. 2006). The 
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conditioned place aversion (CPA) procedure has also been used to assess the aversive state 

associated with precipitated nicotine withdrawal. In this test, the negative motivational 

properties of drug withdrawal are paired with a neutral test environment. After pairing, the 

previously neutral environment acts as a conditioned stimulus and induces avoidance 

behavior (Tzschentke 1998).

The nAChR receptor antagonist mecamylamine induces place aversion in rats chronically 

treated with nicotine but not in control rats (Suzuki et al. 1996). The ICSS procedure has 

also been used to investigate the negative mood state associated with drug withdrawal 

(Bruijnzeel and Markou 2004; Epping-Jordan et al. 1998). In the discrete trial ICSS 

procedure the animals are prepared with electrodes in the lateral hypothalamus (LH)/medial 

forebrain bundle and when placed in the operant chamber they can self-stimulate their brain 

reward system. By systematically changing the intensity of the electrical current and 

determining the lowest current that supports self-stimulation, the state of the brain reward 

system can be assessed (Der-Avakian and Markou 2012b). The acute administration of drugs 

of abuse increases the sensitivity to the electrical stimuli and lowers brain reward thresholds, 

which is indicative of a potentiation of brain reward function. In contrast, cessation of 

chronic drug administration leads to an increase in ICSS thresholds, which is indicative of a 

negative mood state. The administration of nAChR antagonists to nicotine dependent 

animals or cessation of chronic nicotine administration leads to elevations in brain reward 

thresholds (Epping-Jordan et al. 1998; Johnson et al. 2008). One of the main advantages of 

the ICSS procedure is that it provides a quantitative measure of the emotional state of the 

brain reward system during withdrawal. The ICSS procedure is a well validated test to assess 

the dysphoria associated with nicotine withdrawal. Elevations in brain reward thresholds are 

not exclusive to nicotine withdrawal but are also observed during withdrawal from other 

drugs including opioids, alcohol, and amphetamine (Bruijnzeel et al. 2006; Cryan et al. 

2003b; Schulteis et al. 1995).

The FDA has approved two non-nicotine treatments for smoking cessation. Both bupropion 

and varenicline have been shown to prevent the elevations in brain reward thresholds 

associated with nicotine withdrawal (Cryan et al. 2003a; Igari et al. 2013). Therefore, this 

animal model has face and predictive validity for identifying treatments that diminish 

dysphoria associated with smoking cessation.

In addition to dysphoria, many animal studies have investigated somatic signs associated 

with precipitated and spontaneous nicotine withdrawal (Damaj et al. 2003; Malin et al. 1992; 

Watkins et al. 2000). Somatic withdrawal signs in rodents include teeth chattering, chews, 

gasps, writhes, ptosis, and head and body shakes (Malin et al. 1992). These signs are often 

recorded for 5–10 minutes after the rats or mice are placed in an observation chamber. Both 

nicotine and the smoking cessation drug bupropion diminish somatic withdrawal signs 

(Cryan et al. 2003a; Malin et al. 1992). It should be noted that somatic withdrawal signs in 

humans are mild and that relapse to smoking is mainly driven by dysphoria and craving 

(Bruijnzeel 2012; Hughes 2007; Koob and Volkow 2016). Furthermore, drugs that diminish 

affective signs might not diminish somatic signs and vice versa (Bruijnzeel et al. 2010). 

Therefore, this suggests that somatic withdrawal signs have only weak predictive value for 

identifying treatments that diminish affective withdrawal signs and craving in humans.
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4.1 CRF and dysphoria associated with nicotine withdrawal

In our laboratory, we have extensively explored the role of CRF in the dysphoria associated 

with nicotine withdrawal. In one of our first experiments, we investigated if blockade of 

CRF receptors with the CRF1/CRF2 receptor antagonist D-Phe CRF(12–41) diminishes the 

elevations in brain thresholds associated with precipitated nicotine withdrawal (Bruijnzeel et 

al. 2007). Central (icv) administration of D-Phe CRF(12–41) diminished mecamylamine-

induced elevations in brain reward thresholds. In a follow-up experiment, the role of CRF1 

and CRF2 receptors in the dysphoria associated with precipitated nicotine withdrawal was 

investigated (Bruijnzeel et al. 2009). The highly selective CRF1 receptor antagonist 

R278995/CRA0450 was used to block CRF1 receptors and CRF2 receptors were blocked 

with astressin-2B. Blockade of CRF1, but not CRF2, receptors, prevented the elevations in 

brain reward thresholds associated with precipitated nicotine withdrawal. These studies 

suggest that CRF1 receptor activation at least partly mediates the dysphoria associated with 

smoking cessation. It was then investigated which brain areas play a role in the dysphoria 

associated with nicotine withdrawal (Marcinkiewcz et al. 2009). Administration of D-Phe 

CRF(12–41) into the CeA and Nacc shell prevented the elevations in brain reward thresholds 

in the nicotine dependent rats. In contrast, blockade of CRF1/CRF2 receptors in the BNST 

was ineffective. To investigate if CRF1 receptors in the CeA play a role in nicotine 

withdrawal, we conducted a study with the selective CRF1 receptor antagonist R278995/

CRA0450 (Bruijnzeel et al. 2012). This study showed that blockade of CRF1 receptors in 

the CeA diminishes the dysphoria associated with nicotine withdrawal.

To further explore the role of CRF in the CeA in the regulation of mood states and 

withdrawal, the effect of the overexpression of CRF in the CeA on the dysphoria associated 

nicotine withdrawal was investigated. Corticotropin-releasing factor was overexpressed in 

the CeA using an adeno-associated virus (AAV), with AAV2 terminal repeats and AAV5 

capsids (AAV2/5), that selectively transduces neurons in the brain (Burger et al. 2004). The 

rats were trained on the ICSS paradigm and when the thresholds were stable they received 

viral vectors that delivered GFP or CRF and brain reward thresholds were assessed for 4 

weeks. Previous studies suggest that increased CRF release in the CeA contributes to 

dysphoria (Bruijnzeel et al. 2012; Marcinkiewcz et al. 2009). However, chronic 

overexpression of CRF in the CeA did not affect brain reward thresholds. It was then 

investigated if the overexpression of CRF in the CeA affects the dysphoria associated with 

nicotine withdrawal (Qi et al. 2014). Precipitated and spontaneous withdrawal led to large 

elevations in brain reward thresholds, which was diminished in rats that overexpressed CRF. 

At the end of the experiment, we investigated the effect of the administration of the AAV-

CRF vector on CRF, CRF1 receptor, and CRF2 receptor levels. Administration of the AAV-

CRF vector led to an increase in CRF levels, a decrease in CRF1 receptor levels, and an 

increase CRF2 receptors levels. Therefore, the overexpression of CRF in the CeA may have 

diminished the dysphoria associated with nicotine withdrawal by downregulating CRF1 

receptors. However, there is evidence that stimulation of CRF2 receptors has anti-stress and 

antidepressant-like effects (Chen et al. 2006; Tanaka and Telegdy 2008). Therefore, the 

upregulation of CRF2 receptors may have contributed to preventing withdrawal in the 

nicotine withdrawing rats. In a recent study we also investigated the AAV2/5 mediated 

overexpression of CRF in the BNST on the dysphoria associated with nicotine withdrawal 
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(Qi et al. 2016). The overexpression of CRF in the BNST did not affect baseline brain 

reward thresholds, but prevented the elevations in brain reward thresholds associated with 

precipitated and spontaneous withdrawal. The overexpression of CRF increased CRF1 and 

CRF2 receptor levels in the BNST and increased the CRF2/CRF1 receptor ratio. This 

suggests that the overexpression of CRF in the BNST diminishes the dysphoria during 

nicotine withdrawal by inducing an increase in the CRF2/CRF1 receptor ratio.

Considering the strong evidence that CRF mediates the dysphoria associated with nicotine 

withdrawal, clinical studies may investigate whether CRF1 receptor blockade diminishes the 

acute dysphoria associated with smoking cessation. In conclusion, these animal studies 

indicate that the dysphoria associated with nicotine withdrawal is at least partly mediated by 

the activation of CRF1 receptors.

4.2 Other peptides than CRF and dysphoria associated with nicotine withdrawal

Although more than one hundred neuropeptides have been discovered, the role of only a few 

neuropeptides in nicotine withdrawal have been investigated (Bruijnzeel 2012; Zhang et al. 

2014). In our laboratory, we investigated the effects of NPY on somatic and affective 

nicotine withdrawal signs (Rylkova et al. 2008). Neuropeptide Y is widely expressed 

throughout the brain and low levels of NPY have been associated with depressive-disorders 

(De Quidt and Emson 1986a; de Quidt and Emson 1986b; Redrobe et al. 2002). Central 

administration of NPY decreases somatic morphine and alcohol withdrawal signs (Woldbye 

et al. 1998; Woldbye et al. 2002). In our nicotine study, NPY attenuated the somatic signs 

associated with both precipitated and spontaneous nicotine withdrawal. The specific Y1 

receptor agonist [d-His26]-NPY decreased abdominal constrictions during precipitated 

withdrawal and decreased overall somatic signs during spontaneous withdrawal. We also 

investigated the effect of NPY and the Y1 receptor agonist [d-His26]-NPY on the dysphoria 

associated with precipitated nicotine withdrawal. Neuropeptide Y or [d-His26]-NPY did not 

affect the elevations in brain reward thresholds associated with precipitated nicotine 

withdrawal. High doses of NPY or [d-His26]-NPY actually increased brain reward 

thresholds in the control rats. This increase in brain reward thresholds was blocked by the 

Y1 receptor antagonist BIBP-3226. These studies indicate that Y1 receptor agonists may 

diminish some of the somatic signs associated with smoking cessation, but these compounds 

do not diminish the dysphoria associated with smoking cessation and high doses might 

induce impairments in reward function. Harris and colleagues found something similar with 

oxytocin (Manbeck et al. 2014). They showed that oxytocin diminishes the somatic 

withdrawal signs associated with precipitated nicotine withdrawal but did not affect the 

elevations in brain rewards thresholds. Similar to NPY, oxytocin elevated the brain reward 

thresholds of the control rats.

There is strong evidence from animal studies that blockade of vasopressin 1b (V1b) 

receptors diminishes the effects of stress and has antidepressant-like effects (Iijima and 

Chaki 2007; Iijima et al. 2014). Therefore, in our laboratory we investigated the effect of a 

V1b receptor antagonist on the dysphoria associated with nicotine withdrawal (Qi et al. 

2015a). Acute administration of the V1b receptor antagonist SSR149415 slightly diminished 

the elevations in ICSS thresholds associated with precipitated withdrawal. Chronic (6 days) 
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administration of SSR149415 was more effective and completely prevented the elevations in 

ICSS thresholds associated with precipitated nicotine withdrawal. Interestingly, a recent 

clinical study reported that chronic treatment with the V1b receptor antagonist ABT-436 

decreases smoking in patients with alcoholism (Ryan et al. 2016). Future studies may 

investigate if V1b receptor blockade diminishes the dysphoria associated with smoking 

cessation and improves the relapse rate.

To our knowledge, only the acute effects of NPY and oxytocin on nicotine withdrawal have 

been investigated. Considering the fact that the V1b receptor antagonist was more effective 

after chronic treatment it might be worthwhile to explore whether chronic treatment with 

NPY or oxytocin is also more effective. The kappa-opioid receptor system has been shown 

to play a critical role in regulating mood states (Bruchas et al. 2010; Bruijnzeel 2009). 

Blockade of kappa-opioid receptors with LY2456302 also diminishes nicotine-withdrawal 

induced CPA and thus suggesting that it diminishes the negative emotional state associated 

with nicotine withdrawal (Jackson et al. 2015).

In conclusion, the reviewed studies indicate that blockade of kappa-opioid receptors and 

chronic blockade of V1b receptors diminishes the dysphoria associated with nicotine 

withdrawal. Neuropeptide Y and oxytocin diminish somatic signs associated with nicotine 

withdrawal but do not diminish the dysphoria associated with nicotine withdrawal. These 

studies would suggest that kappa-opioid and V1b receptor antagonists decrease the 

dysphoria in people who try to quit smoking.

4.3 Norepinephrine and dysphoria associated with nicotine withdrawal

Norepinephrine plays a critical role in regulating the release of neuropeptides in the brain. 

For example, norepinephrine stimulates the release of CRF in the PVN and other brain sites 

(Dunn et al. 2004). Two noradrenergic cell groups have been located in the mammalian brain 

(Dahlström and Fuxe 1964). Noradrenergic neurons in the LC give rise to the dorsal 

noradrenergic bundle. The LC provides most of the norepinephrine input to the forebrain 

areas and activation of the LC enhances attention, arousal, and learning and memory (Aston-

Jones 2005). Noradrenergic cell groups in the lateral tegmentum give rise to the ventral 

noradrenergic bundle. These cells innervate the hypothalamus, septum, and subcomponents 

of the extended amygdala such as the CeA and BNST (Moore and Card 1984).

We investigated the effects of the α1-adrenoceptor antagonist prazosin, the α2-adrenoceptor 

agonist clonidine, and the β1/β2-adrenoceptor antagonist propranolol on the dysphoria and 

somatic signs associated with precipitated nicotine withdrawal (Bruijnzeel et al. 2010). 

These drugs inhibit noradrenergic transmission in the brain by blocking α1 or β-adrenergic 

receptors or stimulating presynaptic α2-adrenergic receptors. We found that α1-

adrenoceptor blockade (prazosin), but not α2-adrenoceptor activation (clonidine) or β1/β2-

adrenoceptor blockade (propranolol), attenuates the elevations in brain reward thresholds 

associated with precipitated nicotine withdrawal. In contrast, α2-adrenoceptor activation and 

β1/β2-adrenoceptor blockade, but not α1-adrenoceptor blockade, decreased somatic nicotine 

withdrawal signs. This pattern of results suggests that only α1-adrenoceptor blockade 

diminishes the dysphoria associated with nicotine withdrawal. Dysphoria and drug craving 

are the main causes of relapse to drug use (Bruijnzeel 2012; Bruijnzeel and Gold 2005). 
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Therefore, drugs that only decrease somatic signs may not prevent relapse. In conclusion, 

the reviewed studies suggest that drugs that block α1-adrenoceptors may prevent dysphoria 

in people trying to quit smoking and thereby decrease the risk for relapse.

5. Nicotine withdrawal and anxiety

Smoking cessation leads to an increase in anxiety and this contributes to relapse to smoking 

(Bruijnzeel 2012). Smokers are more likely to have an anxiety disorder than non-smokers 

and smokers with an anxiety disorder are less motivated to quit (Johnson et al. 2000; 

Zvolensky et al. 2007). The smoking cessation drug varenicline diminishes anxiety in 

humans after quitting smoking and this may improve the relapse rate (Foulds et al. 2013). In 

contrast, there is no evidence that the smoking cessation treatment bupropion alleviates 

anxiety after smoking cessation (Shiffman et al. 2000).

Several neuropeptides have been implicated in nicotine withdrawal-induced anxiety-like 

behavior including CRF, neuregulin 3 (NRG3), NPY, and dynorphin (Aydin et al. 2011; 

Cohen et al. 2015; Jackson et al. 2015; Turner et al. 2014). Some of the first studies with 

CRF showed that it increases anxiety-like behavior and more recent studies showed that it 

contributes to anxiety-like behavior after cessation of nicotine administration (Cohen et al. 

2015; Dunn and File 1987; Swerdlow et al. 1986). Cohen and colleagues reported that rats 

with extended access to nicotine (21 h/day, 4 days/week) display an increase in anxiety-like 

behavior in week 10, 72 h after the last self-administration session (Cohen et al. 2015). This 

increase in anxiety-like behavior was blockade by systemic and intra-CeA administration of 

the CRF1 receptor antagonist MPZP.

In an elegant study, Turner and colleagues showed that nicotine withdrawal leads to an 

increase in NRG3 levels in the hippocampus (Turner et al. 2014). It was then investigated if 

nicotine withdrawal leads to anxiety-like behavior in NRG3ska mice. These mice have a 

mutation in the NRG3 gene, which leads to low levels of NRG3 and NRG3 levels do no 

increase after cessation of nicotine administration (Howard et al. 2005; Turner et al. 2014). 

Nicotine withdrawal-induced anxiety-like behavior is diminished in the NRG3ska mice. 

Furthermore, chronic blockade of the NRG3 receptor signaling pathway with Afatinib 

(BIBW-2992) decreases nicotine withdrawal-induced anxiety-like behavior. Therefore, this 

suggests that nicotine withdrawal leads to an increase in NRG3 signaling which contributes 

to anxiety-like behavior.

The habenula-interpeduncular system is a brain network that has been implicated in the 

regulation of emotional states and drug addiction (Hikosaka 2010). The medial habenula 

receives input from the septum and diagonal band of broca and is via the fasciculus 

retroflexus connected to the interpeduncular nucleus (IPN). The IPN connects to 

serotonergic neurons in the raphe nuclei. Both the habenula and the IPN play a role in the 

development of nicotine dependence. Administration of nAChR antagonists into the 

habenula and the IPN induces somatic withdrawal signs (Salas et al. 2009). Furthermore, 

nAChRs in the habenula regulate anxiety-like behavior. Mice that express hypersensitive 

α6/α4β2 nAChRs in the habenula are more anxious than control mice (Pang et al. 2016). 

Tapper and colleagues investigated the role of CRF in the habenula-IPN circuit in anxiety-
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like behavior during nicotine withdrawal. They showed that CRF release in the IPN mediates 

anxiety-like behavior. Administration of CRF in the IPN increased anxiety-like behavior and 

blockade of CRF1 receptors in this brain site prevented nicotine-withdrawal induced anxiety-

like behavior. Decreasing CRF levels in the VTA with shRNAs decreased nicotine-

withdrawal induced activation of the IPN and also anxiety-like behavior. This suggests that 

there is a CRF projection from the VTA to the IPN that increases anxiety-like behavior 

during nicotine withdrawal (Zhao-Shea et al. 2015).

Neuropeptide Y stimulates food intake and blunts stress responses (Reichmann and Holzer 

2016). The effects of NPY are opposite to those of CRF. Corticotropin-releasing factor 

increases anxiety-like behavior while NPY and Y1 agonists decrease anxiety-like behavior 

(Heilig et al. 1989; Sajdyk et al. 1999). The Y2 receptor is located presynaptically and 

stimulation of the Y2 receptor decreases NPY release and increases anxiety-like behavior 

(Colmers et al. 1991; King et al. 1999; Nakajima et al. 1998). Blockade of Y2 receptors with 

JNJ-31020028 decreases anxiety-like behavior in alcohol withdrawing rats (Cippitelli et al. 

2011). Chronic treatment with the same Y2 receptor antagonist also diminishes nicotine 

withdrawal-induced anxiety-like behavior in the social interaction test (Aydin et al. 2011). 

To our knowledge, the effect of NPY or Y1 receptor agonists on nicotine withdrawal-

induced anxiety-like behavior has not been investigated. However, based on the above 

discussed findings it is predicted that NPY or Y1 receptor agonists also decrease anxiety-

like behavior in nicotine withdrawing rats.

There is extensive evidence for a role of kappa-opioid receptor signaling in anxiety-like 

behavior. Kappa-opioid receptor agonists increase anxiety-like behavior and antagonists 

decrease anxiety-like behavior (Bruchas et al. 2010; Bruijnzeel 2009). Nicotine withdrawal 

leads to changes in dynorphin levels, which is the endogenous ligand for the kappa-opioid 

receptor (Chavkin et al. 1982). Cessation of nicotine administration leads to a decrease in 

dynorphin levels and an increase in prodynorphin mRNA levels in the Nacc (Isola et al. 

2008). This suggests that nicotine withdrawal leads to an increase in the release and 

production of dynorphin. Blockade of dynorphin receptors in the brain with the long-action 

kappa opioid receptor antagonist JDTic or with the short acting antagonist LY2456302 

decreases anxiety-like behavior in nicotine withdrawing mice (Jackson et al. 2010; Jackson 

et al. 2015).

6. Reinstatement of Nicotine Seeking

The great majority of people who try to quit smoking relapse during the first year. There are 

several factors that increase the risk for relapse. First of all, dysphoria leads to craving and 

thereby increases the risk for relapse. Also, cues associated with drug use and small amounts 

of drugs of abuse can lead to craving and relapse. Animal models have been developed to 

study the role of stress, cues, and drugs in relapse to smoking (Shaham et al. 2003). One of 

the most widely used animal model to study relapse to smoking is the rat nicotine self-

administration paradigm. Rats are trained to self-administer nicotine and after about 2-weeks 

nicotine seeking is extinguished by replacing nicotine with saline. Operant responding can 

be reinstated by footshock stress, administration of nicotine, or cues associated with the self-

administration of nicotine (Buczek et al. 1999; Chiamulera et al. 1996; LeSage et al. 2004; 
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Liu et al. 2006). Several studies have investigated the effects of the nAChR antagonist 

mecamylamine and the FDA approved smoking cessation drugs varenicline and bupropion 

in these animal models. Blockade of nAChRs with mecamylamine dose dependently 

attenuates cue-induced reinstatement of nicotine seeking (Liu et al. 2007). Very low doses of 

mecamylamine, which did not affect responding for food or nicotine, decreased cue-induced 

reinstatement of nicotine seeking. This suggests that relatively low doses of nAChR 

antagonists could be used to diminish cue-induced craving and prevent relapse in smokers. 

The smoking cessation drug varenicline inhibits reinstatement of operant responding 

induced by nicotine-prime and a combination of nicotine-prime and cues (O’Connor et al. 

2010; Swalve et al. 2016). In contrast, bupropion potentiates cue-induced reinstatement of 

nicotine seeking (Liu et al. 2008). This might be due to the fact that bupropion inhibits the 

re-uptake of dopamine and thereby enhances the effect of the cue (Shaham et al. 2003; 

Warner and Shoaib 2005). This is supported by the observation that dopamine receptor 

blockade diminishes cue-induced reinstatement of drug-seeking (Crombag et al. 2002; Liu 

and Weiss 2002).

The CPP procedure has also been used to investigate the neuronal mechanisms that mediate 

the reinstatement of nicotine seeking. Nicotine-prime reinstates extinguished CPP and this is 

blocked by the nAChR antagonist mecamylamine and the smoking cessation drugs 

varenicline and bupropion (Biala and Budzynska 2006; Biala et al. 2010; Budzynska and 

Biala 2011). Preclinical studies point to a role for the serotonergic system in the 

reinstatement of nicotine seeking. Both the 5-HT2C receptor agonist Ro60-0175 and the 5-

HT2A receptor antagonist M100907 decrease nicotine-primed and cue-induced reinstatement 

of nicotine seeking (Fletcher et al. 2012).

The role of neuropeptide systems in the reinstatement of nicotine seeking is somewhat 

underinvestigated but there is evidence for a role of CRF, kappa-opioid, hypocretin-1, and 

MC4 receptors (Plaza-Zabala et al. 2013; Qi et al. 2015b; Zislis et al. 2007). Studies from 

our laboratory suggest that stress-induced reinstatement of nicotine seeking is at least partly 

mediated by the activation of CRF1 receptors. Central (icv) administration of the non-

specific CRF1/CRF2 receptor antagonist D-Phe CRF(12–41) prevents stress-induced 

reinstatement of nicotine seeking (Zislis et al. 2007). Furthermore, blockade of CRF1 

receptors with R278995/CRA045, but not blockade of CRF2 receptors with astressin-2B, 

prevents stress-induced reinstatement of nicotine seeking in rats (Bruijnzeel et al. 2009). 

Blockade of CRF1 receptors also prevents stress-induced reinstatement of nicotine seeking 

in the mouse (Plaza-Zabala et al. 2010).

In our laboratory, we investigated the role of the MC4 receptor in stress-induced 

reinstatement of nicotine seeking (Qi et al. 2015b). The endogenous ligand for the MC4 

receptor is the pro-opiomelanocortin (POMC)-derived peptide alpha-melanocyte stimulating 

hormone (α-MSH)(Adan et al. 2006; Gantz et al. 1993). Stimulation of the MC4 receptor 

increases anxiety and depressive-like behavior and therefore it was predicted that blockade 

of the MC4 receptor would diminish the effects of stress in the reinstatement procedure 

(Chaki et al. 2003; Kokare et al. 2010; Serova et al. 2013). Indeed, we found that the MC4 

receptor antagonists HS014 and HS024 prevented stress-induced reinstatement of nicotine 
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seeking. The MC4 receptor antagonists did not affect responding for food pellets, which 

suggests that MC4 receptor blockade did not have sedative effects.

The hypocretins (hypocretin-1 and hypocretin-2) are hypothalamic neuropeptides that are 

derived from a common precursor protein called prepro-hypocretin (de Lecea et al. 1998). 

The hypocretins are only produced in the lateral and posterior hypothalamus and it has been 

estimated that there are only about eleven hundred hypocretin neurons in the rat brain (Date 

et al. 1999; Peyron et al. 1998). Despite the fact that there are only a small number of 

hypocretin neurons, they project to a wide range of brain sites and regulate a variety of 

behaviors including feeding and sleep (Chemelli et al. 1999; Sakurai et al. 1998). The 

hypocretins also play a role in stress responses and drug addiction (Bruijnzeel 2012). 

Berrendoro and colleagues thoroughly investigated the role of the hypocretin receptors in the 

reinstatement of nicotine seeking. They showed that hypocretin-1 reinstates extinguished 

nicotine seeking in a CRF1 receptor independent manner (Plaza-Zabala et al. 2010). In the 

same study it was shown that blockade of CRF1 receptors prevents stress-induced 

reinstatement of nicotine seeking, but hypocretin-1 receptor blockade was ineffective. This 

indicates that both the hypocretin and CRF system plays a role in relapse, but only the CRF 

system plays a role in stress-induced relapse. In a follow-up study, the role of the hypocretin 

system in cue-induced reinstatement of nicotine was investigated. Blockade of hypocretin-1 

receptors with SB334867, but not blockade of hypocretin-2 receptors with TCSOX229, 

attenuated cue-induced reinstatement of nicotine-seeking (Plaza-Zabala et al. 2013). Taken 

together, these studies indicate that stress-induced reinstatement of nicotine seeking is 

mediated via CRF1 receptors and cue-induced reinstatement is mediated via hypocretin-1 

receptors. We are not aware of any studies that investigated the role of CRF in cue-induced 

reinstatement of nicotine seeking. However, a recent study showed that blockade of CRF1 

receptors in the insular cortex reduces cue-induced reinstatement of cocaine seeking (Cosme 

et al. 2015). Because there is strong overlap in the neuronal mechanisms that mediate the 

reinstatement of nicotine and cocaine seeking, it might be possible that CRF1 receptors also 

play a role in cue-induced reinstatement of nicotine seeking (Cosme et al. 2015).

Neuropeptide S (NPS) is produced by a small group of neurons that is located adjacent to 

the LC in the brainstem (Clark et al. 2011; Pape et al. 2010; Xu et al. 2004). Neuropeptide S 

increases locomotor activity, arousal, and wakefulness and decreases anxiety-like behavior 

(Pape et al. 2010; Reinscheid and Xu 2005; Xu et al. 2004). Nicotine has been shown to 

increase NPS and NPS receptor levels in the brainstem but otherwise little is known about 

the role of NPS in nicotine addiction (Lage et al. 2007). Interestingly, several studies with 

other drugs have shown that NPS facilitates the reinstatement of drug seeking and NPS 

antagonists decrease drug intake and the reinstatement of drug seeking (Kallupi et al. 2010; 

Pañeda et al. 2009; Schmoutz et al. 2012; Thorsell et al. 2013). Therefore, these studies 

warrant exploration of the role of NPS in nicotine intake and the reinstatement of nicotine 

seeking.

The kappa-opioid receptor system plays a critical role in stress-responses and anxiety-like 

behavior. To our knowledge, the role of kappa-opioid receptors in the reinstatement of 

extinguished nicotine self-administration has not been investigated. However, one study 

investigated the role of kappa-opioid receptors in rats in which CPP was extinguished. In 
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this study, the kappa-opioid receptor antagonist nor-BNI blocked stress-induced 

reinstatement of CPP but not nicotine-prime induced reinstatement (Jackson et al. 2013).

In conclusion, the reviewed studies indicate the nAChR antagonist mecamylamine and the 

smoking cessation drug varenicline diminish nicotine-prime and cue-induced reinstatement 

of nicotine seeking. The effects of bupropion on reinstatement has been poorly evaluated but 

one study suggests that bupropion potentiates cue-induced reinstatement of nicotine seeking. 

The reviewed studies indicate that neuropeptide systems are a viable target for drugs to 

prevent relapse to smoking. There is strong evidence that blockade of CRF1 and kappa-

opioid receptors diminishes stress-induced reinstatement of nicotine seeking. Blockade of 

the hypocretin-1 receptor prevents cue-induced reinstatement of nicotine seeking. These 

studies suggest that neuropeptide based treatments could be used to decrease the risk for 

relapse.

7. Neuronal activation of peptide systems

The transcription factor Fos has been widely used to study the effects of stressors and drugs 

on neuronal activity in the brain (Bruijnzeel et al. 1999; Morgan and Curran 1995). 

Numerous studies have investigated the brain sites that are being activated by low and 

rewarding doses of nicotine. These studies show that noncontingent administration of 

nicotine, nicotine self-administration, and place preference training with nicotine leads to an 

increase in Fos expression in brain sites that signal reward function (Kiba and Jayaraman 

1994; Pagliusi et al. 1996; Pascual et al. 2009). Acute nicotine administration increases Fos 

positive cells in the NAcc, caudate putamen, and PFC and this is diminished by non-

selective blockade of nAChRs (Kiba and Jayaraman 1994). These findings are in line with a 

pharmacological fMRI study in which the effect of nicotine on brain activity (BOLD signal) 

was investigated (Bruijnzeel et al. 2015). Nicotine administration increased the BOLD signal 

in the NAcc, dorsal striatum, amygdala, prefrontal cortical areas, and the motor and sensory 

cortex. Pretreatment with a nAChR antagonist blocked the effects of nicotine on the BOLD 

signal. These histological and imaging studies indicate that nicotine increases the activity of 

brain sites that play a role in reward signaling and cognition.

Few studies have investigated whether there is a difference in the brain sites being activated 

by brief versus prolonged nicotine self-administration. However, a recent study investigated 

Fos expression in the brain after 10 versus 47 days of nicotine self-administration (Clemens 

et al. 2014). Interestingly, both self-administration protocols induced Fos expression in brain 

areas that have been associated with reward function such as the NAcc core and shell, VTA, 

CeA, and basolateral amygdala (BLA). However, prolonged access to nicotine also leads to 

Fos expression in the dorsomedial and dorsolateral striatum and the substantia nigra. These 

brain sites have been associated with habitual and compulsive drug use (Belin and Everitt 

2008; Pierce and Vanderschuren 2010). Thus, this suggests that both acute and prolonged 

nicotine use leads to the activation of the brain reward system. Brain networks that regulate 

habitual behaviors are only activated after prolonged drug use.

There is strong evidence that cessation of chronic nicotine administration leads to the 

activation of anti-reward systems which induces dysphoria and anxiety-like behavior (Koob 
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and Volkow 2016). However, despite overwhelming evidence for a role of neuropeptide 

systems in nicotine withdrawal there is only sparse evidence from Fos studies that nicotine 

withdrawal activates brain sites. One of the first studies that investigated Fos expression in 

rats undergoing withdrawal showed that withdrawal leads to an increase in Fos expression in 

the CeA but not in other brain sites (Panagis et al. 2000). Although pharmacological studies 

suggest that withdrawal leads to the activation of brain stress systems, several Fos studies 

suggest that nicotine withdrawal leads to decreased activity in brain sites (Balerio et al. 

2004; Varani et al. 2012). In a recent study, it was shown that nicotine withdrawal led to a 

decrease in the number of Fos positive cells in the BNST, BLA, and dentate gyrus. Nicotine 

withdrawal did not affect Fos expression in a wide range of other brain sites including the 

NAcc, cingulate cortex, caudate putamen, CA1 and CA3 region of the hippocampus, and 

medial habenular nucleus (Varani et al. 2012).

Although there are a large number of studies that investigated the effects of nicotine and 

nicotine withdrawal on Fos expression in the brain, only a few colocalization studies have 

been conducted to investigate which neuropeptide systems are activated or inhibited by 

nicotine. Muschamp and colleagues investigated the role of hypocretin neurons in the LH in 

nicotine withdrawal (Simmons et al. 2016). Hypocretin neurons project from the LH to the 

VTA and hypocretin release in the VTA increases the firing of dopaminergic neurons 

(Korotkova et al. 2003). Interestingly, acute nicotine administration increases Fos expression 

in hypocretin neurons in the LH and nicotine withdrawal leads to a decrease in Fos 

expression in these neurons (Fadel and Burk 2010; Simmons et al. 2016). Overall, this 

suggests that a decrease in activity in hypocretin neurons in the LH contributes to the hypo-

dopaminergic state in nicotine withdrawing animals (Hildebrand et al. 1998).

Although the majority of studies suggest that nicotine withdrawal does not affect Fos 

expression or decreases Fos expression, one study suggested that nicotine withdrawal can 

increase Fos expression in peptide neurons (Plaza-Zabala et al. 2012). In this study, nicotine 

withdrawal did not affect Fos expression in a wide range of brain sites including the CeA, 

BLA, NAcc, medial septum, and hippocampus. However, nicotine withdrawal increased Fos 

expression in hypocretin neurons in the LH and the perifornical and dorsomedial 

hypothalamus (PFA/DMH). In addition, withdrawal increased Fos expression in CRF 

neurons in the PVN. A retrograde tracing study showed that the hypocretin neurons project 

from the LH and PFA/DMH to the PVN. Interestingly, systemic administration of the 

hypocretin-1 receptor antagonist decreased somatic withdrawal signs and decreased Fos 

expression in the PFA/DMH and in CRF neurons in the PVN. This suggests that activation 

of hypocretin neurons that project from the PFA/DMH to CRF neurons in the PVN increases 

somatic nicotine withdrawal signs.

In conclusion, these studies indicate that acute nicotine administration increases Fos 

expression in the reward system and many other brain sites. Nicotine withdrawal does not 

affect Fos expression in most brain sites but affects Fos expression in some brain sites that 

regulate reward function and stress responses. Nicotine withdrawal might decrease Fos 

expression in the reward system (LH) and increase Fos expression in some brain sites (CeA, 

PVN, PFA/DMH) that contribute to stress responses during nicotine withdrawal. It is also 

interesting to note that nicotine withdrawal seems to decrease Fos expression in 
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hypothalamic hypocretin neurons that project to the VTA (Reward) and increases Fos 

expression in hypocretin neurons that project to the PVN (anti-reward/stress). Overall, the 

reviewed studies suggest that nicotine withdrawal decreases activity in brain sites that signal 

reward and increases activity in brain sites that mediate stress responses and negative 

affective states.

8. Conclusion

In this overview article we discuss the role of neuropeptides in the development and 

maintenance of nicotine addiction. The reviewed studies indicate that different neuropeptide 

systems play a role in each stage of the addiction cycle. It should be noted that not all the 

discussed neuropeptides have been evaluated in all stages of the addiction cycle. Therefore, 

it cannot be ruled out that some neuropeptides have more widespread effects than is 

currently believed.

It should also be noted that the great majority of the nicotine studies have been conducted 

with animals that self-administered nicotine under a limited access schedule (1h/day) or 

received nicotine non-contingently via injections or minipumps. In contrast, humans often 

smoke for most of the day and carefully titrate the amount of nicotine self-administered 

(Benowitz 2009). Recently, animal models have been developed that more closely model 

human smoking. One prime example of this is the extended access nicotine self-

administration procedure. In this model, rats have extended-access (21–23h) to nicotine for 

1–4 days which is then followed by several days of abstinence (Cohen et al. 2012; Flores et 

al. 2016). This model leads to high levels of nicotine intake and might better model human 

smoking than limited access models or the non-contingent administration of nicotine. These 

new models may help to identify novel mechanisms that contribute to the development and 

maintenance of compulsive smoking.

The rewarding effects of nicotine are pivotal for the acquisition of smoking and the 

dysphoria associated with smoking cessation increases the risk for relapse. After the acute 

withdrawal phase, stressors, a small amount of nicotine (i.e., lapse), and cues contribute to 

relapse. The reviewed studies indicate that blockade of hypocretin-1 and nociception 

receptors, and stimulation of galanin, neurotensin, and ghrelin receptors diminishes the 

rewarding effects of nicotine (Boules et al. 2011; Cippitelli et al. 2016; Hollander et al. 

2008; Jackson et al. 2011; Jerlhag and Engel 2011). Overall, a different group of 

neuropeptides plays a role in nicotine withdrawal. Stimulation of NPY and oxytocin 

receptors and blockade of kappa-opioid receptors diminishes somatic nicotine withdrawal 

signs, but stimulation of NPY and oxytocin receptors does not diminish the dysphoria 

associated with nicotine withdrawal (Manbeck et al. 2014; Rylkova et al. 2008). The 

dysphoria associated with nicotine withdrawal is greatly diminished by CRF1 and kappa-

opioid receptor blockade and chronic V1b receptor blockade (Bruijnzeel et al. 2009; Qi et al. 

2015a). Blockade of the CRF1 and kappa-opioid receptors also diminishes anxiety-like 

behavior associated with nicotine withdrawal and stress-induced reinstatement of nicotine 

seeking (Bruijnzeel et al. 2009; Cohen et al. 2015; Jackson et al. 2015). Considering the fact 

that cues and smoking lapses increase the risk for relapse to smoking, it is somewhat 

surprising that only a few studies have investigated the role of neuropeptides in nicotine-
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primed and cue-induced reinstatement. One study reported that blockade of hypocretin-1 

receptors diminishes cue-induced reinstatement of nicotine seeking (Plaza-Zabala et al. 

2013). Thus, blocking the hypocretin-1 receptor could diminish the acute rewarding effects 

of smoking and provide protection against relapse. In conclusion, the reviewed studies 

indicate that neuropeptides play a critical role in the acquisition of tobacco smoking, 

withdrawal, and relapse. Therefore, peptide-based treatments could improve smoking rates 

by preventing the transition to high levels of smoking, diminishing withdrawal signs, and 

preventing stress- and cue-induced urges to smoke.
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