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Abstract

Stress and withdrawal of female reproductive hormones are known risk factors of postpartum 

depression. Although both of these factors are capable of powerfully modulating neuronal 

plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse 

remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and 

postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). 

The number of hippocampal spine synapses and the depressive behavior of rats in an active escape 

task were investigated in untreated control, hormone-withdrawn ‘postpa rtum’, simulated 

proestrus, and hormone-treated ‘postpartum’ animals. After ‘postpartum’ withdrawal of gonadal 

steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to 

poor escape performance in hormone-withdrawn ‘postpartum’ females. These responses were 
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equivalent with the changes observed in untreated controls that is an established animal model of 

major depression. Maintaining proestrus levels of ovarian hormones during ‘postpartum’ stress 

exposure did not affect synaptic and behavioral responses to inescapable stress in simulated 

proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during 

‘postpartum’ stress exposure completely prevented the stress-induced loss of hippocampal spine 

synapses, which was associated with improved escape performance in hormone-treated 

‘postpartum’ females. This protective effect appears to be mediated by a muted stress response as 

measured by serum corticosterone concentrations. In line with our emerging ‘synaptogenic 

hypothesis’ of depression, the loss of hippocampal spine synapses may be a novel perspective both 

in the pathomechanism and in the clinical management of postpartum affective illness.
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In earlier studies, our research team has found that exposure to stress causes a severe loss of 

spine synapses in limbic brain areas (Hajszan et al., 2009; Hajszan et al., 2010). We have 

also shown that loss of spine synapses in the hippocampus is related to depressive behavior 

in rodent models (Hajszan et al., 2009; Hajszan et al., 2010), and loss of synapses in the 

prefrontal cortex is associated with major depression in humans (Kang et al., 2012). 

Moreover, manipulating the number of hippocampal spine synapses by means of 

ovariectomy and estradiol replacement leads to changes in depressive behavior in the rat 

learned helplessness model of major depression (Hajszan et al., 2010). Additionally, we have 

revealed that treatment with antidepressants is a powerful inducer of hippocampal 

synaptogenesis (Hajszan et al., 2005; Hajszan et al., 2009), while pharmacological blockade 

of synapse formation hinders antidepressant action (Li et al., 2010). Built on these findings, 

our emerging ‘synaptogenic hypothesis’ of depression postulates a causal relationship 

between loss of limbic spine synapses and depressive symptoms (Hajszan et al., 2010). 

Further studies are needed, of course, to investigate many more aspects of this hypothesis, 

such as the interesting issue of synaptic remodeling in postpartum depression (PPD).

Depression and anxiety are common complications of pregnancy and the postpartum period. 

During the first three months after giving birth, approximately 15-20% of mothers are 

affected by PPD (American Psychiatric Association, 2000; Gavin et al., 2005; O'Hara and 

Wisner, 2014), although prevalence rates may be as high as 33-38% in certain highly 

vulnerable groups (Gress-Smith et al., 2012). The symptoms of PPD are almost identical 

with those of a major depressive episode and described by, among others, irritability, 

emotional swings, cognitive impairments, and feelings of guilt and inadequacy (Melges, 

1968; Pitt, 1968; Laura and Miller, 2002; Crawley et al., 2003; O'Hara and Wisner, 2014). In 

extreme cases, PPD may lead to infanticide and/or suicide (Pariser et al., 1997; Spinelli, 

2004), which is the most tragic manifestation of the fact that PPD is a ‘family affair’, as it 

also affects the offspring by being associated with various developmental problems in the 

cognitive and psychosocial domains (Nomura et al., 2002; Grace et al., 2003; Letourneau et 

al., 2012; Verbeek et al., 2012). As a result, more research is necessary into the 
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pathomechanisms of peripartum affective illness to develop better, evidence-based therapy 

and to protect the offspring from enduring adverse consequences.

Similar to major depression (McEwen, 2003), epidemiological studies show that exposure to 

stress is a significant risk factor of PPD (Lancaster et al., 2010; Davey et al., 2011; Stewart, 

2011; Hillerer et al., 2012). Like in the case of humans, female rats exposed to peripartum 

stress develop depressive and anxiety-like behaviors, as well as reduced maternal care in the 

postpartum period (Darnaudery et al., 2004; Smith J.W. et al., 2004; Brummelte and Galea, 

2010). It has been suggested, in line with the synaptogenic hypothesis of depression 

(Hajszan et al., 2010), that peripartum stress elicits extensive neuroplasticity in the maternal 

brain, which potentially contributes to the development of postpartum affective illness 

(Pawluski et al., 2016). Recent studies are beginning to demonstrate that the maternal 

nervous system is indeed remodelled by stress both in humans (Moses-Kolko et al., 2014) 

and in animal models (Gemmel et al., 2016; Haim et al., 2016; Pawluski et al., 2016). 

Nevertheless, more research is needed to better understand the extent to which 

neuroplasticity is implicated in stress-related maternal disorders.

A special feature of PPD is its association with wide fluctuations of female reproductive 

hormones. During human pregnancy, 17β-estradiol and progesterone gradually reach plasma 

concentrations approximately 100- and 10-fold higher, respectively, than menstrual cycle 

levels (Hendrick et al., 1998). After delivery, on the other hand, serum levels of gonadal 

steroids decrease rapidly and remain practically hypogonadal for a prolonged postpartum 

period (McNeilly, 2001). Considering the fact that ovarian hormones have a strong ability to 

influence stress and synaptic plasticity (Woolley and McEwen, 1992; Brunton et al., 2009), 

there is a possibility that the synaptolytic effect of stress and/or the association between 

synapse loss and depressive behavior is modified by a significantly altered milieu of gonadal 

steroids. As a result, pregnancy and the postpartum period represent a challenge to the 

validity of our synaptogenic hypothesis of depression.

While undergoing substantial fluctuations in serum levels of ovarian hormones, such as 

those during pregnancy, women frequently report emerging or worsening symptoms of 

depression (Bloch et al., 2003; Rubinow and Schmidt, 2006; Schmidt and Rubinow, 2009), 

suggesting a critical role for gonadal steroids in the pathomechanisms of mood disorders 

(Galea et al., 2001; Studd and Panay, 2004; Hajszan et al., 2010). Based on these findings, 

the ‘hormone withdrawal hypothesis’ of PPD has been developed, postulating that the 

precipitous drop of ovarian hormones after delivery may trigger depressive symptoms (Parry 

et al., 2003; Steiner et al., 2003; Douma et al., 2005). The hormone withdrawal hypothesis is 

supported by studies both in humans (Bloch et al., 2000; Bloch et al., 2003) and in animal 

models (Galea et al., 2001; Stoffel and Craft, 2004; Suda et al., 2008). Interestingly, several 

clinical studies have also provided contrary evidence (Heidrich et al., 1994; Klier et al., 

2007), suggesting that hormonal changes either precipitate depressive symptoms only in 

vulnerable women or create vulnerability for other precipitating factors such as stress.

Utilizing the hormone withdrawal hypothesis, Galea and colleagues have designed a rat 

model of PPD by creating a hormone simulated pregnancy and then withdrawing hormones 

to mimic the early postpartum period (Galea et al., 2001). ‘Postpartum’ rats in this model 
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show increased immobility in the forced swim test and suppressed adult hippocampal 

neurogenesis, which are prevented by continuing exposure to estradiol (Galea et al., 2001; 

Stoffel and Craft, 2004; Green and Galea, 2008), but anxiety-like behavior does not appear 

(Stoffel and Craft, 2004). This model provides a basis for separating the hormonal 

components that are implicated in postpartum depressive behavior and neuroplasticity in the 

dam.

Recently, Suda and colleagues have added to the hormone withdrawal model by shifting 

emphasis to progesterone (Suda et al., 2008). Considering the abilities of progesterone to 

influence the stress response and the excitability of neurons (Bitran and Dowd, 1996; 

Brunton et al., 2009), reproducing progesterone levels properly may be critical for a PPD 

model. In the animal model of Galea and colleagues, estradiol benzoate is given throughout 

the simulated pregnancy period, while progesterone is administered until ‘pregnancy’ day 

16. As a result, only estradiol is withdrawn at ‘delivery’, producing an early ‘postpartum’ 

period that misses the effects of acute progesterone withdrawal (Galea et al., 2001). This 

hormone regimen mimics changes in the rat, as progesterone peaks then gradually falls to 

estrus cycle levels during the second part of rat pregnancy (Grota and Eik-Nes, 1967; Pepe 

and Rothchild, 1974). On the other hand, serum concentrations of both 17β-estradiol and 

progesterone continuously rise during human pregnancy (Hendrick et al., 1998). To better 

mimic these human conditions, the animal model of Suda and colleagues withdraws 17β-

estradiol and progesterone simultaneously at ‘delivery’. During the simulated postpartum 

period, this model shows symptoms relevant to PPD, including vulnerability for 

helplessness, increased anxiety, aggression, and the transient regulation of several PPD 

susceptibility genes (Suda et al., 2008).

The hippocampus participates in the stress response (McEwen, 2003), and its compromised 

function is a central component in the pathomechanism of major depression (Nestler et al., 

2002). Pyramidal and granule cells, the principal hippocampal neurons, are organized 

sequentially into a ‘trisynaptic loop’, which is the main neuronal circuitry of the 

hippocampus. Asymmetric spine synapses within the CA1 stratum radiatum, the CA3 

stratum lucidum and radiatum, as well as in the dentate gyrus stratum moleculare represent 

primary connections of the trisynaptic loop (Amaral and Witter, 1995). Compromised 

hippocampal function in major depression is correlated with reduced hippocampal volume, 

suppressed adult hippocampal neurogenesis, and loss of spine synapses along the trisynaptic 

loop, and these structural impairments are all prevented/reversed by effective antidepressant 

treatment (Sheline, 2003; Duman and Monteggia, 2006; Hajszan et al., 2009). The central 

role of the hippocampus in major depression is further supported by the observation that 

local infusion of brain-derived neurotrophic factor or neurotrophin-3 into the dentate gyrus 

reproduces the effects of conventional antidepressants (Shirayama et al., 2002). Although 

recent studies have demonstrated hippocampal structural modifications that are related to 

maternal stress and mood disorders (Green and Galea, 2008; Pawluski et al., 2016), direct 

electron microscopic evidence of synaptic remodeling along the trisynaptic circuit in PPD is 

presently not available.

Considering the issues discussed above, we performed this study to test certain components 

of our synaptogenic hypothesis of depression (Hajszan et al., 2010) in a simulated 
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postpartum environment. In order to model the stress and the hormone withdrawal aspects of 

PPD, we used the hormone withdrawal model of Suda and colleagues (Suda et al., 2008) 

combined with inescapable footshock stress applied during the ‘postpartum’ period. Our 

primary goal was to provide evidence that exposure to ‘postpartum’ stress leads to loss of 

asymmetric spine synapses along the hippocampal trisynaptic circuit. We also hypothesized 

that the association between loss of hippocampal synapses and depressive behavior is 

maintained in the simulated postpartum environment.

Experimental Procedures

Adult female Sprague-Dawley rats were kept under standard laboratory conditions (n=76, 

200-250 g, Charles-River Laboratories, Wilmington, Massachusetts). Similar to our earlier 

studies (Suda et al., 2008; Hajszan et al., 2010), females were group-housed (n=3 animals 

per cage) in standard wire-bottom caging with tap water and rodent chow available ad 
libitum. Animal rooms were maintained on a temperature of 21 °C and on a 12-h/12-h light/

dark cycle with light on at 0700 h. Rats were treated and cared for according to National 

Institutes of Health standards. The animal protocol was approved by the Institutional Animal 

Care and Use Committee of Yale University School of Medicine.

Hormone simulated pregnancy and postpartum period

In order to produce a postpartum environment for our studies, we used the hormone 

simulated pregnancy model of Suda and colleagues (Suda et al., 2008). To prevent 

interference from endogenous ovarian hormones, all animals were ovariectomized on day-1 

using a ketamine-based anesthetic (25 mg/mL ketamine, 1.2 mg/mL xylazine, 0.03 mg/mL 

acepromazine in saline, 3 mL/kg, i.m.). During the same surgical session, 21-day continuous 

release pellets (Innovative Research of America, Sarasota, Florida) containing 0.5 mg 17β-

estradiol and 50 mg progesterone were implanted subcutaneously in the scapular region to 

simulate pregnancy. These pellets produce a dose of 23.8 μg/day for 17β-estradiol and 2.4 

mg/day for progesterone, which approximate the average daily doses applied in the hormone 

simulated pregnancy model of Galea and colleagues (Galea et al., 2001). In contrast to the 

model of Galea and colleagues, which administers progesterone only until ‘pregnancy’ day 

16 (Galea et al., 2001), we withdrew 17β-estradiol and progesterone simultaneously on 

day-21 by removing the hormone pellets. Day-22 to day-28 was then considered as the early 

‘postpartum’ period. As a result, our model provided pregnancy levels of hormones that 

were suitable for the rat system (Birzniece et al., 2002) and a simulated postpartum period 

that was more relevant to human conditions by reproducing the simultaneous withdrawal of 

17β-estradiol and progesterone.

Schedule of experiments

Untreated controls (Veh)—The purpose of this group was to provide a positive control 

for stress and a reference model of major depression with well-documented synaptic and 

escape performance responses to inescapable stress (Hajszan et al., 2010). Briefly, n=20 

animals underwent the treatment schedule of hormone simulated pregnancy as described 

above, but only placebo pellets were implanted. On day-21, the implanted placebo pellets 

were replaced with fresh placebo pellets. From this group, n=6 randomly selected rats were 
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scheduled for electron microscopic analysis, and the remaining n=14 rats were scheduled for 

behavioral testing. From the subgroup scheduled for electron microscopic analysis, n=3 rats 

were exposed to inescapable stress on day-27, while n=3 rats were sham-stressed. Both the 

stressed and the sham-stressed animals were sacrificed for electron microscopic analysis on 

day-28. From the subgroup scheduled for behavioral testing, all rats were exposed to 

inescapable stress on day-27, followed by active escape testing on day-28. Immediately after 

active escape testing, n=8 rats were randomly selected and sacrificed for hormone 

measurements.

Hormone-withdrawn ‘postpartum’ females (PpD)—In order to investigate the effects 

of stress in a simulated postpartum environment, n=20 animals underwent the treatment 

schedule of hormone simulated pregnancy using 17β-estradiol and progesterone pellets as 

described above. On day-21, hormones were withdrawn by replacing the implanted hormone 

pellets with fresh placebo pellets. The scheduling of this group for various experiments 

matched that of untreated controls (see above).

Simulated proestrus animals (ProE)—In order to produce a control group with 

proestrus levels of gonadal steroids, n=16 animals underwent the treatment schedule of 

hormone simulated pregnancy as described above, but only placebo pellets were implanted. 

On day-21, the implanted placebo pellets were replaced with fresh placebo pellets. On 

day-26, all animals were injected with 3 μg/kg estradiol benzoate (dissolved in sesame oil, 

s.c.) at 8:30 a.m., followed by 4 μg/kg estradiol benzoate at 8:30 p.m. On day-27, all females 

received a final dose of 3 μg/kg 17β-estradiol (dissolved in sesame oil, s.c.) 2 h before stress 

(or sham stress) exposure. This estrogen regimen has been shown to reproduce natural levels 

of 17β-estradiol as seen in proestrus rats (Smith M.S. et al., 1975; Scharfman et al., 2007). 

On day-27, all animals also received 2 mg/kg progesterone (dissolved in sesame oil, s.c.) 5 h 

before stress (or sham stress) exposure. This dose and timing mimics proestrus levels of 

progesterone and stimulates the growth of dendritic spines in the hippocampus (Gould et al., 

1990). The scheduling of this group for various experiments matched that of untreated 

controls (see above) with the modification that only n=10 rats were scheduled for behavioral 

testing.

Hormone-treated ‘postpartum’ rats (Horm)—In order to investigate how pregnancy 

levels of gonadal steroids influence the effects of ‘postpartum’ stress, n=20 animals 

underwent the treatment schedule of hormone simulated pregnancy using 17β-estradiol and 

progesterone pellets as described above. On day-21, the implanted hormone pellets were 

replaced with fresh hormone pellets to ensure continuous exposure to gonadal steroids. The 

scheduling of this group for various experiments matched that of untreated controls (see 

above).

For a schematic of this schedule, see Table 1.

Inescapable stress

We applied an inescapable stress paradigm that is used routinely in our laboratories to 

induce depressive behavior in rodent models (Valentine et al., 2008; Hajszan et al., 2009; 

Baka et al. Page 6

Neuroscience. Author manuscript; available in PMC 2018 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hajszan et al., 2010). Briefly, the testing apparatus consists of a commercially available 

shuttle avoidance box (Med Associates, St. Albans, Vermont) that is divided into two equal 

compartments with a central barrier. The barrier is equipped with a computer-operated 

guillotine door to provide passage between compartments. Animals subjected to inescapable 

stress (Table 1) received 60 scrambled footshocks with 0.85 mA intensity, being 

administered via wire grid flooring in a closed shuttle box compartment. The footshock 

protocol was entirely automated and conducted by a computer-run algorithm to provide fully 

randomized stress exposure with 15 s average shock duration and 45 s average intershock 

interval. Sham-stressed controls underwent the same footshock protocol, but the shock 

generator was switched off during the entire procedure.

Electron microscopic stereology

In order to assess hippocampal synaptic remodeling in response to ‘postpartum’ stress, the 

number of asymmetric spine synapses was calculated in three hippocampal sampling areas, 

CA1 stratum radiatum (CA1sr), CA3 stratum lucidum/radiatum (CA3sl/sr), and dentate 

gyrus stratum moleculare (DGsm), as we described earlier (Hajszan et al., 2009; Hajszan et 

al., 2010). Briefly, all animals scheduled for electron microscopic analysis (Table 1) were 

sacrificed under deep ketamine-based anesthesia (see above) by transcardial perfusion of 

phosphate-buffered saline followed by a fixative containing 4% paraformaldehyde and 0.1% 

glutaraldehyde dissolved in 0.1 M phosphate buffer (pH 7.4). Brains were dissected out and 

postfixed overnight in the same fixative without glutaraldehyde (Hajszan et al., 2005).

Each hippocampus was cut into 100-μm thick serial sections in the coronal plane using a 

vibratome. The serial sections were systematically sorted into ten groups, and one of these 

groups was randomly selected for slide-mounted flat embedding in Durcupan (Electron 

Microscopy Sciences, Fort Washington, Pennsylvania) (Hajszan et al., 2009; Hajszan et al., 

2010). This approach provided approximately ten Durcupan-embedded sections per 

hippocampus with a section sampling ratio of 10. The volume of each sampling area was 

then estimated utilizing the Cavalieri method. Under a light microscope equipped with the 

Stereo Investigator computerized stereology system (MicroBrightField, Villiston, Vermont), 

sampling areas were outlined on each embedded section for the Cavalieri Estimator software 

module that, based on the outlined area, the section thickness, and the section sampling 

ratio, calculated volume automatically (Hajszan et al., 2009).

For electron microscopic analysis, 20 counting sites were localized in each sampling area 

using a systematic random approach as modified from MacLusky and colleagues (MacLusky 

et al., 2006) and described in our earlier publication (Hajszan et al., 2009). At each counting 

site, serial ultrathin sections were prepared, and pairs of digitized electron micrographs were 

taken from the same area of neighboring ultrasections at a final magnification of 11,000× 

(physical disector). This sampling technique provided 20 physical disectors for each of 

CA1sr, CA3sl/sr, and DGsm, i.e., 60 disectors per hippocampus altogether. Prior to spine 

synapse counting, all micrographs were coded for blind analysis. Asymmetric spine 

synapses (Figure 1) were then counted according to the rules of disector technique, utilizing 

an unbiased counting frame superimposed onto the electron micrographs (Sterio, 1984). All 

counts taken from the same sampling area were summed and divided by the analyzed 
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volume to calculate an average spine synapse density (synapse/μm3 = sum of synapse 

counts / number of disectors per sampling area / single disector volume of 5.94 μm3). Spine 

synapse density was finally multiplied by sampling area volume to arrive at the total number 

of spine synapses in that particular sampling area.

Because electron microscopic stereology is a time-consuming and labor-intensive method, 

we performed careful statistical power calculations to minimize the number of animals to be 

sacrificed. In our earlier studies, standard deviations for spine synapse counts have 

consistently been in the range of 5-10% of the mean (Hajszan et al., 2005; Hajszan et al., 

2009; Hajszan et al., 2010). We used the middle of this range in the power calculation for the 

present experiment.

Because alterations in spine synapse numbers have usually exceeded 25% in our earlier 

studies (Hajszan et al., 2005; Hajszan et al., 2009; Hajszan et al., 2010), we expected 

ANOVA to detect at least 25% change with the desired 80% power at α=0.05. Considering 

the above parameters, these requirements were met with a treatment group size of n=3 rats/

group.

Active escape testing

In order to verify the relationship between the number of hippocampal spine synapses and 

depressive symptoms, we applied active escape testing that is also routinely used in our 

laboratories to assess depressive behavior in rodent models (Valentine et al., 2008; Hajszan 

et al., 2009; Hajszan et al., 2010). Escape performance measurement is a readout of despair 

and cognitive deficit, common and frequent symptoms of mood disorders (Thiebot et al., 

1992; Vollmayr and Henn, 2001; Cryan et al., 2002). Briefly, 30 trials of escapable 
footshock were administered with 0.65 mA intensity in the same shuttle avoidance box as 

described above. In contrast to inescapable stress, the guillotine door in the central barrier 

was automatically opened at the beginning of each footshock to provide the animal with 

opportunity to escape by passing between shuttle box compartments.

The testing protocol was entirely automated and conducted by a computer-run algorithm to 

administer trials in a randomized manner with 35 s maximum trial/footshock duration and 

60 s average intertrial interval. The initial five fixed ratio one trials, when one shuttle 

crossing terminated the footshock, were followed by 25 fixed ratio two trials, when two 

shuttle crossings were required to terminate the footshock. As main measures of depressive 

behavior, escape latencies and escape failures were registered, representing the time to 

escape footshock and the number of trials during which escape requirements were not met, 

respectively. In case of each escape failure, escape latency was set to 35 s. All behavioral 

testing was conducted in a dimly-lit room between 1000-1600 h.

Serum hormone measurements

In order to verify that ovarian hormone administrations were successful and to assess the 

stress response, animals were rapidly decapitated under deep ketamine-based anesthesia, and 

blood samples were collected immediately after completing active escape testing (Table 1). 

Trunk blood specimens were kept on ice, allowed to clot, and then centrifuged to separate 

serum that was stored at -20 °C until assayed. By following manufacturer-recommended 
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protocols, serum total concentrations of 17β-estradiol, progesterone, and corticosterone were 

determined using commercially available enzyme immunoassay (EIA) kits (Assay Designs, 

Ann Arbor, Michigan). All samples were analyzed in duplicates during a single EIA session. 

In the concentration ranges pertinent to the present study, the intraassay coefficient of 

variation is 8.1% for the 17β-estradiol kit, 5.4% for the progesterone kit, and 8.4% for the 

corticosterone kit.

Statistical analysis

Synapse counts were statistically evaluated using mixed three-way ANOVA (stress × 

hormone treatment × area) with stress and hormone treatment as between-subjects factors 

and area as within-subjects factor. The three-way ANOVA was followed by the conservative 

Tukey-Kramer posthoc test to compare individual group means. Escape latencies and serum 

concentrations of corticosterone were analyzed applying one-way ANOVA, and individual 

group means were compared with the Tukey-Kramer posthoc test. Because escape failures 

were not normally distributed, they were tested employing the nonparametric Kruskal-Wallis 

one-way ANOVA on ranks, followed by the Mann-Whitney U test. The significance level 

was conventionally set at P<0.05.

Results

Effects of ‘postpartum’ stress and ‘postpartum’ hormone treatment on hippocampal 
synaptic remodeling and escape performance

Three-way mixed ANOVA (stress × hormone treatment × area) found a significant main 

stress effect (F1,16=635.357 P<0.001), a significant main hormone treatment effect 

(F3,16=194.998 P<0.001), and a significant main area effect (F2,32=305.073 P<0.001) on the 

number of hippocampal spine synapses. A significant hormone treatment × stress interaction 

effect was also revealed (F3,16=109.665 P<0.001), indicating that hormone treatment 

interferes with the ability of stress to modulate synapse numbers. In addition, significant 

area × stress (F2,32=13.346 P<0.001) and area × hormone treatment (F(6,32)=15.978 

P<0.001) interaction effects were registered, indicating that synaptic responses to stress and 

hormone treatment vary among hippocampal areas. Detailed comparisons with post-hoc 

tests are provided below.

Considering measures from the active escape task, one-way ANOVA found a significant 

hormone treatment effect on escape latencies (F3,48=6.66 P<0.001), while Kruskal-Wallis 

oneway ANOVA on ranks also revealed a significant hormone treatment effect on escape 

failures (H=18.665 df=3 P<0.001).

Untreated controls (Veh)—Exposure of Veh rats to inescapable stress caused a decline 

in the number of spine synapses across all hippocampal areas (Figure 2, Veh/IS vs. Veh/NS, 

*P<0.04, Tukey-Kramer test). In the active escape task, the Veh group achieved a mean 

escape latency of 22.89±1.87 s and made, on average, 13.04±2.37 escape failures (Figure 3).

Hormone-withdrawn ‘postpartum’ females (PpD)—Exposure to and subsequent 

withdrawal of pregnancy levels of female reproductive hormones did not change synapse 
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numbers in sham-stressed PpD animals (Figure 2, PpD/NS vs. Veh/NS, P>0.2, Tukey-

Kramer test). In the PpD group again, inescapable stress caused a decrease in the number of 

spine synapses across all hippocampal areas (Figure 2, PpD/IS vs. PpD/NS, *P<0.01, Tukey-

Kramer test). As a result, post-stress synapse numbers in the PpD group were not 

significantly different from those in untreated controls (Figure 2, PpD/IS vs. Veh/IS, P>0.25, 

Tukey-Kramer test). PpD females executed the active escape task with a mean escape 

latency of 22.16±1.97 s and with an average escape failure of 12.75±1.99. These escape 

measures were not significantly different from those of untreated controls (Figure 3, Panels 

B and C, PpD vs. Veh, P=0.989 for escape latency, Tukey-Kramer test, and P=0.482 for 

escape failures, Mann-Whitney U test). As Figure 3, Panel A further demonstrates, escape 

performances of untreated controls and PpD females were practically identical.

Simulated proestrus animals (ProE)—Exposure of sham-stressed ProE rats to 

proestrus concentrations of gonadal steroids elicited a rise in synapse levels across all 

hippocampal areas (Figure 2, ProE/NS vs. Veh/NS, #P<0.02, Tukey-Kramer test). In the 

ProE group as well, inescapable stress caused a decline in the number of spine synapses 

across all hippocampal areas (Figure 2, ProE/IS vs. ProE/NS, *P<0.01, Tukey-Kramer test). 

As a result, post-stress synapse numbers in CA1sr and DGsm of the ProE group were not 

significantly different from those in untreated controls (CA1sr of ProE/IS vs. CA1sr of 

Veh/IS, P=0.054, and DGsm of ProE/IS vs. DGsm of Veh/IS, P=0.063, Tukey-Kramer test). 

By contrast, post-stress synapse numbers remained higher in CA3sl/sr of the ProE group 

(Figure 2, CA3sl/sr of ProE/IS vs. CA3sl/sr of Veh/IS, +P<0.001, Tukey-Kramer test). In the 

active escape task, the ProE group achieved a mean escape latency of 18.71±1.21 s and 

made, on average, 12±1.16 escape failures. This escape performance did not differ 

significantly from that of untreated controls (Figure 3, Panels B and C, ProE vs. Veh, 

P=0.367 for escape latency, Tukey-Kramer test, and P=0.430 for escape failures, Mann-

Whitney U test).

Hormone-treated ‘postpartum’ rats (Horm)—Continued exposure to pregnancy levels 

of gonadal steroids during the ‘postpartum’ period did not increase synapse levels in sham-

stressed Horm rats (Figure 2, CA3sl/sr and DGsm of Horm/NS vs. CA3sl/sr and DGsm of 

Veh/NS, P>0.6, Tukey-Kramer test). It even caused a moderate decline in CA1sr (Figure 2, 

CA1sr of Horm/NS vs. CA1sr of Veh/NS, #P<0.02, Tukey-Kramer test), reducing synapse 

numbers to post-stress levels (Figure 2, CA1sr of Horm/NS vs. CA1sr of Veh/IS, P=0.647, 

Tukey-Kramer test). Contrary to the other three groups, inescapable stress elicited no change 

in the number of hippocampal spine synapses in the Horm group (Figure 2, Horm/IS vs. 

Horm/NS, P>0.15, Tukey-Kramer test). As a result, post-stress synapse numbers in the 

Horm group remained higher in CA3sl/sr and DGsm relative to those in untreated controls 

(Figure 2, CA3sl/sr and DGsm of Horm/IS vs. CA3sl/sr and DGsm of Veh/IS, +P<0.01, 

Tukey-Kramer test). By contrast, post-stress synapse numbers were unchanged in CA1sr 

(CA1sr of Horm/IS vs. CA1sr of Veh/IS, P=0.412, Tukey-Kramer test). Horm rats executed 

the active escape task with a mean escape latency of 13.56±1.39 s and with an average 

escape failure of 3.71±0.83. These escape measures were better than those of all other 

groups (Figure 3, Panels B and C, *P<0.01 for escape latency, Tukey-Kramer test, and 

#P<0.002 for escape failures, Mann-Whitney U test), except that the escape latency of the 
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Horm group did not differ significantly from that of simulated proestrus animals (Figure 3, 

Panel B, Horm vs. ProE, P=0.196, Tukey-Kramer test).

Serum ovarian hormone and corticosterone levels

Measured immediately after active escape testing, gonadal steroid levels in untreated 

controls and hormone-withdrawn ‘postpartum’ females were close to or even below assay 

sensitivity thresholds. In simulated proestrus animals, mean serum concentration of 17β-

estradiol was 11.24±1.12 pg/mL, while mean serum concentration of progesterone was 

3.99±0.54 ng/mL. It has to be noted that the estrogen and the progesterone regimens were 

timed to achieve proestrus levels of ovarian hormones by the time of stress exposure on 

day-27 (Gould et al., 1990; Scharfman et al., 2007), but the measurements above were taken 

on day-28 after a 24-h period of decay in hormone levels. As a result, although proestrus 

levels of gonadal steroids were maintained during stress exposure on day-27, the 

measurements above indicate that approximately estrus levels of hormones remained 

available during active escape testing on day-28 (Smith M.S. et al., 1975). In hormone-

treated ‘postpartum’ rats, mean serum concentration of 17β-estradiol was 323.14±76.90 

pg/mL, while mean serum concentration of progesterone was 5.10±1.53 ng/mL, which were 

in agreement with earlier studies (Birzniece et al., 2002; Suda et al., 2008).

More interestingly, one-way ANOVA found a significant hormone treatment effect on 

corticosterone levels (F3,25=11.340 P<0.001). Mean serum concentration of corticosterone 

was in the range of 350-400 ng/mL both in untreated controls and in hormone-withdrawn 

‘postpartum’ females (Figure 4, PpD vs. Veh, P=0.993, Tukey-Kramer test). These 

corticosterone levels are usually associated with a strong stress response. In simulated 

proestrus animals, mean serum concentration of corticosterone was slightly, but not 

significantly, lower (Figure 4, ProE vs. Veh, P=0.260, Tukey-Kramer test). On the other 

hand, mean serum concentration of corticosterone was 140.21±34.52 ng/mL in hormone-

treated ‘postpartum’ rats, which was significantly lower than corticosterone levels in 

untreated controls and hormone-withdrawn ‘postpartum’ females, respectively (Figure 4, 

Horm vs. Veh and Horm vs. PpD, *P<0.001, Tukey-Kramer test). Serum concentrations of 

corticosterone in hormone-treated ‘postpartum’ rats were, however, not significantly 

different from those in simulated proestrus animals (Figure 4, Horm vs. ProE, P=0.104, 

Tukey-Kramer test). Because hormones were sampled immediately after active escape 

testing, these corticosterone levels can be considered as a measure of stress response elicited 

by the behavioral task.

Discussion

The present study demonstrates that during a simulated postpartum period, hormone-

withdrawn ‘postpartum’ females respond to inescapable stress with loss of hippocampal 

spine synapses that is equivalent with what is observed in untreated controls, a female rat 

model of major depression (Hajszan et al., 2010). These data support our hypothesis that 

exposure to ‘postpartum’ stress leads to hippocampal spine synapse loss. We also show that 

sustaining pregnancy levels of ovarian hormones during ‘postpartum’ stress exposure is 

sufficient to overcome the synaptolytic effect, as inescapable stress caused no change in the 
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number of hippocampal spine synapses in hormone-treated ‘postpartum’ rats. It has to be 

noted, however, that synaptoprotection is not fully confirmed in CA1sr, as pre-stress synapse 

numbers in this area of hormone-treated ‘postpartum’ rats were already at post-stress levels 

of untreated controls. It appears that this synaptoprotective effect is mediated, at least partly, 

by a muted stress response as measured by serum corticosterone levels. On the other hand, 

maintaining proestrus levels of gonadal steroids during ‘postpartum’ stress exposure is not 

capable of exerting similar synaptoprotective effects.

Our active escape experiment reveals that same post-stress levels of hippocampal spine 

synapses are coupled with practically identical escape performance (PpD group vs. Veh 

group). Higher post-stress numbers of hippocampal spine synapses, on the other hand, are 

associated with improved escape performance (Horm group vs. Veh group). Moreover, 

slightly higher post-stress synapse levels in simulated proestrus animals are related to 

slightly, but not significantly, better escape performance (ProE group vs. Veh group). These 

findings support our hypothesis that the relationship between synapse loss and depressive 

behavior, that we have first described in a female rat model of major depression (Hajszan et 

al., 2010), is retained in a simulated postpartum environment.

We can thus conclude that two important aspects of our synaptogenic hypothesis of 

depression (Hajszan et al., 2010; Kang et al., 2012), i.e., the synaptolytic effect of stress and 

the association between synapse loss and depressive behavior, appear to be valid in an 

animal model of PPD. As a result, the synaptic and the escape impairments of our PPD 

model (PpD group) are equivalent with those of an established animal model of major 

depression (Veh group) (Hajszan et al., 2010).

Stress-induced remodeling in the maternal brain

Pregnancy and motherhood are special periods when stress responsiveness is considerably 

reduced (Douglas et al., 1998; Wartella et al., 2003; Slattery and Neumann, 2008; Pawluski 

et al., 2015), yet epidemiological studies indicate that stress is a major risk factor of PPD 

(Lancaster et al., 2010; Davey et al., 2011; Stewart, 2011; Hillerer et al., 2012). Rodent 

models show that chronic gestational stress elicits anxiety-like behavior, increased time 

spent immobile in the forced swim test, and maternal care deficits during the postpartum 

period (Darnaudery et al., 2004; Smith J.W. et al., 2004; O'Mahony et al., 2006; Brummelte 

and Galea, 2010; Hillerer et al., 2011). In contrast to gestational stress, the effects of 

postpartum stress are less investigated. Most notably, Galea and colleagues have reported 

that postpartum exposure to high-dose corticosterone causes reduced maternal care, as well 

as decreased struggling and increased immobility in the forced swim test (Brummelte et al., 

2006; Brummelte and Galea, 2010). As a result, our present finding that acute ‘postpartum’ 

stress causes depressive behavior in the active escape task adds to this much needed area of 

research.

We have only recently begun to understand the extent to which the maternal brain is 

remodeled by stress both in humans (Moses-Kolko et al., 2014) and in animal models 

(Pawluski et al., 2016). In a series of studies, Pawluski and colleagues have reported that 

gestational stress affects adult hippocampal neurogenesis and CA3 dendritic structure in 

pregnant rats (Pawluski et al., 2016). Exposure to chronic stress during pregnancy also 
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reduces spine density and dendritic complexity in the prefrontal cortex and the nucleus 

accumbens shell (Haim et al., 2014; Leuner et al., 2014; Haim et al., 2016), while it raises 

synaptophysin levels in the cingulate cortex and increases spine density in the basolateral 

amygdala of rat dams (Gemmel et al., 2016; Haim et al., 2016). Some of these alterations are 

reversed by antidepressant treatment (Gemmel et al., 2016; Haim et al., 2016). As mentioned 

above, the effects of postpartum stress are much less known. Studying the consequences of 

postpartum stress via administration of high-dose corticosterone during lactation, Galea and 

colleagues have reported reduced adult hippocampal neurogenesis (Brummelte and Galea, 

2010), as well as altered spine density and dendritic complexity in CA3 (Workman et al., 

2013). Interestingly, repeated postpartum stress also reverses the lactation-induced decrease 

in hippocampal cell proliferation (Hillerer et al., 2014).

Stress-induced loss of hippocampal spine synapses appears to be the result of a chain of 

events that includes mediation by glucocorticoids and glutamate. It is well documented that 

exposure to acute stress, such as the inescapable footshock, consistently elicits a 

glucocorticoid-mediated surge of hippocampal glutamate release (Lowy et al., 1993; 

Abraham et al., 1998). Excess glutamate, in turn, leads to an excitotoxic, NMDA glutamate 

receptor dependent loss of dendritic spines (Segal, 1995; Wu et al., 2007), which may 

underlie the decline in the number of hippocampal spine synapses. In accordance with this 

mechanism, our research team has demonstrated earlier that injecting high-dose 

corticosterone fully reproduces the synaptolytic effect of inescapable footshock and induces 

depressive behavior in the rat learned helplessness paradigm (Hajszan et al., 2009).

The findings discussed above are beginning to outline an important role for neuronal 

remodeling in maternal stress-related disorders such as PPD. Unfortunately, our current 

knowledge regarding PPD is far from the level of understanding that has been already gained 

about the influence of synaptic plasticity in major depression (Hajszan et al., 2010; Kang et 

al., 2012) and in antidepressant treatment (Hajszan et al., 2005; Li et al., 2010). For 

example, direct electron microscopic evidence of synaptic remodeling in PPD is still not 

available. Our present finding that acute ‘postpartum’ stress induces hippocampal spine 

synapse loss helps addressing this gap in knowledge, although the merit of these results are 

obviously defined by the construct validity of our animal model.

Role of estradiol and progesterone

In the hormone simulated pregnancy model of Galea and colleagues (Galea et al., 2001), 

hormone withdrawal alone suppresses adult hippocampal neurogenesis (Green and Galea, 

2008). In accordance with this earlier observation, our present findings reveal that relative to 

‘proestrus’ females (nonstressed ProE group), hormone withdrawal alone decreases the 

number of hippocampal spine synapses in the PPD model (nonstressed PpD group) and in 

ovariectomized controls (nonstressed Veh group). These results are in line with a large 

number of previous studies reporting that ovariectomy causes hippocampal spine synapse 

loss, which is reversed by estradiol replacement (Woolley and McEwen, 1992; Leranth et al., 

2008). The behavioral consequences of hormone withdrawal alone were not investigated in 

the present study. In an earlier study, however, we have already reported that ovariectomy 
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reduces performance of female rats in the active escape task in association with loss of 

hippocampal spine synapses (Hajszan et al., 2010).

Our present results demonstrate that maintaining pregnancy levels of female reproductive 

hormones during ‘postpartum’ stress exposure (Horm group) overcomes the synaptolytic 

effect of inescapable stress and improves escape performance. These observations 

complement human clinical studies documenting the beneficial effect of estradiol treatment 

in alleviating the symptoms of PPD (Sichel et al., 1995; Gregoire et al., 1996; Ahokas et al., 

2001; Studd and Panay, 2004). Earlier work with animal models has also shown that 

estradiol reduces depressive behavior and facilitates the action of antidepressants in the 

forced swim test (Rachman et al., 1998; Frye and Wawrzycki, 2003; Estrada-Camarena et 

al., 2004). In contrast to pregnancy levels, interestingly, proestrus levels of gonadal steroids 

failed to prevent the effects of ‘postpartum’ stress in our present study. This finding is in 

agreement with previous research indicating that stress limits or even abolishes the 

hippocampal synaptogenic and the antidepressant activity of acute estradiol administration 

in the rat Morris water-maze (Frick et al., 2004) and the rat learned helplessness paradigms 

(Hajszan et al., 2010). This discrepancy between the effects of proestrus vs. pregnancy levels 

of hormones is probably explained by differences among experiments in the duration of 

administration and the dosing of estradiol, as well as in the level of stress exposure.

Besides the synaptic and escape responses, continued exposure to pregnancy levels of 

gonadal steroids during the ‘postpartum’ period (Horm group) also leads to muted 

corticosterone release induced by ‘postpartum’ stress. This finding is in line with a large 

number of earlier studies showing strong interactions between the female stress and 

reproductive systems (Chrousos et al., 1998), as ovarian hormones effectively reduce 

hypothalamic-pituitary-adrenal axis activity (Young et al., 2001; Lunga and Herbert, 2004; 

Brunton et al., 2009; Hassell et al., 2011; McCormick, 2011). The gonadal steroid induced 

muted corticosterone release likely contributes to the typically reduced stress experience 

during pregnancy (Douglas et al., 1998; Wartella et al., 2003; Slattery and Neumann, 2008; 

Pawluski et al., 2015). More importantly, this limited stress responsiveness may also 

suppress the glucocorticoid/glutamate chain of events leading to hippocampal spine synapse 

loss (see above), which explains, at least partly, the synaptoprotective action observed in the 

present study. Interestingly, the effects of pregnancy levels of ovarian hormones on the stress 

system resemble those of certain traditional antidepressants, as these drugs are believed, at 

least partly, to stabilize mood via curbing stress reactivity (Barden et al., 1995; Nemeroff 

and Owens, 2004; Pawluski et al., 2012).

Earlier research on the hormonal aspects of PPD has placed emphasis on estradiol 

withdrawal (Galea et al., 2001; Stoffel and Craft, 2004; Green and Galea, 2008). As a result, 

the role of progesterone remained less investigated despite its potent abilities to influence 

stress and neuronal activity. The progesterone metabolite neurosteroid, allopregnanolone is 

known to maintain an opioid-dependent inhibition of stress responsiveness during pregnancy 

(Brunton et al., 2009). Other progesterone-derived neurosteroids are efficient in potentiating 

the effect of GABA on GABAA receptors (Bitran and Dowd, 1996; Stell et al., 2003), 

leading to restricted neuronal excitability and, as a result, limited glutamate release (Stell et 

al., 2003). Deficiency in these mechanisms may imply vulnerability to stress and 
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development of postpartum mood disorders. Indeed, transgenic mice that are incapable of 

neurosteroid-induced GABA potentiation show depressive and anxiety-like behaviors, as 

well as abnormal maternal care throughout pregnancy and the postpartum period (Maguire 

and Mody, 2008; Mostallino et al., 2009).

Functional considerations

Earlier research suggests that withdrawal of female reproductive hormones creates 

vulnerability to stress during the postpartum period (Parry et al., 2003; Steiner et al., 2003; 

Suda et al., 2008). In accordance with this theory, we have previously shown in the rat 

learned helplessness paradigm that withdrawal of ovarian hormones alone leads to 

hippocampal spine synapse loss and development of depressive behavior, but these 

responses are only partial and become exacerbated after exposure to inescapable stress 

(Hajszan et al., 2010). In line with these previous findings, the present study demonstrates 

that ‘postpartum’ stress in a hormone withdrawal model of PPD causes the loss of 

asymmetric spine synapses along the hippocampal trisynaptic circuit, potentially disrupting 

signal flow and leading to a dysfunctional hippocampus. Among several brain areas that are 

affected by stress and mood disorders (Nestler et al., 2002), the hippocampus plays an 

important role, as it is strongly involved in learning and memory (Sousa et al., 2000; 

Diamond et al., 2006), in feed-back regulation of the stress response (McEwen, 2003; Sala et 

al., 2004), and in modulating the motivation circuitries (Lisman and Grace, 2005; Cooper et 

al., 2006). As a result, deteriorating hippocampal function may contribute to the joint 

development of cognitive decline, loss of motivation, and derailed stress response, the 

common symptoms of PPD and major depression (Melges, 1968; Nestler et al., 2002).

On the other hand, the present study also indicates that pregnancy levels of gonadal steroids 

protect hippocampal spine synapses against the detrimental effects of ‘postpartum’ stress. 

Importantly, this synaptoprotection is associated with improved escape performance, i.e., 

decreased depressive behavior. These results, along with our synaptogenic hypothesis of 

depression (Hajszan et al., 2010), suggest that protecting spine synapses by muting the stress 

response and/or by curbing neuronal excitability may be valid therapeutic options for 

preventing and treating postpartum affective illness.
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Highlights

• Postpartum stress causes a loss of hippocampal spine synapses.

• Pregnancy levels of ovarian hormones prevent the synaptolytic effect of stress.

• This preventive effect of ovarian hormones is mediated by reduced stress 

responsiveness.

• These data provide further support for the “synaptogenic hypothesis” of 

depression.
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Figure 1. 
Representative electron micrograph, taken from the hippocampal CA1 stratum radiatum of a 

sham-stressed hormone-withdrawn ‘postpartum’ female, demonstrating hippocampal 

asymmetric spine synapses (arrowheads). Scale bar, 500 nm.
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Figure 2. 
Changes in the number of hippocampal spine synapses in response to inescapable stress 

during the simulated postpartum period in untreated controls (panel Veh), hormone-

withdrawn ‘postpartum’ females (panel PpD), simulated proestrus animals (panel ProE), and 

hormone-treated ‘postpartum’ rats (panel Horm). Three distinct hippocampal areas were 

analyzed, CA1 stratum radiatum (CA1sr), CA3 stratum lucidum/radiatum (CA3sl/sr), and 

dentate gyrus stratum moleculare (DGsm). Synapses were counted using unbiased electron 

microscopic stereology. Diagram columns represent the estimated number of all spine 

synapses within a particular hippocampal area. Three-way mixed ANOVA (stress × hormone 

treatment × area) found a significant main stress effect and also revealed a significant 

hormone treatment × stress interaction effect, indicating that hormone treatment interferes 

with the ability of stress to modulate hippocampal spine synapse numbers (stress effect, 

F1,16=635.357 P<0.001; hormone treatment × stress interaction, F3,16=109.665 P<0.001).

Relative to sham-stressed untreated controls (Panel Veh, NS), hormone treatment of 

nonstressed (NS) females increased the number of spine synapses across all hippocampal 

areas in simulated proestrus animals and reduced synapse numbers in CA1sr of hormone-

treated ‘postpartum’ rats (panel ProE, #P<0.02; panel Horm, #P<0.02; Tukey-Kramer test). 

When compared with respective sham-stressed (NS) rats, inescapable stress (IS) decreased 
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synapse numbers across all hippocampal areas in untreated controls, hormone-withdrawn 

‘postpartum’ females, and simulated proestrus animals, but not in hormone-treated 

‘postpartum’ rats (panel Veh, *P<0.04; panel PpD, *P<0.01; panel ProE, *P<0.01; panel 

Horm, P>0.2; Tukey-Kramer test). With respect to stressed untreated controls (Panel Veh, 

IS), synapse numbers of stressed (IS) females remained higher in CA3sl/sr of simulated 

proestrus animals, as well as in CA3sl/sr and DGsm of hormone-treated ‘postpartum’ rats 

(panel ProE, +P<0.001; panel Horm, +P<0.01; Tukey-Kramer test).
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Figure 3. 
Performance of untreated controls (Veh), hormone-withdrawn ‘postpartum’ females (PpD), 

simulated proestrus animals (ProE), and hormone-treated ‘postpartum’ rats (Horm) in the 

active escape test. Panel A provides information about the fluctuation of escape latencies 

during the 30-trial test, with each tracing point representing the average escape latency of 

five consecutive trials. Panel B demonstrates the mean escape latency of all 30 trials. One-

way ANOVA found a significant hormone treatment effect (F3,48=6.66 P<0.001). Escape 

latencies of hormone-treated ‘postpartum’ rats were shorter relative to those of untreated 

controls and hormone-withdrawn ‘postpartum’ females (*P<0.01, Tukey-Kramer test) but 

not significantly different from those of simulated proestrus animals (P=0.196, Tukey-

Kramer test). Panel C displays the number of failed trials (Escape Failures) during the same 

30-trial active escape test. Kruskal-Wallis oneway ANOVA on ranks revealed a significant 

hormone treatment effect (H=18.665 df=3 P<0.001). Hormone-treated ‘postpartum’ rats 

made less escape failures than animals in other groups (#P<0.002, Mann-Whitney U test).
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Figure 4. 
Serum concentrations of corticosterone (Cort) assayed immediately after active escape 

testing in untreated controls (Veh), hormone-withdrawn ‘postpartum’ females (PpD), 

simulated proestrus animals (ProE), and hormone-treated ‘postpartum’ rats (Horm). One-

way ANOVA found a significant hormone treatment effect (F3,25=11.340 P<0.001). 

Corticosterone levels of hormone-treated ‘postpartum’ rats were lower than those of 

untreated controls and hormone-withdrawn ‘postpartum’ females (*P<0.001, Tukey-Kramer 

test) but not significantly different from those of simulated proestrus animals (P=0.104, 

Tukey-Kramer test).
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