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Abstract

Emerging complementary metal oxide semiconductor (CMOS)-based, high-density microelectrode 

array (HD-MEA) devices provide high spatial resolution at subcellular level and a large number of 

readout channels. These devices allow for simultaneous recording of extracellular activity of a 

large number of neurons with every neuron being detected by multiple electrodes. To analyze the 

recorded signals, spiking events have to be assigned to individual neurons, a process referred to as 

“spike sorting.” For a set of observed signals, which constitute a linear mixture of a set of source 

signals, independent component (IC) analysis (ICA) can be used to demix blindly the data and 

extract the individual source signals. This technique offers great potential to alleviate the problem 

of spike sorting in HD-MEA recordings, as it represents an unsupervised method to separate the 

neuronal sources. The separated sources or ICs then constitute estimates of single-neuron signals, 

and threshold detection on the ICs yields the sorted spike times. However, it is unknown to what 

extent extracellular neuronal recordings meet the requirements of ICA. In this paper, we evaluate 

the applicability of ICA to spike sorting of HD-MEA recordings. The analysis of extracellular 

neuronal signals, recorded at high spatiotemporal resolution, reveals that the recorded data cannot 

be modeled as a purely linear mixture. As a consequence, ICA fails to separate completely the 

neuronal signals and cannot be used as a stand-alone method for spike sorting in HD-MEA 

recordings. We assessed the demixing performance of ICA using simulated data sets and found 

that the performance strongly depends on neuronal density and spike amplitude. Furthermore, we 

show how postprocessing techniques can be used to overcome the most severe limitations of ICA. 

In combination with these postprocessing techniques, ICA represents a viable method to facilitate 

rapid spike sorting of multi-dimensional neuronal recordings.
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IN THE FIELD OF NEUROPHYSIOLOGY RESEARCH, extracellular recordings of neural activity have 

become an important means to study intercell interaction and firing patterns to understand 

better the physiology and the information processing of neuronal networks. In multiunit 

recordings, the electrodes monitor the simultaneous activity of a large number of individual 

neurons. For the analysis, the spike trains of the individual neurons then have to be extracted 

from the recorded data, a process usually referred to as “spike sorting” (Lewicki 1998). 

Generally, the spike-sorting tasks consists of two fundamental steps: to 1) detect action 

potential (AP) events in the data; and 2) classify them into groups. Whereas a main problem 

for the spike detection task is to deal with data recorded under low signal-to-noise-ratio 

(SNR) conditions, the most severe challenge to the classification problem is the presence of 

overlapping spikes from different neurons.

The sorting performance can be drastically increased by using multielectrode devices such 

as tetrodes (Gray et al. 1995). In these systems, which feature several closely spaced 

electrodes, an AP is simultaneously measured on more than one electrode. In addition to the 

temporal cues of the waveform, these multielectrode devices reveal information about the 

spatial cues of the spike shape distribution. This additional information can be efficiently 

used to separate units.

Planar microelectrode arrays (MEAs) are arrangements of electrodes for extracellular 

measurements of multiple cells on a chip surface. They are widely used to study the 

dynamics of the neuronal networks, as they enable simultaneous access to a large number of 

neurons. Traditional MEA systems incorporate 60–200 passive metal electrodes on a silicon 

or glass surface, which are connected to external circuitry and typically feature 

interelectrode distances of 100–200 μm (Stett et al. 2003). Since the signal of a neuron is 

detected by at most one electrode on such MEAs, the spike-sorting problem is the same as 

for single-electrode recordings (Shoham et al. 2003; Zhang et al. 2003).

Recently, “active” MEAs based on complementary metal oxide semiconductor (CMOS) 

technology have been developed (Berdondini et al. 2005; Eversmann et al. 2003; Frey et al. 

2010; Hutzler et al. 2006). These devices feature signal-conditioning circuitry on-chip and 

provide much larger electrode densities and, thereby, enable to conduct electrophysiological 

experiments at cellular or subcellular level. The MEA used for our experiments (Frey et al. 

2010) features 11,011 electrodes (3,161 electrodes/mm2) as well as 126 read-out channels. 

The possibility to select arbitrarily a subset of electrodes for recording or stimulation entails 

the possibility to use different electrode configurations, such as high-density (HD) or sparse 

arrangements.

The HD of the electrodes on the array enables recordings at subcellular resolution, with the 

activity of every neuron being measured by multiple electrodes. Although this feature 

improves sorting capabilities, the large number of channels and the highly redundant nature 
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of HD-MEA data pose challenges to the strategies for event detection and classification. 

Particularly, two issues arise when applying standard analysis techniques to HD-MEA data.

How to Perform Event Detection in Redundant Data?

A neuronal AP will produce spikes on several electrodes, leading to threshold crossing 

events (TCEs) on these electrodes. Ideally, these events should be grouped and considered as 

one single spiking event, since their origin is the same AP of the same cell. This could be 

performed by merging TCEs, which are spatially and temporally closely aligned. However, 

this task gets challenging for large numbers of spatially highly overlapping neurons.

Which Features Should be Used for Unit Separation?

For recordings with hundreds to thousands of electrodes, the feature space needs to be 

reduced in a way that only the electrodes are used that prominently contribute to unit 

separation.

Only a few methods have been published that specifically target spike sorting of HD, 

redundant recordings. A sequential approach that targets one electrode at a time is proposed 

in Litke et al. (2004). This simple and robust method lacks efficiency by repeating the 

clustering of the same cells many times and does not handle the overlap problem. Another 

approach based on template matching has been presented in Segev et al. (2004) using data 

from MEA recordings with up to 30 electrodes. The overlap problem is addressed by this 

approach; this method, however, is formulated for a limited number of electrodes and 

templates and requires prior knowledge of the neurons and their waveforms. The challenges 

of efficient, automatic spike-sorting and validation techniques for multielectrode systems 

have been discussed in Einevoll et al. (2012).

Independent component (IC) analysis (ICA) (Hyvärinen and Oja 2000; Stone 2002) is a 

blind source separation technique that can be used to demix a set of independent source 

signals that were linearly mixed across a number of observed signals.

The high potential of ICA to be applied to spike-sorting problems has been discussed in 

Brown et al. (2001). Neurons have been regarded as independent signal sources, which are 

linearly mixed across the recording electrodes. ICA has the following requirements. 1) The 

source signals are non-Gaussian and statistically independent. 2) A linear, instantaneous 

mixture of the source signals is assumed to produce the observed signals. 3) The number of 

observed signals needs to be equal to or larger than the number of source signals.

Although neurons are not independent from each other, as they can be synaptically 

connected or may receive common input, the individual spike trains can be regarded as 

statistically independent, since dependence in this context refers to instantaneous overlaps 

rather than time-delayed dependence (Brown et al. 2001). Therefore, concerning the first 

requirement, ICA will only fail to separate two neurons if they fire always precisely at the 

same time.
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Recently, some studies attempted to combine closely spaced electrode recording techniques 

with computationally efficient ICA algorithms such as FastICA (Hyvärinen 1999). In 

Hermle et al. (2004) and Snellings et al. (2006), ICA is applied as a preprocessing step on 

recorded data to reduce cross talk and increase data quality. The major obstacle for an 

efficient use of ICA has been, however, requirement 3. In standard in vivo experiments with 

tetrodes, the number of neurons is likely to be larger than the number of recording sites. One 

attempt to overcome this restriction for ICA included to perform k-means clustering of 

detected waveforms in a preprocessing step and to decompose the waveforms of each cluster 

individually with ICA (Takahashi et al. 2003), since the number of neurons in the clusters is 

expected to be lower than the number of recording sites. A second approach included to 

increase the number of recording sites to 12 (Takahashi and Sakurai 2005).

The large number of electrodes of HD-MEAs is suited to meet requirement 3, which renders 

ICA a good candidate to separate HD-MEA data. Ideally, the independent source signals, 

found by ICA, correspond to individual activity signals of neurons. Applying threshold 

detection on each source signal then yields the sorted spike times of the neurons that have 

been recorded on the array. Making use of the redundancy in the data, ICA should also 

provide an increase in the SNR of the demixed signal compared with the recorded signals 

and, therefore, improve the spike detection performance. By separating the neuronal sources, 

it also holds promise to solve the problem of overlapping spikes.

In this study, we explore the applicability of ICA for blind and rapid spike sorting of HD-

MEA recordings.

Methods

Data Acquisition System

Recordings were made with the HD-MEA recording system described by Frey et al. (2009, 

2010). The array is integrated into a microsystem chip, fabricated in a 0.6-μm CMOS 

process. It accommodates a total of 11,011 electrodes of 7-μm diameter on an area of 1.99 × 

1.75 mm2 (19-μm hexagonal center-to-center pitch, density of 3,161 electrodes/mm2). One 

hundred twenty-six bidirectional channels are implemented on-chip, featuring recording and 

stimulation electronics. The channels are connected to the electrodes via a flexible switch 

matrix lying underneath the array. This system provides routing flexibility to select almost 

arbitrary electrode configurations, which can be changed within milliseconds.

The programmable gain amplifiers (0–80 dB) allow for recording neuronal signals 

throughout a wide range of amplitudes, which depend on the respective cell type. Offset and 

fluctuations resulting from the electrode-saline interface are removed by first-order high-

pass filtering the analog signals (tunable cutoff frequency 0.3–100 Hz). The frequency range 

is limited toward the high-frequency end by means of a tunable second-order low-pass filter 

(3.5–14 kHz). The signals are multiplexed and digitalized with 8-bit analog-to-digital 

converters with a sampling rate of 20 kHz.

The data were stored on a standard PC, and the analysis was conducted using MATLAB. 

Before postprocessing, all the data were digitally band-pass filtered (500–3,000 Hz).
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Extracellular Recordings from Retinal Ganglion Cells

We used the rd1 mouse retina to record spontaneous activity (Stasheff 2008) from retinal 

ganglion cells (RGCs). All animal experiments and procedures were approved by the Swiss 

Federal Veterinary Office. The retinae were isolated at ambient light from the C3H/HeNCrl 

(rd1) mouse strain at P80 in Ringer medium (in mM: 110 NaCl, 2.5 KCl, 1 CaCl2, 1.6 

MgCl2, 10 D-glucose, 22 NaHCO3, bubbled with 5% CO2-95% O2). Once a piece of the 

retina was isolated, it was placed with the RGC layer adjacent to the MEA. The retina was 

fixed on the array by a permeable membrane (polyester, 10-μm thickness, 0.4-μm pore size) 

and superfused with Ringer medium at 36°C.

All recordings shown in this study were done with electrode configurations of blocks at 

highest possible spatial resolution. The largest HD block that can be simultaneously read in 

the configurable array is 6 × 17 electrodes and covers an area of approximately 80 × 320 

μm2.

An example of recorded RGC activity is shown in Fig. 1. Three neurons were identified in 

an HD block, using a manually supervised custom-designed spike-sorting method based on 

principal component analysis (PCA) and expectation-maximization (EM) clustering 

(KlustaKwik; Harris et al. 2000). The characteristic multichannel signature of the neurons is 

obtained by spike-triggered averaging (STA) of the individual aligned traces (Fig. 1C). This 

cell-specific footprint will be referred to as template, namely the distribution of the average 

spike shape across the electrodes. Figure 1D shows the templates of two cells that have 

significant energy on a large number of electrodes.

Templates and firing characteristics of recorded neurons were found to be very similar 

across several recording experiments (n = 10).

Assumption of Linear Dependence

ICA requires a linear and instantaneous mixture of the source signals across the electrodes. 

This requirement implies that the signals of the sources (neurons) on the different electrodes 

are linearly dependent and do not contain phase shifts. The assumption of linear dependence 

can be validated by testing the degree of linearity within the waveforms of the neuron 

template.

We measure the linearity between two vectors, a and b, using the normalized cross-

correlation coefficient (CC):

(1)

The CC can range from −1 to 1, where two vectors with a CC of 1 are perfectly linearly 

dependent and two vectors with a CC of −1 are inversely linearly dependent. A CC of 0 

indicates that the vectors are orthogonal. Therefore, the linearity assumption is met if the 

absolute CC values of the spike waveforms of the individual neuron templates are close to 1.
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ICA

Let the recorded time-series signals on M electrodes be X = [x1(t),…, xM(t)]T and 

 be the intrinsic signals generated by N single neurons. Given the 

assumption of linearity, stated in the previous section, we can model the recordings as a 

linear mixture of the neuronal signals:

(2)

Under the additional assumptions that the individual signals are non-Gaussian and 

statistically independent and that there are more recording sites than neurons, the mixing 

matrix A can be estimated blindly by applying ICA (FastICA; Hyvärinen 1999) directly to 

the recorded data. The ICs, which ideally represent individual-neuron signals, are obtained 

by:

(3)

The ICs are the rows in S = [s1(t), …, sM(t)]T, and W = A−1 is the demixing matrix. In the 

following, we will refer to the columns of A as the mixing coefficient vectors (MCVs), 

whereas the rows of W will be called demixing coefficient vectors (DCVs). Note, that the 

estimated mixing matrix has a dimension of M × M.

If the individual templates are known, we can evaluate the separation by directly demixing 

the templates with W. For a given neuron, i, consider the template matrix 

 for which the jth row is the STA waveform  at the electrode j. Then 

the demixed template is:

(4)

In the case of perfect separation, Hi contains the intrinsic neuron waveform in the ith row 

and zeros in all the other rows. ICA offers three main features if all the assumptions are met. 

1) The redundancy is reduced so that only ICs 1, …, N contain significant signals (spikes), 

whereas ICs N + 1,…, M contain only noise. This allows for extracting the number of 

neurons from the number of ICs containing spikes. 2) The recordings are demixed in a way 

that every IC only contains the spikes of one corresponding neuronal source. Consequently, 

applying threshold detection to the ICs yields the sorted spike times. 3) ICA achieves an 

increase in SNR compared with single-channel signals by accumulating signals of several 

electrodes in the ICs.

The use of ICA, however, typically entails two major problems if the linearity assumption is 

not totally fulfilled. 1) One IC can contain signals from more than one neuron. In that case, 

demixing does not achieve perfect separation. 2) A neuron can contribute signals to two or 
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more ICs. In that case, more than N ICs contain neuronal signals, and ICA does not 

completely reduce the redundancy.

Evaluation Criteria

In the following, we formulate several evaluation metrics to characterize the performance of 

ICA with regard to the points elaborated in the previous section.

SNR—We define the SNR of neuron i in the recorded signal X as

(5)

where j is the electrode on which the template Fi has its highest peak value, and where σj is 

the standard deviation of the noise signal on that electrode. The SNREL thus denotes the 

peak value in the template divided by the noise standard deviation.

Next, we define the SNR of the neurons in the ICs. FastICA normalizes the DCVs so that 

every IC signal has unit variance. Instead, we want the noise on the ICs to have unit 

variance. Therefore, we first normalize all the DCVs:

(6)

Here, wk is the kth row of W, and C is the instantaneous noise covariance matrix between the 

electrodes.  is the new demixing matrix with normalized DCVs, having  on its kth row. 

This normalization ensures equivalent noise levels on all the ICs and allows for comparison 

of their signals. The SNR of neuron i in the ICs is the peak value of the demixed template 

(7)

Redundancy—Another important ICA performance measure is how well redundancy in 

the ICs is reduced compared with the recorded signals. Therefore, the redundancies 

and  are defined, where the first denotes the number of electrodes and the latter 

denotes the number of ICs, on which the signal of neuron i exceeds the threshold value of 

five times the noise standard deviation.

Separability—We also introduce a measure for the separability of the neurons on the ICs. 

A neuron i with high separability must have a high peak signal on an IC k, on which all 

other neurons have only low peak signals. Thus its separability is the difference between its 

peak on IC k and the highest peak of any other neuron on IC k. We determine k by 
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maximizing the separability, taking into account that the relevant peak can feature either 

positive- or negative-sign amplitude.

(8)

Analogously, we define the separability of a neuron in the recorded signals as the difference 

between the peak of its template and the highest peak of any other neuron template on the 

same electrode, divided by the noise standard deviation on that electrode.

(9)

Simulation of Recorded Neuronal Activity

For evaluation purposes, simulated data were generated. In this study, we used two types of 

simulated data sets. Data set A contained simulated activity of three neurons that had 

spatially overlapping templates that were extracted from digitally unfiltered, recorded data. 

This data set is mainly used for visualization purposes. Spike sorting to extract the templates 

for data simulation was performed using manually supervised PCA and EM clustering.

For a systematic analysis, we simulated RGC activity at different cell densities in data set B. 

Therefore, we used eight well-isolated, manually selected neuronal templates extracted from 

recorded unfiltered data as model templates. Higher spatial resolution was obtained by 

interpolating the model templates on a grid (5-μm pitch). By modifying position, orientation, 

amplitude, and spatial extension of the model templates, individual neuron templates were 

simulated. The modified templates were positioned on a gridlike structure with equidistant 

points. Peak-to-peak amplitudes were set randomly (uniformly distributed between 50 and 

300 μV). The grid of neurons covered an HD block of 90 electrodes on an area of 130 × 185 

μm2.

We simulated 5 different configurations with average neuron distances (D) between 40 and 

20 μm (average distance to the 6 neighboring neurons in a hexagonal arrangement). Out of 

20 simulations of 30 s each, which were generated for each configuration, a subset of 358 

neurons per configuration was considered for the analysis. Surrounding neurons outside the 

electrode block were simulated but not included in the analysis. An overview of the different 

configurations represented in data set B is given in Table 1 and illustrated in Fig. 2.

Individual, uncorrelated spike trains were simulated for both data sets using sets of γ-

distributed interspike intervals (ISI), which proved to be a good model for the spiking 
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behavior of RGCs (Levine 1991). The mean firing rates ranged between 30 and 50 Hz for 

data set A and between 5 and 50 Hz for data set B. A refractory period of 2 ms was 

introduced. We upsampled the template waveforms to 160 kHz and then randomly 

downsampled them to the respective sampling frequency for every simulated AP, this way 

imitating recording conditions, under which the spikes are not always digitalized at the exact 

same position (Pouzat 2002; Quiroga et al. 2004). Spike shape variability (Fee et al. 1996b) 

was induced by multiplying the template waveforms of every spiking event on all electrodes 

with a random factor (normally distributed μ = 1, σ = 0.1).

A digitally unfiltered noise signal, which was recorded under experimental conditions with a 

retina preparation on the array that had no visible spiking activity, was added to the 

simulated spike data. The resulting signal was quantified to a least significant bit, similar to 

the one used in the measurements (5 μV). This way, the simulated data had similar 

characteristics as recorded data, and the same data handling and processing steps could be 

used.

Results

Spatiotemporal Template Analysis

A main requirement for ICA is that the independent sources (i.e., the neuron templates) are 

linearly mixed over all recording electrodes. This requirement implies that the waveforms of 

a neuron on the different recording electrodes are linearly dependent. Therefore, the degree 

of linear dependence between the waveforms of a RGC template was analyzed.

A single neuron template was reconstructed from two overlapping blocks, recorded at 

highest spatial resolution (Fig. 3A). Because of the chip architecture, the electrodes are not 

sampled at the same point in time. We corrected for this by upsampling (160 kHz) and 

resampling the recorded data at defined time points (20 kHz). After spike detection, the 

multichannel spike traces of the identified neuron were again upsampled by a factor of 4 to 

allow a more precise spike alignment and averaging (upsampled resolution: 12.5 μs).

Figure 3B shows the superimposed waveforms from 40 electrodes, illustrating that they are 

not exactly in phase but shifted by up to 3 samples (150 μs). The electrode position where 

the AP wave appears 1st (dark blue wave in Fig. 3B) will be referred to as AP reference 

(white marker in Fig. 3C). The color of each waveform indicates the distance between the 

corresponding electrode and the AP reference. An increase in the phase shift is observed for 

increasing distance. This phase shift is due to the AP propagation delay.

The spatial extent of the propagation delay is visualized in Fig. 3C. For every electrode, the 

precise position of the negative peak in the upsampled averaged waveform was used to 

determine the temporal delay compared with the AP reference. After emergence close to this 

reference point, the AP spreads into all directions. The timing delays vs. the travelling 

distances for the individual waveforms, shown in Fig. 3D, give an estimate of the 

propagation speed. The slope of the linear fit corresponds to a velocity of 0.55 m/s.
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For better visibility, we focus in the following on the waveforms recorded from the 12 

electrodes providing the highest signals (peak-to-peak voltages > 60 μV, marked with a red 

dot in Fig. 3, A and C). In any case, signals with low amplitude only moderately influence 

ICA compared with high amplitude signals.

The CC matrix (Fig. 3E, left) contains the CC values (see Eq. 1 in Methods) for the 

waveforms of all electrode pair combinations of the selected electrodes. The electrodes were 

arranged in the matrix with respect to ascending time delay, which is displayed in the inset 
above the matrix plot. Electrodes 1–7 (electrodes in purple, bluish area in Fig. 3C) as well as 

8–12 (electrodes in green, yellowish area in Fig. 3C) form electrode groups with high CC 

values for electrode pairs within each group but relatively small CC values for electrode 

pairs between both groups. The decrease in linearity is caused by a relatively large phase 

shift between electrodes 7 and 8. Similar abrupt phase shifts were observed for many RGCs 

and are presumably a characteristic physiological feature of these neurons. For electrode 

pairs without significant phase shift, such as for electrodes 5 and 6 or for electrodes 10–12, 

the resulting CCs are very close to 1.

This example shows that somatic AP signals, recorded at high spatiotemporal resolution, 

contain significant propagation delays and thus cannot be regarded as an instantaneous 

mixture. However, even if there was no propagation delay, we could not assume a perfect 

linear mixture for a second reason. The complex physiological structure of the neurons has 

effects on the spike waveforms. To analyze this, the waveforms were temporally aligned 

according to the occurrence of their negative peak value, and the resulting CC matrix was 

determined (Fig. 3E, right). For this case, the interelectrode CC values have a mean of 0.97 

and a smallest value of 0.89, compared with a mean of 0.89 and smallest CC value of 0.61 in 

the nonaligned case.

These characteristics of limited linear dependence between the waveforms of a neuronal unit 

on different recording electrodes, mainly caused by the phase shift due to the AP 

propagation delay, imply that the linearity assumption of ICA is not fulfilled.

Nonlinearity Effects on Linear Demixing and ICA

Next, we investigated how nonlinearity in the neuronal templates affects the possibilities of 

separating neuronal signals by means of linear demixing and ICA. For this, we used data set 
A, which contained simulated activity of three spatially overlapping neuronal templates (Fig. 

4, A and B) extracted from a retinal recording.

In a first trial, the template of every neuron was manipulated to achieve linearity across the 

electrodes. This was realized by replacing the template waveform in each channel by scaled 

versions of the waveform observed on the electrode with maximum signal so that the peak-

to-peak amplitude value at each electrode was preserved. The DCVs, directly derived from 

the manipulated templates (see Eqs. 10–11 in Appendix) led to perfect separation in the 

demixed templates (Fig. 4C, top), which means that there is only one high peak signal in 

each component (row). This shows that neuronal templates can be completely separated by 

means of linear demixing, given the assumption of perfect linear mixtures under the 

boundary condition that there are more electrodes than neurons.
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The DCVs were extracted in the same way from the realistic templates, and the demixed 

templates were computed (Fig. 4C, bottom). The signals along the diagonal of both plots 

have similar magnitudes, suggesting that the accumulation of the template energies in the 

components leads to a similar SNR increase for the linearized and the real case. However, 

compared with the linearized ideal case, there is significant cross talk. As a result, e.g., 

neuron 3, having the smallest spike amplitudes and being therefore the most challenging to 

demix, fails to be separated.

In a next step, ICA was applied to the simulated data set A, which contained spikes from 

these three neurons. The demixed templates and corresponding DCVs maps (Fig. 4D) show 

that some of the responses (i.e., for ICs 1, 3, 5, and 6) feature a reversed sign, which is due 

to the fact that ICA cannot derive the correct sign of the source signals. Besides this, ICA 

leads to comparable SNR and separability on the first three ICs as the demixing using 

directly derived DCVs from the templates.

If the linearity criterion of ICA would be met, we would not only achieve perfect separation, 

but also redundancy reduction so that the number of ICs with significant signals would be 

equal to the number of neurons. This would imply that we find only one high peak signal per 

column of the demixed templates. Since there are still signals in the demixed templates for 

ICs 4–6, ICA does not completely reveal the right number of sources here.

We observe that ICs 2 and 4 have significant DCV weightings in the area of neuron 3 (black 

arrows in Fig. 4D, right) while having nearly orthogonal MCVs (CC = 0.11). However, the 

positive weightings (red) in the DCV of IC 4 are centered around a subset of three 

electrodes, whereas one electrode has large negative weight (blue). The CC values of spike 

waveforms of the three electrodes with positive weights are >0.995, however, significantly 

lower for combinations with the waveform of the electrode with negative weight (CC values 

0.79, 0.81, and 0.83). The effect of splitting the source between different ICs was also 

consistently found on simulated data sets containing spikes from only single neurons (data 

not shown). This suggests that ICA splits the source due to the phase shift between the 

waveforms across the electrodes described in the previous section. As a consequence, the 

similarity of MCVs, as used in Takahashi and Sakurai (2005), might be a poor indicator for 

determining if the sources underlying two ICs are coming from a single or two separate 

neurons.

Interestingly, there are cases where a neuron does not exhibit the best separation 

performance on the first IC on which its signal is visible. Whereas neuron 3 has a strong 

signal but no separability on IC 2, better separability is achieved on IC 4 

 At the same time, the DCV for IC 4 has large weights on 

a smaller area (Fig. 4D, right), and therefore it features less template energy and a smaller 

SNR increase compared with IC 2 

Advantages of ICA for Resolving Overlapping Spikes

We have shown in the previous section that the violated linearity criterion complicates clean 

separation of the neuronal sources using ICA-based linear demixing. However, in the 
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following, we show that ICA has substantial advantages compared with traditional PCA 

methods for dealing with overlapping spikes in the case of sufficient separability on the ICs.

Figure 5A shows individual spike traces and average waveforms of the neurons in Fig. 4 on 

nine selected electrodes. The high firing rates of the simulated neurons caused many 

overlapping spikes, which evidently challenge alignment and classification of the spikes. To 

demonstrate this challenge, multichannel PCA (i.e., PCA performed on the concatenated 

single-channel waveform traces; see Litke et al. 2004) was applied to the spike traces of the 

three neurons on the selected electrodes. Figure 5B shows the resulting PCA scores of the 

first two principal components for each individual neuron; the black dots indicate spikes of 

the neuron of interest, and the gray dots mark spikes of other neurons. Violet dots indicate 

spikes that overlapped with another neuron within a time frame of 10 samples (0.5 ms). The 

nonoverlapping events are located in different, defined regions of the PCA space (ellipses) 

and can thus be separated using the representation of the PCA scores. However, the 

overlapping events are distributed all over the space and cannot be correctly identified using 

standard clustering methods.

In the following, ICs 1, 3, and 4 (from Fig. 4D) were considered for separating neurons 1–3 
(Fig. 4, A and B). The spike traces projected on the corresponding ICs (traces along the 

diagonal in Fig. 5C) exhibit clean waveforms, which indicate that the overlaps shown in Fig. 

5A have been resolved. Therefore, the ICA separation for this example is sufficient to enable 

proper spike assignment based only on threshold detection on the ICs.

The capability to resolve overlaps is also demonstrated by applying PCA to the IC spike 

traces of the three neurons for each IC independently. The representation of the scores (Fig. 

5D) shows clear separation of the spikes of the respective neuron of interest (black dots) 

from the spikes of other neurons (gray dots). The overlapping spikes (violet dots) also lie 

within the cluster, which enables a correct assignment.

An important advantage of ICA usage for dealing with overlapping spikes appears here. 

Since the ICs can be treated independently, event detection is applied to the individual ICs. 

Thus two neurons that fire simultaneously evoke signals on two ICs and can also be detected 

as two independent spike sources.

It is important to mention in this context that, as shown in the previous section, ICA yields 

different separabilities on different ICs. However, it is not known which of the IC achieves 

the best separability for every neuron. Therefore, the best IC cannot be selected blindly.

ICA Performance Evaluation

To use ICA, followed by simple threshold detection for spike sorting, the neuronal sources 

need to be well-separated, and each neuron needs to be prominent and detectable on exactly 

one IC. To evaluate the applicability of such an ICA-based spike-sorting method, we 

analyzed the performance of ICA with regard to achieving three goals: 1) SNR increase; 2) 

separation of the neuronal sources; and 3) redundancy reduction. For this purpose, we used 

the basic evaluation metrics, which were defined in Evaluation Criteria.
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ICA was applied to simulated RGC activity at different cell densities (data set B; see 

Methods). For calculation of the evaluation criteria, the noise signals and the templates that 

were used in the simulations have been considered.

First, the SNR of the neurons on the raw data (SNREL) was compared with that on the ICs 

(SNRIC; Fig. 6A), whereat an overall increase in the SNRIC was observed. The SNR ratio 

rSNR = SNRIC/SNREL was found to be particularly large for neurons with high SNREL, 

which suggests that ICA is more effective in demixing signals of high-SNR neurons. 

However, the SNR increase drops for configurations with higher cell densities. Whereas for 

D = 40 μm, 82% of the neurons have rSNR > 1, for D = 20 μm this is only the case for 44% 

of the neurons (Fig. 6B).

Next, we addressed the question of how well the neuronal sources are separated in the 

representation of ICs. Separability SEPIC denotes the difference between the peak of a 

neuron on an IC and the next highest peak of another neuron. If a neuron has a large enough 

SEPIC, the sorted spikes can be obtained by simply applying threshold detection to the 

respective IC. We define the condition for a neuron to be separable if it has an SEPIC above 

a threshold of 5. Note that the SEPIC is given in units of standard deviations of the noise in 

the IC, like the SNRIC, and, therefore, every neuron with an SEPIC > 5 also has an SNRIC > 

5.

Figure 6C shows the separability and SNR values of the neurons for different configurations; 

the color code indicates the template energy. The dashed lines confine the thresholds with 

regard to detectability, and therefore all neurons positioned in the upper right area of the plot 

are detectable and separable according to the defined criteria. For largely spaced neurons, 

separability increases approximately linearly with the SNR. The overall separability drops 

for larger neuron densities, and several large-SNR neurons feature low separability for the 

most tightly spaced configuration D = 20 μm. ICA yields an increase in separability 

compared with the raw data (Fig. 6D). However, a substantial decrease in separability is 

observed for tightly spaced neuron configurations, reflected by the low percentage of 

neurons featuring SEPIC > 5 or SEPEL > 5.

The third performance criterion is the reduction of redundancy in the IC space. The 

redundancies in the IC and electrode space were computed for a total of 1,460 simulated 

neurons in all configurations. Figure 6E shows the histogram counts for REDEL and REDIC. 

A majority of the neurons yields REDIC values between 1 and 2, and thus ICA performs 

well in reducing the dimensionality of the data.

Note that the zero value in the y-axis is not shown, and thus neurons with REDIC = 0 were 

excluded in this graphic. Whereas low REDIC values are desired, as they mean that the 

individual neurons are not detected many times, REDIC = 0 means that the neuron cannot be 

detected at any of the ICs.

Finally, the effect of an increased SNR (Fig. 6, A and B) on the detection of the neurons was 

evaluated. We found that for the configurations with D ≥ 30 μm, more neurons are detectable 

on the ICs (Fig. 6F) due to the increase in SNR obtained by using ICA. One has to note, 

however, that the SNR increase, as shown in Fig. 6A, is relatively small for low-SNR 
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neurons. Therefore, ICA only slightly increases the percentage of detectable neurons. For 

configurations with D < 30 μm, the percentage of detectable neurons based on the ICs drops 

below the percentage of detectable neurons based on the raw signals, which is approximately 

constant across all configurations. We conclude that ICA fails to improve signal quality for 

very dense neuron populations but is beneficial for lower density populations.

The presented analyses revealed that ICA, applied to HD-MEA recordings, yields only 

limited separation performance and is, therefore, not suited to be used as a stand-alone 

spike-sorting tool in combination with threshold detection.

ICA Applied to Recorded Data

An example of ICA, applied to block recordings with spontaneous RGC activity is 

illustrated in Fig. 7. The DCVs, depicted in Fig. 7A, yield spatially localized high 

weightings. Note that the input to ICA is the multielectrode signal without any information 

on the electrode positions and that the neuronal templates are localized in space. Therefore, 

spatially localized high weighting values in the DCVs are a good indicator that the signals, 

underlying the ICs, originate from neuronal units.

In looking at the spike waveforms, some ICs (e.g., ICs 1 and 7 in Fig. 7B) feature high 

separability and, practically, represent single-unit spike trains of neurons. However, the 

problems of limited separability and dimensionality reduction that were discussed in the 

previous sections are also visible in the IC signals. Several ICs (e.g., ICs 3–6 and 8) 

presumably contain spikes from multiple neurons as indicated by spike waveforms of 

different amplitudes on the IC. On the other hand, in some cases, spikes from a single 

neuron were observed on multiple components (red arrows in Fig. 7B).

Approaches for ICA-Based Spike Sorting

Since most ICs do not represent single-unit spike trains (Fig. 7B), the spikes cannot be 

sorted by just applying event detection to the ICs. The reduced redundancy in the data as 

well as the increased SNR and separability are, however, still valuable features of the IC 

representation. In this section, we propose to use postprocessing techniques to overcome the 

most severe limitations arising from the nonlinearity of the templates.

For the case that an IC contains spikes of multiple units, the spikes can be separated by 

means of PCA-based clustering of the IC spike waveforms. This is exemplarily shown for IC 
4 in Fig. 7, C–E. The green cluster, which exhibits large spike signals in this IC, corresponds 

most likely to the neuron that can be associated with this component. The smaller spikes, 

grouped into the red cluster, can be discarded and may be detected on other ICs. Note that 

the peak-to-peak amplitudes in the red cluster (Fig. 7E) show large variability, suggesting 

that these spikes arise from multiple neurons.

The problem of multiple detection of neurons can be addressed by using an aggregation 

method, which, e.g., compares the identified spike times of the questionable neurons and 

merges them if they have a specific number of spike times in common (Litke et al. 2004). 

Additionally, waveform similarity and ISI statistics can be included as aggregation criteria 

(Fee et al. 1996a).
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Furthermore, ICA-based spike sorting can be performed in an iterative procedure: ICA is 

applied to the data, and spikes are identified by applying threshold detection to the ICs. 

Following clustering and merging, the STA waveforms of identified neurons are subtracted 

from the raw data. In a next iteration, ICA is applied to the residual signals. Similar, 

subtractive methods were proposed for spike sorting using optimal filters (Gozani and Miller 

1994) and template matching (Vargas-Irwin and Donoghue 2007). This iterative scheme, 

which adds a nonlinear feature to the linear ICA approach, is motivated by two reasons. On 

the one hand, neurons featuring large signal amplitudes render the separation of neighboring, 

spatially overlapping neurons with smaller amplitudes difficult. Therefore, the identification 

and subtraction of dominant neuronal sources allows for identifying less dominant signals in 

the subsequent ICA iteration. On the other hand, ICA facilitates the detection and 

classification of a spike A even though it temporally overlaps with another spike B. The 

proper subtraction of spike A will improve detection and classification of spike B in the 

proximate iteration in case that it cannot be identified on another IC.

An algorithm based on the described approaches was implemented. ICA was applied to the 

band-pass filtered recordings, decomposing the data into ICs. AP events, identified by 

applying threshold detection to the IC signals, were clustered (KlustaKwik), based on the 

principal components of the IC spike traces. Clusters with high standard deviation on the 

multichannel spike traces were believed to be erroneous and discarded. After an intermediate 

merging step, during which clusters of multiple-detected neurons were aggregated, the STA 

spikes were subtracted from the raw data. In the next iteration, ICA was applied to the 

residual signal. This iterative scheme was repeated for a defined number of iterations. A 

detailed description of the individual algorithm steps is given in ICA-Based Spike-Sorting 
Algorithm in Appendix.

Figure 8 shows the templates (black) of 18 sorted cells from recorded RGC activity on an 

HD block. The DCV weightings (background colors) largely overlap with the active 

electrodes of the neuron templates. The individual traces are depicted in gray. Concurrent 

high-amplitude spiking activity of neighboring neurons results in visible gray traces near the 

neuron template, which can be observed for several neurons (e.g., for templates 1, 2, 4, 5, 

and 6). These traces, which lie mostly outside the DCV active area, indicate that ICA 

allowed to classify correctly the spikes despite overlaps.

Finally, an unsupervised version of the spike-sorting algorithm was applied to the simulated 

data set B, and the sorting output was matched with the simulated data. A sorted neuron was 

assigned to a simulated neuron, if the number of matching spikes exceeded 10% of the total 

number of spikes of the simulated neuron. We classified the simulated neurons as identified 

(if detected as 1 neuron), identified multiple (if detected as 2 or more separate neurons), 

falsely merged (if detected but merged with 1 or more simulated neurons), or as not found (if 

not detected at all). The classification percentages of the simulated neurons are depicted in 

Fig. 9A. As for ICA alone, the sorting performance was found to depend on the cell density. 

Additionally, the neuronal signal amplitude played a dominant role. As shown in Fig. 9C for 

the different configuarations, most detected neurons featured a certain amplitude range, 

whereas neurons with lower amplitudes passed constantly undetected. This correlates to the 

observation that the separability of a neuron on the IC strongly depends on its SNR.
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To quantify the sorting quality, each sorted neuron was assigned to a simulated neuron 

(based on the number of matching spikes), and the numbers of true-positive (TP), false-

positive (FP), and false-negative (FN) events were computed. We used the performance 

measures “sensitivity” [TP/(TP+FN)] and “precision” [TP/(TP+FP)]; a sensitivity value of 1 

means that all spikes were detected (no FNs), and a precision value of 1 signifies that only 

correct spikes were detected (no FPs). Figure 9B shows box plots of the performance results. 

The blue boxes indicate the interquartile ranges (IQR), and the black whiskers the highest 

and lowest data values that are within 1.5 times the IQR. Therefore, the lower performance 

bounds are given by the lower border of the blue boxes (for 75% of the neurons) and by the 

lower whiskers (for 87.5% of the neurons). Although there were numerous neurons with 

poor performance (outliers: red circles), the majority of the sorted neurons (indicated by the 

medians: red lines) yielded sensitivity and precision values >0.95 throughout all 

configurations. The performance was again found to depend on the cell density. For 

configurations D ≥ 35 μm, 87.5% of the neurons yield in performance values >0.93.

The iterative approach allowed to increase the number of detected neurons (i.e., substantial 

increases for iterations 2 and 3). This is evident from the number of detected neurons after 

each ICA iteration shown in Fig. 9D.

We also compared the detection performance for overlapping and nonoverlapping spikes 

(Table 2). This analysis revealed that the ICA approach performs well in classifying spikes 

despite the fact that they are temporally overlapping with spikes from nearby neurons. The 

error probability associated with overlaps (right column in Table 2) was determined using 

Eq. 16 in Appendix. These error probabilities varied between 1.4 and 6% for the different 

configurations and are on the same order as the probabilities for nonoverlap errors. 

Accordingly, even for the highest-density case, only 1 out of 16 overlapping spikes was 

missed due to spatiotemporal interference with a spike from another neuron.

Discussion

Recently, ICA has received increasing attention as a tool to analyze biomedical signals, such 

as EEG or functional MRI, as well as for spike sorting of optical brain recordings (Hill et al. 

2010; Mukamel et al. 2009; Reidl et al. 2007; Stone 2002). Being an automatic tool for 

source separation of redundant data sets, ICA represents a promising candidate to facilitate 

rapid spike sorting of HD-MEA data.

In this paper, the suitability of ICA for demixing HD-MEA recordings was evaluated for the 

first time. We analyzed neuronal activity, recorded at high spatiotemporal resolution, and 

found that the fundamental requirement for ICA, a linear mixture of the source signals, is 

not fully satisfied by the characteristics of the data. Instead, the linearity between the 

waveforms of a neuron on different electrodes is decreased, which is mainly due to AP 

propagation delays.1 The compromised linearity was found to be a limiting factor already in 

sparse neuron arrangements, which impeded perfect source separation. As a consequence, 

1Additional analyses (data not shown) revealed that the most relevant frequency bands for the phase differences between the 
waveforms on different channels are in the range between 1 and 4 kHz (for digitally unfiltered data). Consequently, low-pass filtering 
the data before ICA with a cutoff frequency ~1 kHz reduced the nonlinearity effect and led to an increased ICA performance with 
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ICA, followed by threshold detection, cannot be used as a stand-alone method for spike 

sorting of HD-MEA data. These findings presumably also hold for other devices and planar 

microelectrode systems (Csicsvari et al. 2003; Du et al. 2009; Takahashi and Sakurai 2005). 

The limitations of the applicability of ICA as a consequence of the nonlinear characteristic 

of the neuronal signals, as shown for tetrode recordings in Shiraishi et al. (2009), cannot be 

completely compensated by spatial oversampling using high electrode density.

The analysis of ICA applicability using simulated data sets of RGC activity as presented 

here revealed that the ICA performance strongly depends on the neuronal density in the 

preparation. Particularly, when the neuronal density approached the electrode density (3,161 

electrodes/mm2) and the number of simulated neurons (111) exceeded the number of 

electrodes (90), the separation performance clearly decreased. Neurons that produced high-

SNR signals entailed superior separation performance.

Except for very dense neuronal populations, ICA led to a significant overall SNR increase, 

which allowed for detecting more neurons. Moreover, the redundancy was clearly reduced in 

the ICs, which helps to overcome the problem of detecting the same APs multiple times on 

several electrode signals. For a limited number of neuronal sources, ICA automatically 

provided separation, which could serve to resolve efficiently overlapping spikes from these 

sources.

We showed that limitations arising from the nonlinearity of the sources could be addressed 

by combining the ICA output with postprocessing techniques. In particular, we proposed an 

algorithm, based on applying PCA and clustering, to the detected IC traces. For densities up 

to 1,300 neurons/mm2, >80% of the neurons were detected (>70% correctly identified as 

single neurons) using the unsupervised, ICA-based algorithm. The detection of the majority 

of the neurons for these densities was highly accurate (87.5% of the neurons had sensitivity 

and precision values above 0.86 and 0.91). Additionally, the algorithm performed well in 

resolving overlapping spikes. The percentage of misclassified overlaps (FNs), compared 

with nonoverlaps, was increased by factors of up to 2, and the particular error probability 

associated with the overlaps was between 1.4 and 6.3%.

The method of combining ICA with the proposed postprocessing techniques was not 

efficient for sorting the complete neuronal population but yielded good results in sorting 

large fractions of the cells with high accuracy. By iteratively subtracting identified spike 

waveforms from the data and applying ICA, the number of detected neurons could be 

increased by 15–68% for the different simulated neuron densities.

In conclusion, our results suggest that ICA applied to HD-MEA data does not yield 

complete separation of the neuronal signals. However, the IC-representation of the data has 

some valuable features, e.g., the reduced redundancy, which entails that spikes from a 

neuron are only prominent on one or a few ICs. This allows for treating the individual ICs as 

separate signals, which facilitates spike detection in redundant MEA data. In addition, the 

respect to finding efficient MCVs and reducing redundancy. However, the achieved source separation was still limited. Furthermore, 
by removing the frequencies >1 kHz, where spikes have a significant part of their energy, important information for discrimination 
gets lost, and the SNR decreases.
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increased separability contributes to resolving overlaps. These features make ICA a valuable 

tool to serve as a preprocessing step to spike sorting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example of raw data and neuronal templates. A: 2 s o frecorded data from 6 selected 

electrodes, labeled in D. B: data segment indicated by a gray rectangle in A. The spikes of 3 

retinal ganglion cells (RGCs) that were identified by supervised spike sorting were colored 

(red, green, and violet). C: superposition of all detected spike waveforms within 50 s of data 

(green neuron: 187 spikes; red neuron: 191 spikes; violet neuron: 1,046 spikes). The colored 

line shows the averaged waveform [spike-triggered averaging (STA)]. D: cell-specific 

templates (only green and red neuron shown for visualization purposes). Black dots indicate 

electrode positions on the microelectrode array (MEA). Colored waveforms correspond to 

the STA of the neuron on the respective electrode. The numbered electrodes refer to those in 

A–C. Scale bar: 100 μV/1.8 ms.
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Fig. 2. 
Sample arrangements of neurons (circles) and electrodes (black dots) for the 5 

configurations in data set B. Neurons lying outside the electrode block (gray) were also 

simulated, but only neurons inside the electrode block (black circles) were considered for the 

evaluation. D, average neuron distance.

Jäckel et al. Page 22

J Neurophysiol. Author manuscript; available in PMC 2017 May 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. 
Ganglion cell template analysis at high spatiotemporal resolution. A: RGC template; the 

blue point indicates the center of gravity, and the blue line shows a Gaussian-fit 

equipotential line; scale bar: 100 μV/1.6 ms. B: superimposed averaged waveforms with the 

color code indicating the distance to the reference point marked in C. The phase shift grows 

with increasing distance. C: for every averaged waveform, the action potential (AP) timing 

was determined based on the occurrence of the respective negative peak value. The position 

of the earliest AP occurrence (AP reference) is indicated by the white dot, and the 

background color shows AP delay with respect to this reference point. D: distance to 

reference point vs. AP delay for all recorded waveforms (blue points) of the RGC. The red 

line shows a linear fit with a slope of 1.8, corresponding to a velocity of 0.55 m/s. E, left: 
cross-correlation coefficient (CC) matrix for waveforms on 12 electrodes with highest 

amplitude (red dots in A and C), arranged according to AP delay in ascending order. The 

increasing delay (shown at the top) causes a decrease in the CC, with values as low as 0.61. 

Two main groups with high intragroup but low intergroup CCs appear, particularly 

electrodes 1–7 and 8–12. Right: CC matrix for the same 12 waveforms, however, with the 

phase shift being corrected by alignment according to the occurrence of the negative peak 

value. The resulting CCs range between 0.89 and 1.
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Fig. 4. 
A: STA templates of 3 spatially overlapping neurons identified and extracted from retinal 

recordings. Scale bar: 100 μ;V/1.8 ms. B: individual templates and respective demixing 

coefficient vectors (DCVs), directly derived from the templates (see Appendix). C: demixed 

templates using the DCVs, which were directly derived from the templates. In this 

representation, the rows refer to the demixing components, and the columns refer to the 

neuron templates. Top: the manipulated, idealized case where linearity across each template 

is given. Bottom: the realistic case where linearity is not given. The DCVs used here are 

shown in B. D, left: template responses for the 1st 6 independent components (ICs) obtained 

by applying IC analysis (ICA) on the simulated data set. Right: corresponding DCV maps. 
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The arrows indicate an example where significant weightings for demixing 1 source (neuron 
3) are found on 2 ICs (ICs 2 and 4).
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Fig. 5. 
Using ICA to resolve overlaps. A: template waveforms (colored) and individual spike traces 

(gray, only 80 traces are shown per neuron for better visualization) on 9 selected electrodes 

for the neurons shown in Fig. 4. Many overlapping spikes are visible in the gray traces. B: 

principal component analysis (PCA) applied to the multichannel spike traces on the 9 

selected electrodes in A. Black dots indicate spikes from the neuron of interest, and gray 

dots denote spikes from other neurons. Spikes, which temporally overlapped with a spike 

from another neuron (timing difference of 10 samples or less), are colored violet (the 

respective overlapping spikes from the other neurons are not shown). Note that overlaps 

mostly lie outside of the main cluster. C: spike traces on ICs 1, 3, and 4 after applying ICA. 

The clean waveforms along the diagonal indicate that separability is given and that overlaps 

have been resolved. D: PCA applied individually to the IC spike traces on the 3 selected ICs.
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Fig. 6. 
A: signal-to-noise-ratio (SNR) conditions for electrodes (SNREL) vs. ICs (SNRIC) for 

simulated neurons (red crosses) of 3 different configurations. The dashed line shows SNREL 

= SNRIC. B: percentage of neurons, for which SNRIC > SNREL for the 5 configurations. C: 

SNR vs. separability for neurons of 3 different configurations. The dashed lines indicate 

threshold values for separability of neurons (SEPIC = 5 and SNRIC = 5). The color code 

indicates the template energies. D: percentage of neurons with SEPIC > 5 (blue) and SEPEL 

> 5 (red). E: histogram showing the counts of redundancies REDEL and REDIC for a total of 

1,130 neurons (330 neurons having REDIC = 0 were excluded from the graphic 

representation). The dashed line indicates REDEL = REDIC. F: percentage of neurons that 

can be detected according to the criteria SNRIC > 5 (blue) and SNREL > 5 (red) for the 5 

configurations.
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Fig. 7. 
Example of ICA applied to retinal recordings. A: spatial map of DCVs for the 1st 8 

components. The coefficients are normalized with regard to the resulting IC signal having a 

standard deviation of 1; therefore, no absolute values are shown here. The white line in the 

corresponding color bars represents the 0 value. B: corresponding IC signals (left) and close-

up (right, data segment is indicated by a gray rectangle on left plot). Except for the large 

spikes in ICs 4 and 6, which originate from the same neuron (red arrows), the spikes on 

different components belong to different neurons, as they are not correlated in their timing. 

C: threshold detection and clustering for IC 4. Top: dashed line representing the threshold 

level; detected events are colored. Bottom left: superimposed IC traces for all detected 

events above threshold within 20 s. Bottom right: 1st and 2nd PCA scores for detected 

events, which can be clustered (colors). D: spatial spike distributions for both clusters over 
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selected electrodes marked by the white rectangle in A, showing the average spike shape 

(colored) and the individual traces (gray). Scale bar: 100 µV/1 ms. E: peak-to-peak 

amplitude values of the 2 clusters on pairs of electrodes, EL1–EL2 and EL1–EL3; the 

electrodes are indicated in D.
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Fig. 8. 
STA templates (black) and individual traces (gray) of neurons as identified using the 

iterative ICA-based approach. The DCVs are indicated through the color code in the 

background. Scale bars: 100 μV/1 ms. For visualization purposes, the templates were 

individually scaled, which results in variable-size scale bars.
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Fig. 9. 
Evaluation of spike sorting as applied to simulated data sets. A: percentage of simulated 

neurons classified as identified, identified multiple, falsely merged, and not identified for the 

different configurations. B: box plots of the sensitivity and precision values for all sorted 

neurons, showing the median values (red horizontal line), the interquartile ranges (IQR; blue 

boxes), highest and lowest data values that are within 1.5 times the IQR (black whiskers), 

and outliers outside 1.5 times the IQR (red circles). C: histogram counts of neuron 

classification vs. neuronal-signal peak-to-peak amplitude for 3 configurations. D: cumulative 

sum of detected neurons vs. ICA iterations.
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Table 1
Simulation overview for configurations in data set B

Configuration
Average Neuron 

Distance, μm Cell Density, Neurons/mm2

Approximate Number of 
Neurons per Simulation 
(Included in Analysis/

Simulated)
Number of 

Simulations Used

Neurons 
Considered in 

Analysis

1 40     722 18/32 20 358

2 35     943 24/40 15 358

3 30 1,283 30/50 12 358

4 25 1,848 46/77   8 358

5 20 2,887  71/111   5 358

Different numbers of simulations were considered for different configurations to have equal sample sizes in the analysis. For comparison of these 

values, please keep in mind that the average electrode distance is 19 μm, the electrode density is 3,161 mm−2, and the number of electrodes used in 
the simulations is 90 (high-density arrangement of 9 × 10 electrodes).
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Table 2
Classification performance (false-negative events) of nonoverlapping vs. overlapping 
spikes

Nonoverlaps Overlaps

D, µm Total Missed (pE) Total Missed (pOE) Overlap-Specific Error Probability (pO)

40 75,824 1,332 (1.8%) 2,507 81 (3.2%) 1.4%

35 63,425 1,282 (2.0%) 2,214 97 (4.4%) 2.4%

30 70,797 1,860 (2.6%) 3,158 204 (6.4%) 3.9%

25 57,908 2,220 (3.8%) 4,873 426 (8.7%) 5.1%

20 49,803 2,510 (5.0%) 6,311     694 (11%) 6.3%

For this particular analysis, all sorted neurons with sensitivities >0.6 were considered. Overlaps were defined as spikes featuring a time difference 
of 10 samples or less to spikes of other neurons that were closer than 50 μm. The observed error probabilities (pO) for nonoverlapping spikes (pE) 

and for overlapping spikes (pOE) were used to compute the probability associated with overlapping spikes pO shown in the last column, using Eq. 

16 in Appendix. D, distance.
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