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Abstract

Reliable real-time low-latency spike sorting with large data throughput is essential for studies of 

neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of 

neural networks is based on the networks' most recent activity. However, the majority of existing 

multi-electrode spike-sorting algorithms are unsuited for processing high quantities of 

simultaneously recorded data. Recording from large neuronal networks using large high-density 

electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware 

regarding computational complexity and data transmission bandwidth; this, in turn, entails 

demanding requirements in terms of chip area, memory resources and processing latency.

This paper presents computational complexity optimization techniques, which facilitate the use of 

spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then 

applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. 

Further, a real-time low-latency high-performance VLSI hardware architecture of the modified 

algorithm is presented, featuring a folded structure capable of processing the activity of hundreds 

of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the 

nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or 

spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage 

reduction.

Index Terms

FPGA; high throughput; low latency; multi-electrode; real-time; spike sorting

I Introduction

Signals in neuronal networks propagate as short fluctuations of the cell membrane potential

—action potentials, which can be recorded extracellularly in the form of voltage spikes. The 

extraction of single-neuron activity from the recordings (“spike sorting”) consists of a 
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number of nontrivial and error-prone processing steps, including spike detection, spike 

alignment, feature extraction and clustering [1].

It has been shown that recording the electrical activity of a single neuron on multiple 

electrodes strongly increases spike-sorting performance [2]. In recent years, the advances in 

CMOS technology have led to the development of high-density multi-electrode arrays 

(HDMEAs) consisting of thousands of electrodes [3]–[6]. Applications of devices capable of 

recording single neuron activity on multiple electrodes range from in vivo studies of brain 

structure and clinical treatments to in vitro investigations of neural network dynamics, [7]–

[9].

High-density multi-electrode (HDME) neuronal recording systems typically consist of 

recording electrodes and a host machine (e.g., PC) used for signal processing and data 

storage. The amount of data in large HDME recording systems renders data-processing units 

highly complex, imposes stringent demands on data transmission bandwidth between the 

recording electrodes and the host, and introduces a high demand on the data storage 

resources on the host side. Moreover, processing the data on the host side, due to the data-

handling complexity, leads to high latencies that are unsuitable for, e.g., closed-loop 

experiments. For such experiments, the stimulation of individual cells is based on the 

recorded activity of a neural network and needs to be performed within just a few 

milliseconds following detected activity in the network [10].

Spike sorting performed in real time, on a dedicated hardware device located in the 

proximity of the recording electrodes, enables the transmission of only the relevant 

information—spike times and/or spike waveforms to the host, which reduces data-

transmission bandwidth and storage requirements on the host. It also leads to a reduction in 

data-handling complexity, which, in turn, shortens the data-processing execution latency.

A comparative theoretical study of commonly used processing steps in spike sorting, from 

the real-time hardware implementation perspective, is given in [11]. Most of the presently 

available devices that feature real-time performance are based on simple decision rules of 

different threshold crossings [12], [13], which provide a low-complexity and low-latency 

implementation, but cannot, however, guarantee a high spike-sorting performance. One of 

the spike-sorting methods, commonly used as a benchmark method, principal component 

analysis (PCA), has been optimized for real-time implementation in the devices presented in 

[14]–[16]. However, all of these methods target single-electrode-based devices (i.e., devices 

in which single neurons are sensed by single electrodes). Only a few spike-sorting methods 

have been developed to specifically target the HDME type of recording [18]–[22]. This is in 

part due to the fact that HDME recording is a relatively novel method for neuronal recording 

and in part due to the challenges to perform spike sorting for this type of recording, as 

discussed in [17]. None of the above methods has been evaluated with respect to a real-time, 

low-latency hardware implementation. Furthermore, the existing algorithms developed for 

recording devices that feature small electrode sets (e.g., tetrodes) are not suitable for dealing 

with large data throughputs.
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HDMEA devices face the challenge of correctly processing independent simultaneous 

spiking activities of multiple neurons (“spike overlaps”). If the simultaneous activity occurs 

in multiple neurons that are distant enough not to be sensed by the same electrodes, as 

illustrated in Fig. 1(a), we refer to this type of overlap as a “temporal overlap”. In [20], a 

straightforward segmentation of the electrode array is performed to deal with this type of 

overlap, whereas [21] shows the benefits of using ICA for this purpose. If neurons are close 

to each other, the individual groups of electrodes sensing their activities spatially overlap 

[Fig. 1(b)], hence, we refer to this type of overlap as “spatio-temporal (S-T) overlap” [19], 

[28].

In this paper we introduce “divide-and-conquer”-inspired optimization techniques for spike-

sorting algorithms that target HDME recordings. Further, we apply the techniques on a 

template-matching algorithm, previously published in [23] and [24]. Spike templates are 

prototypical spike waveforms that are calculated by averaging all spike waveforms 

belonging to a certain neuron found by an initial spike sorting. Template-matching has the 

advantage that it can be applied to novel data, which were not yet sorted, more efficiently 

than a clustering-based spike sorting. The initial spike sorting is performed in a pre-

processing step, off-line, on a host machine, where spike templates and the template-

matching filter coefficients are also calculated. The complete spike-sorting setup is 

illustrated in Fig. 2. The algorithm optimization addresses the high redundancy in the data 

and the issue of temporal spike overlaps.

We present the implementation of the optimized template matching algorithm in a real-time, 

low-latency, folding structure-based VLSI hardware architecture. Further, we analyze the 

hardware's spike-sorting performance and resource utilization, and we examine the impact of 

a reduction of the assigned number of electrodes per neuron on these two parameters. We 

conclude that on a medium-size Virtex 6 device we can simultaneously process 650 neurons, 

using five electrodes per neuron, with a latency of 2.65 ms, achieving a spike-sorting error of 

0.04 (4%) for spikes not involved in spatio-temporal overlaps.

This paper is organized as follows. Section II introduces the complexity optimization 

techniques for HDME spike-sorting algorithms. In Section III we apply these techniques to a 

template-matching based spike-sorting algorithm [23], [24]. The low-latency high-

throughput folded hardware architecture resulting from this optimization is introduced in 

Section IV. The final section of the paper investigates the performance of the optimization 

techniques and the implemented hardware architecture.

Algorithm Optimization

The complexity optimization targets three major challenges of efficient implementation of 

HDME data processing algorithms: 1) temporal spike overlaps; 2) the large volume of 

redundant data; and 3) the large number of recorded neurons.

1) We decompose temporal spike overlaps by dividing the overall electrode area 

into independent regions of activity (“spike regions”) and processing them 

separately. In the center of each region is a spiking neuron. We define a maximal 

radius R of spatial spreading of a spike waveform. This value corresponds to the 
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area around a spiking neuron where its template waveform has significant 

amplitude (greater than noise level). Two spiking neurons are placed in separate 

regions in case their mutual distance exceeds R. The neurons are, in this case, 

considered to be distant. The value of R depends on the nature of the recording 

(usually few tens of μm).

Each region is defined by the position of the spiking neuron in its center. This 

neuronal position is approximated by the position of the electrode on which the 

neuron's template has the highest amplitude.

2) In order to deal with the high data redundancy, we reduce the number of 

electrodes considered per neuron. We simply order the set of electrodes for each 

neuron according to the energy of the template waveform on each electrode. We 

define the energy of a template as the sum of squares of the waveform samples. 

Also, more sophisticated relevance measures could be used, e.g., considering the 

noise statistics, the discriminability of the neuron and its neighbors or the spatial 

spread of the electrodes.

We discard the electrodes with low-energy templates and the remaining 

electrodes we refer to as “relevant electrodes” of a certain neuron. Concatenated 

spike waveforms recorded on the relevant electrodes, from now on, we refer to 

as “multi-electrode spike waveform” (“spike waveform” for the sake of brevity) 

of a neuron.

3) Due to the large number of neurons that need to be processed simultaneously, 

i.e., in order to save computational resources, processing of the entire set of 

recording electrodes is multiplexed (“folded”) in time. The overall electrode set 

is partitioned so that the computations within each partition are performed in a 

single multiplexing (“folding”) cycle in the hardware architecture. The 

partitioning of the electrode set is possible due to the fact that the neurons that 

do not share relevant electrodes can be treated independently by an algorithm. 

Ideally, neurons from one electrode partition do not yield signals on any relevant 

electrodes of the neurons in the adjacent partitions.

In order to ensure that each fold of the hardware architecture contains approximately the 

same number of computational units, i.e., signal-processing units that operate in parallel 

(e.g., filters for filter-based algorithms), each partition encompasses approximately the same 

number of neurons. This measure leads to a uniform distribution of the computing demands 

across the electrode set. The upper limit of the partition number (NP) is determined by the 

data sampling frequency (fS) and the single-partition processing step latency (tD) as follows: 

NP < 1/(fstD).

The division of the overall electrode set into independent partitions is usually not 

straightforward. The neurons belonging to adjacent partitions and located near the partition 

edges are likely to yield signals on some common relevant electrodes. In this case, a neuron 

spiking near the edge of a partition (“edge neuron”) might induce false spike detection, i.e., 

might cause a false spike to be assigned to a neuron located in its proximity, but belonging to 

the adjacent partition. For this reason we extend each provisional partition and cause the 
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adjacent partitions to overlap. We refer to this partition-overlap area as a “marginal zone”. 

An illustration of an electrode set, its provisional partitions and marginal zones is depicted in 

Fig. 3. The width of a partition's marginal zone is defined in such a way as to ensure that 

spiking of a neuron at one side of the marginal zone cannot result in false spike detection at 

the opposite side of the marginal zone.

To prevent false spikes from being assigned to the neurons located within a marginal zone 

(“marginal neurons”) we consider the following: a neuron is spiking in a partition Q, close to 

the marginal zone, which is shared by partition Q and an adjacent partition W. As a result of 

sharing relevant electrodes with the spiking neuron, a marginal neuron within this zone 

might be falsely reported as active in the partition W. On the other hand, in the case that the 

marginal neuron really spikes, its activity will be reported in both the partition Q and the 

partition W. This is why the marginal neuron's spiking is accepted only if its activity had 

been reported in both partitions, Q and W. A generalized approach is as follows: spiking of a 

marginal neuron is accepted as true only if a report has been generated as many times as 

there are partitions that this neuron belongs to (considering possible spatial layouts of 

partitions, this number can be 2, 3 or 4). The reports need not be simultaneous (i.e., within 

the same sampling cycle), but can occur within a short sampling window, which is wide 

enough (few cycles) to allow for possible noise-related jitter in the spike detection.

II BOTM Algorithm

In this section, we give a theoretical overview of the Bayes-optimal template-matching 

(BOTM) spike-sorting algorithm [23], [24], which is targeted for HDME neural recording 

systems. The overview is followed by the algorithm's complexity optimization according to 

the technique introduced in the previous section with the aim to make the algorithm suitable 

for use with high-throughput HDME recording systems.

Algorithm Overview

The BOTM algorithm takes into account the multi-electrode nature of the recordings made 

by high-density electrodes. The algorithm is based on template matching; its flow is 

illustrated in Fig. 4. Discrimination between different neurons in the recorded data is based 

on finite impulse response (FIR) filters, F. Each neuron i that is being recorded has its 

dedicated FIR filter, Fi.  represents a sum of multiple subfilters,  where k 
denotes electrodes neuron i is recorded from. The signal from each electrode that records 

from the neuron is filtered (convolved) by its dedicated subfilter. The coefficients of a 

subfilter are matched to the average spike waveform that a neuron generates on the electrode 

which the subfilter is dedicated to (single-electrode template). All single-electrode templates 

of a neuron, when concatenated, form a multi-electrode template (which we will simply 

refer to as “template”, ξ). The matching of the subfilters' coefficients to the corresponding 

single-electrode templates is done in such a way as to maximize the FIR filter's response to 

the corresponding template while striving to minimize the FIR filter's response to the noise 

present in the recordings. The subfilter coefficients, i.e., the coefficients of Fi are matched to 

the template of the ith neuron, ξi, by multiplying the template by the inverse noise 

covariance matrix, C: Fi = C−1ξi. Due to the nonstationary recording environment (e.g., 
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electrode drift, cell bursting activities, temperature fluctuation, etc.), the templates tend to 

change in time [25]. To keep the sorting performance high, the algorithm can be periodically 

adapted to this change by recomputing the templates and reconfiguring the filters.

We denote xk (t) a vector containing the data recorded on electrode k over a time interval 

that corresponds to the length of a single-electrode template and which ends at time t. The 

response of the filter Fi is 

This response is then used to form a so-called “discriminant function” which serves in 

detecting spikes and discriminating between different neurons

(1)

The constant ci carries information on the ith neuron's template energy and its probability of 

spike generation (pi): ci = In (pi) − (1/2)ξiTC−1ξi.

The calculated discriminant functions are checked for exceeding the zero value (zero-

threshold crossing) and in the case that crossing occurs, a spike is detected and reported. 

Zero-threshold crossing is usually detectable on multiple discriminant functions that 

correspond to the neurons located in the proximity of the one that spiked. This is due to the 

fact that the filters in the BOTM algorithm are designed to enhance the waveforms of their 

corresponding neurons and to reject the noise, but to not reject the waveforms originating 

from the other recorded neurons (for details, see [23] and [24]). The ID of the spiking 

neuron corresponds to the discriminant function that has the maximum value in a sampling 

window following the first threshold exceeding. This sampling window will be referred to as 

“detection window (DW)”.

The original algorithm includes a dedicated treatment of spatio-temporal spike overlaps; this 

is, however, beyond the scope of this paper due to the high computational complexity.

The fact that each of the filtering operations and the discriminant function calculations in the 

algorithm can be performed independently for each neuron opens up the possibility of 

parallelizing the algorithm's execution. This parallelism, and the simplicity of the operators 

used (addition and multiplication) makes the algorithm potentially suitable for hardware 

implementation. However, the complexity of the algorithm grows significantly with 

increasing number of electrodes and recorded neurons, which calls for optimization steps to 

be performed prior to the hardware implementation.

A BOTM-Specific Optimization

1 Electrode Selection—The complexity of the BOTM algorithm is proportional to the 

number of multiply-accumulate (MAC) operations executed in the FIR filters. This number 

corresponds to the filter length, i.e., the number of filter coefficients, which is, according to 

(1), equal to the number of samples in the template that the filter has been matched to. After 

investigating several ways of selecting relevant electrodes (maximum/minimum template 
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peak value, template peak-to-peak value, single-electrode template energy, single-electrode 

filter energy), we have found that selecting electrodes based on the highest single-electrode 

template energy yields the best sorting performance.

2 Detection Window Sizing—The length of the DW (LDW) needs to be carefully 

estimated. If the detection window is chosen to be too short, false spikes will be reported. 

This is a consequence of the fact that the window does not encompass the entire set of 

discriminant function points above the zero-threshold, as depicted in Fig. 5(a). In case the 

window is too long, a spike will be missed if two neurons spike shortly, one after the other 

[Fig. 5(b)]. As the decision of the maximal discriminant function is taken at the end of each 

window, the longer the window, the larger is the time delay between spike occurrence and its 

identification. We have opted for an adjustable DW length value—the minimal DW length 

 is fixed and DW ends as soon as all discriminant functions fall below the zero-

threshold.

III BOTM Hardware Architecture

In this section we introduce a real-time, low-latency folded VLSI hardware architecture of 

the BOTM algorithm. We discuss the benefits of the optimization steps performed in the 

previous section and examine the architecture's critical path and its latency.

A VLSI Hardware Implementation

The block diagram of the VLSI hardware implementation of the BOTM spike-sorting 

algorithm is given in Fig. 6. The main processing load in the designed device is located in 

the “partition-processing unit” (PPU), where a number of FIR filters operate in parallel, each 

filter corresponding to a single neuron in the partition. The architecture is folded—the 

processing of the entire partition set is multiplexed in time, i.e., the PPU processes one 

electrode partition at a time. The number of FIR filters running in parallel is determined by 

the maximal number of neurons found in any of the existing partitions. In order to ensure 

optimal hardware resource utilization, the electrode set is partitioned in such a way that the 

number of neurons in all partitions is approximately the same.

We used direct FIR filters, with the order of 49. The order depends on the single-electrode 

spike waveform length, which amounted to 50 for our data. Multiply-accumulate (MAC) 

hardware logic in the FIR filters has been implemented as a part of the PPU, while the filter 

taps' content has been stored external to this unit, in the RAM memory blocks. Since the 

input data are sampled at 20 kHz frequency, MAC operations within a single filter are 

performed sequentially, meaning that only one multiplier is needed per filter. The low logic 

utilization allows for an efficient area and power implementation. This FIR implementation 

is arguably more efficient than a commonly used distributed arithmetic FIR implementation. 

The distributed arithmetic implementation would, due to the high filter order that is used in 

the algorithm, result in a high memory utilization. Each filter has its own dedicated memory 

block, implemented in a FIFO form. The address of the first filter tap (containing the most 

recent data sample) is stored in a pointer, which is updated after each data sampling cycle. 

Filter coefficients are computed off-line, on an external host machine, and are, as well as the 
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filter taps, stored in RAM memory blocks, each filter having its own dedicated block. 

Dividing the memory into smaller blocks allows for parallel access to multiple blocks, 

required for parallel execution of filtering operations within the PPU. The coefficient-RAM 

blocks are reconfigurable in order to allow the spike-sorting hardware to be adapted to 

potential changes in spike templates, caused by the nonstationary nature of neural 

recordings. Coefficient reconfiguration can be performed during the real-time spike-sorting 

operations, i.e., “on-the-fly”, and requires less than one sampling period for execution. The 

time, after which filter coefficients need to be reconfigured, depends on the nature of the 

recordings and on the recording environment (e.g., the presence of electrode drift [26]), and 

it is typically in the range of several tens of minutes to hours. Results of partition processing 

that need to be utilized by the same partition in the following sampling cycle are stored in 

dedicated registers; the remaining computing resources are reused for processing the 

partition that follows.

Apart from the filtering logic, each PPU contains the logic for calculating discriminant 

functions and parallel processing of temporal overlaps (distant simultaneous spiking 

activities). The constants used for forming discriminant functions in (1) are stored in a 

dedicated RAM block and can be reconfigured as part of the algorithm adaptation, together 

with the FIR filter coefficients. Each discriminant function is checked for threshold crossing, 

and the maxima of all discriminant functions that exceeded the zero-threshold are detected 

within the detection window that follows the threshold crossing. The candidate neurons 

found in this manner are then localized in the spike regions, one at a time. The dominant 

neuron of a region is the neuron that has the maximal discriminant function. The distance 

between two spiking neurons on the electrode set is calculated using a special coordinate 

system, described in the Appendix, which ensures lower computational complexity than in 

the case the Cartesian system is used. In the next step, the classification of spikes is 

performed.

The outputs of the PPU at different folding cycles are compared at the end of each sampling 

cycle. At this stage, the IDs of marginal neurons detected in different folding cycles are 

checked in order to discard false spike reports.

The data streamed into the FIR filters from the recording electrodes are usually digitalized 

with a low number of bits (ten in our case). For this reason, an interpolation stage has been 

included in the hardware in order to minimize the effect of a potential quantization error. 

The interpolation is done by means of band-pass filtering. We implemented a second-order, 

direct form II filter with a band-pass range from 500 Hz to 3 kHz. As the data from the 

electrodes are streamed in serially, filtering is multiplexed, so that the filtering logic is 

reused for each incoming signal sample. The filter states for the individual electrode signals 

are saved in local registers. The filter's frequency range can be configured depending on the 

nature of the recordings. The data come from the recording electrodes multiplexed in time, 

i.e., are streamed into the device. Interpolated data, obtained after band-pass filtering, are 

forwarded to the FIR filters according to the connectivity map. The connectivity map maps 

the input electrodes to the FIR filters, according to the selection of the relevant electrodes for 

each neuron, as discussed in Section II. Just like the filter coefficients and discriminant 

function constants, the connectivity map can be reconfigured “on-the-fly”. The length of the 
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different metrics used in the architecture is a tradeoff between quantization error and 

hardware usage, and the characteristic figures include: filter taps 20 bits, filter coefficients 

14 bits, discriminant functions 13 bits.

B Latency-Critical Data Path

The execution latency of the algorithm is defined as the interval that elapses between the 

time point at which a spike occurred and the time point at which the spike is classified. In 

the BOTM algorithm implementation, this value depends mostly on the length of the 

subfilters (i.e., the single-electrode template length), which directly depends on the nature of 

the neuronal recordings. The overall latency can be approximated in numbers of sampling 

clock cycles as  represents the number of samples between the negative 

peak of the band-pass filtered spike waveform (sample chosen to mark the occurrence of a 

spike) and the end of the spike waveform, as illustrated in Fig. 7. α stands for the data 

synchronization overhead in hardware and is equal to three sampling clock cycles for the 

presented architecture. This synchronization is a result of four different clock domains 

present in the system (input data-stream clock, folding clock, system clock and sampling 

clock).

IV Evaluation Results

In the following section, we present a performance evaluation of the hardware BOTM (HW-

BOTM) algorithm implementation on an FPGA platform by using semi-artificial HDMEA 

recordings.

A Performance Metrics

In order to estimate the spike-sorting performance of the HW-BOTM algorithm, we define 

the following metrics, denoting the spike-sorting error rate

(2)

FP represents the number of spikes that were falsely detected (“false positives”), FN the 

number of spikes present in the recordings that have not been detected (“false negatives”). 

Ns stands for the true number of spikes in the data.

The SNR of neuron i is then defined as

(3)

where ξi is the template of neuron i, and σk is the standard deviation of the noise on the 

electrode k, on which the template has its maximal absolute value.
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B Test Data

The test data consist of real noise, recorded on the device presented in [4], superimposed on 

the spike trains of real mouse retinal ganglion cells' spike templates [21]. The simulated 

array has a hexagonal arrangement and consists of 90 electrodes with 19 μm center-to-center 

distance. Three different cell densities have been used: 2887 cells/mm2, which corresponds 

to the cell density in retinal tissue preparations, 1283 cells/mm2 and 722 cells/mm2, 

corresponding to cell culture preparations. For each cell density, the performance of the 

algorithm is averaged over several different data sets for statistical purposes. The overall 

number of simulated neurons for the default density of 2887 cells/mm2 is around 2050. All 

neurons have SNR > 1, with respect to (3).

C Parameter Set

Based on the test data characteristics, its inter-spike intervals, and taking into consideration 

the low execution latency objective, we have set the minimal detection window length to ten 

samples. This parameter is robust, such that small variations of its value do not introduce 

significant changes in spike-sorting performance of the algorithm.

The value of the parameter R, which determines the critical value for two neurons to be 

considered distant, is determined by simulations. It is set to 70 μm and it depends on the 

nature of the test data, i.e., the radius of the electrode subset on which it is possible to record 

activity of a spiking neuron.

D Electrode Selection—Spike-Sorting Performance

To reduce data redundancy and save hardware resources, only a subset of electrodes is 

considered to process the signals of each neuron. A tradeoff between the number of 

electrodes considered per neuron and the spike-sorting performance in the form of false 

positives, false negatives, and total error rate is depicted in Fig. 8. The plotted data represent 

the spikes of neurons with SNR > 5 at a density of 2887 cells/mm2. The figure is divided 

into four plots: all spikes, spikes that are not involved in spatio-temporal (S-T) overlaps 

(46% of all spikes), spikes that are involved in spatio-temporal overlaps (54% of all spikes) 

and spikes that are involved in temporal overlaps (34% of all spikes). We have defined 

spatio-temporal overlaps as neurons spiking within a time interval of up to 1.5 ms 

(equivalent to 30 sampling cycles at 20 kHz sampling rate) and located within a distance of 

up to 70 μm (R). The temporal overlaps are defined as neurons spiking within a time interval 

of up to 1.5 ms and distant more than 70 μm. Having implemented no explicit S-T overlap 

processing in this hardware, the overall error rate is mainly due to the spikes involved in this 

type of overlap. However, the algorithm possesses an in-built capability to resolve spatio-

temporal overlaps to a certain degree, resulting in a relatively low error rate within this 

subset of spikes (0.17). This is due to the fact that the filters are “condensing” the spikes in 

time, i.e., the filter output waveforms are shorter in length than the original spike waveforms. 

This means that, although the original spike waveforms are overlapping, they produce 

clearly distinguishable, nonoverlapping peaks in the filter outputs and can be correctly 

resolved.
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The error rates in the subset with no S-T overlaps is very low, 0.02 for a high number of 

electrodes per neuron, FN error being the majority error type. Unlike the S-T overlaps, 

which have an error rate of 0.17, temporal overlaps are sorted with a low error rate of 0.025.

As expected, spike-sorting performance deteriorates by decreasing the number of electrodes 

considered per neuron. The small nonmonotonic behavior of the plots comes from the fact 

that parameter sets proven to be optimal for different electrode counts slightly differ. 

Keeping in mind the tradeoff between hardware resource minimization and spike-sorting 

performance maximization, we have opted to use the architecture with five electrodes per 

neuron, as it provides a sufficiently low error rate for the subset of spikes with no S-T 

overlaps (0.04).

Detailed analysis of the spike-sorting performance with five electrodes per neuron is shown 

in Fig. 9. Fig. 9(a) and (b) depicts the variation of FN and FP error rates, depending on the 

SNR of the spiking neurons. Focusing on high-SNR neurons (SNR > 5), Fig. 9(c) shows that 

errors of the FN type are more prominent than FP errors, both in spike subset with no S-T 

overlaps and spike subset with only S-T overlaps. Fig. 9(d) depicts the percentage of high-

SNR neurons with different ranges of error rates [according to (2)]. The plot shows results 

for the default neuron density of the test data used for the analysis (2887 cells/mm2), as well 

as for densities of 1283 and 722 cells/mm2. Obtained values show an increase in spike-

sorting performance for less dense cell configurations due to a better separation of spike 

waveforms among neurons. Even at the highest density, it is possible to sort a large number 

of neurons without a single error.

E Electrode Set Partitioning—Hardware Utilisation

The algorithm architecture has been implemented on a Virtex 6 FPGA device. Hardware 

resource utilization is measured by the number of inferred Look-Up Tables (LUTs) and 

registers (REGs). The hardware resource savings obtained by implementing the architecture 

folding are illustrated in the bottom plot in Fig. 10. The number of implemented folds 

corresponds to the number of partitions the array has been divided into, according to the 

electrode set partitioning technique presented in the paper. The hardware resources have 

been normalized with resources required for the nonfolded architecture. The utilization does 

not scale with 1/NP due to the hardware blocks that are not affected by folding. The number 

of registers storing the PPU outputs remains constant with the number of folds. Only the 

number of registers within the PPU that store intermediate results scales down with NP, 

which is the reason that the slope of the REGs plot does not follow the slope of the plot 

LUTs.

The nonfolded architecture referenced in Fig. 10 is capable of simultaneously processing 

128 neurons with five electrodes per neuron. In this architecture, the number of occupied 

Virtex 6 LUTs is 190 ⋅ 103, and the number of occupied registers is 29 ⋅ 103. The results 

mean that the same hardware resources can accommodate around 650 neurons using the 

eight-times fold architecture. The plotted results have been obtained under the assumption 

that no marginal neurons are present between different partitions. The occupied RAM 

memory scales only with the number of recorded neurons, not the number of folds, and 

equals 865 kb for the 128-neuron architecture at any fold.

Dragas et al. Page 11

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 May 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The upper plot in Fig. 10 shows the error rate when different number of partitions is 

implemented. The used width of the marginal zone was 60 μm, which ensured sufficient 

overlap of neighboring partitions. The values have been normalized to the error rate in the 

nonfolded architecture (0.16, see Fig. 8). The plot shows that saving hardware resources by 

dividing the electrode set into partitions does not introduce any noticeable changes in the 

spike-sorting performance.

F Spike-Sorting Latency

As discussed in Section IV, spike-sorting latency, i.e., the time interval between spike 

occurrence and spike classification, depends on algorithm parameters (mainly DW length) 

and the length of single-electrode spike templates. In the test data used in this paper, the 

typical single-electrode spike waveforms yield δ ≈ 40. Together with  the δ 
parameter leads to a latency of 53 sampling cycles, i.e., 2.65 ms at a 20 kHz sampling rate. 

This value is well within the range required for closed-loop-based experiments [10].

V Conclusion

We have presented a complexity optimization, which enables an efficient real-time high-

throughput hardware implementation of HDME spike-sorting algorithms. We have 

successfully implemented the optimization techniques on the previously published BOTM 

algorithm, enabling its use with large (thousands of electrodes) HDME neural recording 

systems in real time. We have implemented the expanded algorithm in VLSI hardware 

architecture, featuring a folded structure and an “on-the-fly” adaptation to changes in the 

nonstationary neuronal data. Benchmarking of the new method performed on a realistic test 

data evidenced an error rate of 0.02 for the architecture that considers the full set of 

electrodes for each neuron in the spike subset with no spatio-temporal overlaps; spikes 

involved in spatio-temporal overlaps are sorted with an error rate of around 0.17, which 

results almost entirely from false negative (FN) spikes. The resolution of spatio-temporal 

overlaps to a certain degree is due to the in-built capability of the algorithm to deal with this 

type of overlaps. The error rate could be further decreased if dedicated handling of S-T 

overlaps would be included in the method. The localization of spike regions that deals with 

temporal overlaps performs very well, as the error rate for the spikes involved in temporal 

overlaps is 0.025. The tight constraints on hardware resources called for a reduction of the 

number of electrodes used per neuron. The presented selection of electrodes ensured an error 

rate of 0.04 for spikes with no S-T overlaps when considering only five electrodes per 

neuron. In that case, the majority of errors are due to false negative spikes, while false 

positive error rates are kept low, which is particularly important for certain applications, 

such as closed-loop experiments. Furthermore, these errors are not spread uniformly over the 

neurons—many neurons are sorted entirely error-free. The analysis further showed that HW-

BOTM provides lower error rates for a lower density of cells on the electrode set.

The hardware architecture was verified on an FPGA Virtex 6 fabric, and it showed the 

ability to process hundreds of neurons simultaneously using a folded structure. The ability to 

process a large number of neurons in real time renders our architecture suitable for large-

electrode-set recordings, such as those reported in [17] and [27]. The presented architecture 
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could also be implemented as an ASIC, which would entail up to 18 times less area 

requirements and up to 14 times less power consumption in comparison to an FPGA 

implementation (see [26], study on 90 nm technology). The reduction in area and power 

could potentially allow for in vivo applications of the architecture. Architecture folding of 

the spike processing steps is enabled by the electrode set partitioning technique presented in 

the paper. The partitioning does not affect the spike-sorting performance, as shown by the 

analysis. The latency achieved for realistic retinal ganglion cell test data is 2.65 ms and it 

does not depend on the number of recorded cells, making the architecture suitable for real-

time spike sorting in closed-loop experiments.
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Appendix

The distance between two neurons A and B (see Fig. 11) is calculated using a 2-D 

coordinate system, A: (XA, YA), B: (XB, YB). The coordinate system has been defined in a 

way to provide a lower complexity for interneuronal distance calculation as compared to 

Cartesian coordinates, i.e., to remove the need of a multiplier. The neurons are regarded as 

distant if DAB > R. The reference points (OX and OY) are located far above the corners of 

the electrode set. Keeping in mind the typical dimensions of the existing electrode sets/

arrays (few hundred/few thousand μm), we can assume that at any given time, when DAB is 

in the range of values similar to the critical value R (few tens of μm), at least one of the 

angles α and β is small enough (e.g., α) to allow |XA − XB| ≈ DAB; while at the same time 

the larger angle, β, ensures |YA − YB| < DAB. In case both values |XA − XB| and |YA − YB| 

are less than R, the neurons A and B are considered to be close.
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Fig. 1. 
Illustration of (a) temporal and (b) spatio-temporal (S-T) spike overlaps. Electrodes able to 

record spikes from individual neurons are encompassed by ellipsoids. Electrode signals 

recorded during the individual spiking of neurons A and B are depicted on the right. 

Electrode signals resulting from simultaneous spiking of two neurons (A + B) represent the 

sum of the signals recorded during the independent spiking of the neurons. Waveforms used 

in the plots are simulated spike waveforms, without noise.
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Fig. 2. 
Flow diagram of the spike-sorting setup, with the components that are in the focus of this 

work highlighted in red.
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Fig. 3. 
Illustration of a partitioned electrode set. For clarity, not all partitions are shown. Partitions 

are limited by thick lines; thin lines mark the provisional partitions. Partitions are different in 

size, resulting from the nonuniform spatial distribution of neurons. Marginal zone is 

depicted by a grey rectangle. Lightblue ellipse encompasses relevant electrodes for a given 

neuron.
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Fig. 4. 
Illustration of the BOTM algorithm flow. High-density electrode set on the left and 

waveforms recorded on the electrodes (dots) in the case of an action potential. Each recorded 

neuron has its dedicated FIR filter; the filters consist of subfilters matched to the single-

electrode spike templates and are loaded with the electrode data at each sampling clock 

edge, according to the connectivity map. FIR filter responses are summed with constants to 

form discriminant functions. Discriminant functions are checked for exceeding the zero-

threshold; the maximal function within the subsequent detection window (DW) determines 

the ID of the spiking neuron.
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Fig. 5. 
Optimal discriminant window length illustrated for a set of discriminant functions. (a) 

Chosen DW length is too small to include all discriminant functions generated as a result of 

a single spike—a false DW will start as soon as the first ends, reporting false spikes. (b) Pair 

of neurons spike within a short time interval. If a large, nonoptimal DW length is used, the 

second spike will not be detected.
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Fig. 6. 
BOTM spike-sorting hardware architecture top-level block diagram. Architecture features a 

folded structure, enabling hardware resource sharing and simultaneous processing of several 

hundred neurons. In each fold, computations concerning neurons belonging to a single 

partition are executed in parallel. Filter taps and coefficients, as well as the discriminant 

function constants, are stored in block RAMs. Input data from the recording electrodes 

arrive in a stream (time-multiplexed), are band-pass filtered and forwarded to an FIR filter, 

according to a connectivity map.
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Fig. 7. 
Algorithm execution latency contributors. A spike occurred at t = 0; at t = δ the entire spike 

is located in the taps of the corresponding subfilters, and the resulting discriminant function 

reaches its maximum. After the DW's end has been reached, the spike is classified—the 

spiking neuron's ID is reported.
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Fig. 8. 
False negative and false positive error rates as a function of the number of electrodes per 

neuron for high SNR neurons (SNR > 5): (a) all spikes, (b) spikes not involved in spatio-

temporal (S-T) overlaps, (c) spikes involved in spatio-temporal overlaps, (d) spikes involved 

in temporal overlaps. Values in brackets represent the percentage of all spikes in the data that 

belong to a specific spike subset, (time-multiplexed) are band-pass filtered and forwarded to 

an FIR filter, according to a connectivity map.
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Fig. 9. 
Performance of the spike-sorting method in the case that five electrodes per neuron are 

considered. Dependence of (a) FN and (b) FP error rates on SNR of individual neurons has 

been analyzed. In (c) the relation between FN and FP rates is shown for spikes with no S-T 

overlaps and spikes with only S-T overlaps. (d) Percentage of neurons in different ranges of 

error rates for different cell densities. Both (c) and (d) refer to neurons with SNR > 5.
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Fig. 10. 
Hardware resource consumption and spike-sorting performance as a function of the number 

of electrode set partitions/folding stages. Value used for normalization of the hardware 

resources corresponds to the nonfolded architecture: 128 neurons, with five electrodes per 

neuron, the number of occupied Virtex 6 LUTs is 22.8⋅103, and the occupied registers is 

190⋅103. Spike-sorting performance is expressed as error rate on all spikes (2), normalized 

with respect to the error rate on all spikes in the nonfolded architecture. Normalization value 

is 0.16 (see Fig. 8).
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Fig. 11. 
Neuronal distances. Distance between two neurons A and B is calculated using a 2-D 

coordinate system, A: (XA, YA), B: (XB, YB).
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