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Abstract: This study aimed to investigate the inter-limb coordination pattern and the stability,
intensity, and complexity of the trunk and limbs motions in human crawling under different speeds.
Thirty healthy human adults finished hands-knees crawling trials on a treadmill at six different
speeds (from 1 km/h to 2.5 km/h). A home-made multi-channel acquisition system consisting of five
3-axis accelerometers (ACC) and four force sensors was used for the data collection. Ipsilateral phase
lag was used to represent inter-limb coordination pattern during crawling and power, harmonic ratio,
and sample entropy of acceleration signals were adopted to depict the motion intensity, stability,
and complexity of trunk and limbs respectively. Our results revealed some relationships between
inter-limb coordination patterns and the stability and complexity of trunk movement. Trot-like
crawling pattern was found to be the most stable and regular one at low speed in the view of trunk
movement, and no-limb-pairing pattern showed the lowest stability and the greatest complexity at
high speed. These relationships could be used to explain why subjects tended to avoid no-limb-pairing
pattern when speed was over 2 km/h no matter which coordination type they used at low speeds.
This also provided the evidence that the central nervous system (CNS) chose a stable inter-limb
coordination pattern to keep the body safe and avoid tumbling. Although considerable progress
has been made in the study of four-limb locomotion, much less is known about the reasons for
the variety of inter-limb coordination. The research results of the exploration on the inter-limb
coordination pattern choice during crawling from the standpoint of the motion stability, intensity,
and complexity of trunk and limbs sheds light on the underlying motor control strategy of the human
CNS and has important significance in the fields of clinical diagnosis, rehabilitation engineering,
and kinematics research.

Keywords: hands-knees crawling; accelerometer; inter-limb coordination; motion stability;
motion complexity

1. Introduction

Normal crawling is often regarded as a sign of the normal development of infants and young
children [1]. Crawling can be divided into hand-knee type, hand-foot type, scooting type, creeping
type, and mixed type, etc. [2]. Toddlers crawl before they can walk unsupported, and most of them
crawl via the hand-knee type [3]. In clinic, the development situation of infants and young children can
be evaluated by analyzing their crawling function. In the field of cerebral palsy (CP) rehabilitation [4,5],
crawling is an excellent training item because it requires the patients to coordinate their multiple body
parts and utilize audio and visual aids as their motion guide. In the field of neuroscience, crawling is
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a good research object to explore the underlying mechanisms of inter-limb coordination in quadrupedal
locomotion as it is a common locomotion in both human and animals [6–8].

The study of inter-limb coordination during crawling in both human and animals has attracted
certain amount of attention in the twentieth and twenty first centuries. Early researches based on video
records found that there were various inter-limb coordination patterns in crawling [9,10]. In these
studies, some subjects were found to crawl with diagonal limbs moving together, some subjects
crawled with ipsilateral limbs moving together, and others did not belong to either pattern, as their
four limbs moved in turn during crawling. Hildebrand first presented that four-limb locomotion
could be divided into different patterns based on the “percent of stride interval that footfall of
forefoot follows hind on same side” [11], and Patrick et al. named it as ipsilateral phase lag (IPL)
in 2009 [6]. IPL, which is the phase lag between stance of the ipsilateral arm and leg, can be sufficient
to quantify the inter-limb coordination patterns. IPL values closing to 50% indicate that diagonal
limbs enter stance phase together. IPL values closing to 0% or 100% describe that ipsilateral limbs
enter stance phase together, and values like 25% or 75% mean that four limbs entered stance phase
alternately. Based on IPL, a number of studies have been conducted to explore the similarities and
differences of inter-limb coordination between animals, human infants, and human adults. For instance,
Courtine et al. compared four-limb locomotion of a rhesus (non-human primate) with sub-primate
quadrupedal mammals [12]. Patrick et al. compared the inter-limb coordination across human adults,
infants, and quadrupeds during four-limb locomotion [6]. They found that, unlike the lateral sequence
characterizing in sub-primate, primates tended to use diagonal coordination between hind-limbs
and fore-limbs, more similar to that always observed in human gaits between legs and arms [13–18].
Besides, crawling inter-limb coordination patterns have been found to change during the growth and
development of human beings. Due to the immaturity of the nervous system, most infants only used
diagonal coordination, while adults had greater flexibility in coordinating limbs [12].

Meanwhile, studies showed that changes in speed, inclination, midline obstruction, and hind-limb
length could affect inter-limb coordination during crawling movement [3,6,19,20]. Typically, human
adults showed high flexibility in crawling with changing speeds. When crawling speed increased,
cycle duration decreased and the proportion of swing time increased [3]. In addition, cycle duration
did not show a difference between the upper and lower limbs, and the swing duration was consistently
shorter in the upper limbs compared with the lower limbs [3,21]. Compared with the high speed,
human adults showed a greater occurrence of IPL value around 25% (no limb pairing) at low speed.
Besides, Sparrow et al. noticed that there was an abrupt change of inter-limb coordination pattern
in hand-foot crawling at about 50% of maximum speed [22]. However, MacLellan et al. found that
patterns did not change a lot during hand-foot crawling [3]. Meanwhile, adults exhibited a great
variety of inter-limb coordination patterns during crawling with changing speeds, but there was a weak
relationship between speeds and inter-limb coordination patterns, as the selection of coordination
patterns did not show a linear or consistent relationship with crawling speed [3].

Although considerable progress has been made in the study of four-limb locomotion, much less is
known about the reason for the variety of inter-limb coordination. So far, there are three speculations
about the inter-limb coordination pattern change under changing speeds. One suggestion is that
pattern changes are related to aerobic energy expenditure [23]. Another suggestion is that the changes
are related to storage of elastic energy [24]. The third suggestion is that physical constraints of the
organism influence the emergence of new movement patterns, such as the limb’s ability to produce
force and physical properties of the limb such as mass and length [22]. These speculations have not yet
been confirmed with enough evidences.

Taking human adults and hands-knees crawling as research objects, this study aimed to investigate
the inter-limb coordination pattern choice under different speeds from aspects of the motion stability,
intensity and complexity of trunk and limbs. In this study, crawling motion information was captured
by two kinds of sensors including accelerometers and force sensors. Based on the analysis of the
motion stability, intensity, and complexity of three inter-limb coordination patterns (trot-like, pace-like,
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and no-limb-pairing), the possible reasons for the inter-limb coordination choice under different
crawling speeds were explored. The results of this study showed that the CNS tended to choose a stable
inter-limb coordination pattern to ensure the safety of the body and avoid falling. This exploration can
help us to understand the underlying motor control strategy of the human CNS and has important
significance in the fields of clinical diagnosis, rehabilitation engineering, and kinematics research.

2. Materials and Methods

2.1. Subjects and Crawling Scheme

30 healthy adults (19 males and 11 females, 23.57 ± 0.86 year of age (mean ± SD); females: height:
161.64 ± 3.67 cm, weight: 47.36 ± 3.70 kg; males: height: 173.37 ± 5.00 cm, weight: 67.11 ± 7.45 kg)
were recruited in this study. All volunteers had no history of joints injuries or neuromuscular
disease. All subjects were informed of the experiment procedure and signed an informed consent
approved by the local Ethics Review Committee. This study was conducted in accordance with the
Helsinki Declaration.

In this study, a treadmill (F63 PRO, SOLE, West Hollywood, CA, America, belt size:
510 mm × 1550 mm, treadmill size: 204 cm × 89 cm × 145 cm, speed range: 1–18 km/h, incline range:
0◦–15◦) was used as the crawling platform. During experiment, all subjects were instructed to crawl
with hands and knees on the treadmill with 0◦ inclination at speeds of 1, 1.3, 1.5, 1.8, and 2 km/h
(range from the slowest possible speed for the treadmill to the highest speed that all subjects
could achieve). In addition, 21 of 30 participants finished crawling task at the speed over 2 km/h.
The maximal speed was chosen to be 2.5 km/h for safety consideration. Each subject finished at least
20 consecutive strides under each speed, and there was a rest period of 1 minute between two trials to
avoid fatigue.

2.2. Crawling Data Acquisition Based on Accelerometers and Force Sensors

In order to capture the movements of four limbs and trunk in hands-knees crawling effectively,
a home-made multi-channel acquisition system consisting of five 3-axis accelerometers (ACC) and
four force sensors was used for the data collection in this study. To capture the movements of fore-
and hind-limbs effectively, as shown in Figure 1, two accelerometers were positioned bilaterally over
the middle point of the outside of forearms and two accelerometers were placed over the middle
point of the front side of thigh bilaterally. One accelerometer was placed on the waist to describe
the movements of the trunk. Four force sensors were placed on the four points contacting with the
ground during crawling. Specifically, two force sensors were positioned on the thenar of left and
right hands, and the other two were placed below knees. All sensors were fixed by muscle stickers.
Accelerometers produced digitalized data with 100 Hz sampling rate for each axis. The sampling
rate of force sensor was also 100 Hz. Two kinds of signals were collected synchronously at the same
sampling frequency. All the recorded data were wirelessly transmitted to a laptop via Bluetooth and
saved to the laptop disk for offline analysis. All data analysis was finished in Matlab environment
(version R2014a, The MathworksInc, Natick, MA, USA).

2.3. Crawling Data Analysis

As shown in the flow chart of crawling data analysis (Figure 2), pressure signals were used to
obtain swing phase, stance phase, and cycle duration of crawling strides, and classify inter-limb
coordination patterns by calculating IPL. Harmonic ratio, power, and sample entropy of waist
ACC signals were calculated to measure the stability, intensity and complexity of trunk movement
respectively. Power and sample entropy of limbs’ ACC were used to depict the intensity and complexity
of limbs’ movements.



Sensors 2017, 17, 692 4 of 152017, 17, 692 4 of 15 

 

 
Figure 1. The placement of force sensors and accelerometers. Red circles represent force sensors, and 
green circles represent accelerometers. Each accelerometer was arranged to measure the dynamic 
accelerations in the directions of anterior-posterior (AP), vertical (VT), and medio-lateral (ML) 
synchronously. 

Pressure

Waist ACC

Limbs ACC

IPL

Cycle 
Duration

Swing 
Duration

Stance Limbs 
Number

Harmonic 
Ratio

Power 

Sample 
Entropy

Patterns

Stability (Trunk)

Intensity (Trunk)

Complexity (Trunk)

Power 

Sample 
Entropy

Intensity (Limbs)

Complexity (Limbs)
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At the preprocessing stage, the mean values of acceleration data were subtracted to reduce the 
individual difference. Then, the acceleration data was low-pass filtered with cutoff of 20 Hz to 
eliminate high-frequency noise, because most acceleration energy focused on 0–15 Hz according to 
Karantonis’s studies [25]. To avoid the instability caused by onset and offset of locomotion, the first 
and last several strides data in each trial was omitted, and 15 consecutive strides data without any 
perturbations was analyzed, as 10 strides were sufficient for analysis according to Patrick’s studies 
[6].  

Before further analysis, continuous signals were segmented to obtain crawling cycle data. In 
this study, the initiation of swing phase of one limb was defined to be the point that the limb lift off 
from the belt, and the initiation of stance phase was the point that the limb contacted with the belt. 
As shown in Figure 3, stance and swing of limbs were determined from the pressure data by setting 
a threshold. Periods with pressure values over the threshold corresponded to stance phase. 
Otherwise, periods belonged to the swing phase. In this study, we defined that the crawling cycle 
began when the left knee struck ground and ended when the next left knee strike happened. So, two 
initiation points of the stance phase of left knee were detected to segment stride signals. 

Figure 1. The placement of force sensors and accelerometers. Red circles represent force sensors,
and green circles represent accelerometers. Each accelerometer was arranged to measure the
dynamic accelerations in the directions of anterior-posterior (AP), vertical (VT), and medio-lateral
(ML) synchronously.

2017, 17, 692 4 of 15 

 

 
Figure 1. The placement of force sensors and accelerometers. Red circles represent force sensors, and 
green circles represent accelerometers. Each accelerometer was arranged to measure the dynamic 
accelerations in the directions of anterior-posterior (AP), vertical (VT), and medio-lateral (ML) 
synchronously. 

Pressure

Waist ACC

Limbs ACC

IPL

Cycle 
Duration

Swing 
Duration

Stance Limbs 
Number

Harmonic 
Ratio

Power 

Sample 
Entropy

Patterns

Stability (Trunk)

Intensity (Trunk)

Complexity (Trunk)

Power 

Sample 
Entropy

Intensity (Limbs)

Complexity (Limbs)

 
Figure 2. The flow chart of crawling data analysis. 

2.3.1. Data Pre-Processing and Stride Segmentation 

At the preprocessing stage, the mean values of acceleration data were subtracted to reduce the 
individual difference. Then, the acceleration data was low-pass filtered with cutoff of 20 Hz to 
eliminate high-frequency noise, because most acceleration energy focused on 0–15 Hz according to 
Karantonis’s studies [25]. To avoid the instability caused by onset and offset of locomotion, the first 
and last several strides data in each trial was omitted, and 15 consecutive strides data without any 
perturbations was analyzed, as 10 strides were sufficient for analysis according to Patrick’s studies 
[6].  

Before further analysis, continuous signals were segmented to obtain crawling cycle data. In 
this study, the initiation of swing phase of one limb was defined to be the point that the limb lift off 
from the belt, and the initiation of stance phase was the point that the limb contacted with the belt. 
As shown in Figure 3, stance and swing of limbs were determined from the pressure data by setting 
a threshold. Periods with pressure values over the threshold corresponded to stance phase. 
Otherwise, periods belonged to the swing phase. In this study, we defined that the crawling cycle 
began when the left knee struck ground and ended when the next left knee strike happened. So, two 
initiation points of the stance phase of left knee were detected to segment stride signals. 

Figure 2. The flow chart of crawling data analysis.

2.3.1. Data Pre-Processing and Stride Segmentation

At the preprocessing stage, the mean values of acceleration data were subtracted to reduce the
individual difference. Then, the acceleration data was low-pass filtered with cutoff of 20 Hz to eliminate
high-frequency noise, because most acceleration energy focused on 0–15 Hz according to Karantonis’s
studies [25]. To avoid the instability caused by onset and offset of locomotion, the first and last several
strides data in each trial was omitted, and 15 consecutive strides data without any perturbations was
analyzed, as 10 strides were sufficient for analysis according to Patrick’s studies [6].

Before further analysis, continuous signals were segmented to obtain crawling cycle data. In this
study, the initiation of swing phase of one limb was defined to be the point that the limb lift off from the
belt, and the initiation of stance phase was the point that the limb contacted with the belt. As shown in
Figure 3, stance and swing of limbs were determined from the pressure data by setting a threshold.
Periods with pressure values over the threshold corresponded to stance phase. Otherwise, periods
belonged to the swing phase. In this study, we defined that the crawling cycle began when the left
knee struck ground and ended when the next left knee strike happened. So, two initiation points of
the stance phase of left knee were detected to segment stride signals.
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Figure 3. Stance and swing determined by pressure signals from the left knee. A stride cycle begins 
when the left knee strikes ground and ends when the next left knee striking happens. (Pressure 
sensor: FSR402, Interlink Electronics, Camarillo, CA, USA). 
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to 50%, which indicates that diagonal limbs enter stance at the same time nearly; and (3) no limb 
pairing crawling, where IPL values are around 25% or 75%, which means four limbs enter stance 
phase in turns during a stride cycle. 

Figure 3. Stance and swing determined by pressure signals from the left knee. A stride cycle begins
when the left knee strikes ground and ends when the next left knee striking happens. (Pressure sensor:
FSR402, Interlink Electronics, Camarillo, CA, USA).

2.3.2. Crawling Movement Features Extraction

• Inter-limb coordination parameter

The movement of each limb consists of swing phase and stance phase during a crawling cycle.
In this study, ipsilateral phase lag (IPL) was used to quantify the inter-limb coordination pattern
during crawling movement. Using the method presented by Susan K Patrick et al. (2009), IPL can be
expressed as Figure 4 and Formula (1)

IPL =
d
T
× 100% (1)

where “d” is a stance phase delay in ipsilateral limbs, for example, the interval time between the
initiation of stance phase in the left hand and left knee, and “T” represents a crawling cycle duration.
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solid lines and swing showed by space.

According to the value of IPL, quadruped crawling can be classified into three inter-limb
coordination patterns: (1) pace-like crawling, where IPL values are close to 0% or 100%, which
means ipsilateral limbs enter stance phase together; (2) trot-like crawling, where IPL values are close to
50%, which indicates that diagonal limbs enter stance at the same time nearly; and (3) no limb pairing
crawling, where IPL values are around 25% or 75%, which means four limbs enter stance phase in
turns during a stride cycle.
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• Trunk stability parameter

Crawling is a cyclical movement. During crawling movement, the trunk moves periodically, and
the repeatability of this pattern can be used to judge the smoothness of the movement. According
to H. John Yack and Roseanne C. Berger [26], comparing the “in phase” parts of movement with the
“out of phase” parts by relatively magnitudes of the harmonic coefficients for the first 20 harmonics
can describe the smoothness of cyclic motion. Some researches indicated that the waist ACC signals in
VT and AP orientation were biphasic, so the value of harmonic ratio in VT and AP orientation was
greater than 1. Meanwhile, the waist ACC signal in medio-lateral (ML) orientation was monophasic,
and the value of harmonic ratio in ML orientation was less than 1 [22,27,28]. Besides, the stride pattern
is smoother, the harmonic ratio is larger. Therefore, HR of waist ACC in ML, VT, and AP orientation
was adopted to describe the trunk stability during crawling in this study.

When the Fourier transform of a segmented ACC data was calculated as Formula (2), harmonics
ratio could be computed according to Formula (3).

accstride =
N−1

∑
n=0

Cn sin(nω0t + ϕn) (2)

In Formula (2), Cn is the harmonic coefficient, ω0 is the frequency, and ϕn is the phase.

HR =
∑20

n=2,4,6,... Cn

∑19
n=1,3,5,... Cn

(3)

• Movement intensity parameter

Power is a physical parameter that can measure the intensity of the movement. In this study,
power values were calculated as the integral of the power spectral density of the waist or limbs ACC
signal first, and then were log transformed to obtain a normal distribution as Formula (4).

power = log
(∫

PSD(acc)
)

(4)

The power parameter can capture the variations of amplitude and frequency movement during
crawling, though motion frequency has a larger influence on the power value. It can also reflect the
energy profile of movement [29]. The movement is more intense, the value of power is higher.

• Movement complexity parameter

Sample entropy is a parameter to measure time series complexity of signals [30,31], and larger
sample entropy indicates higher complexity. In this study, sample entropy values of ACC signals of
waist and limbs were calculated with the method introduced by Richman et al. [30] to describe the
movement complexity of trunk and limbs.

3. Results

3.1. Inter-Limb Coordination Variations under Different Crawling Speeds

In order to show inter-limb coordination pattern choice at different crawling speeds, Figure 5 gave
30 subjects’ IPL values obtained at different crawling speeds. From the graph, it can be seen that adults
show a wide range of IPL values and most subjects crawl in trot-like pattern and no-limb-pairing
pattern (IPL > 0.15) at low speed. When the crawling speed changed from 1 to 2 km/h, the inter-limb
coordination variation was small. However, subjects showed a preference for trot-like crawling and
pace-like crawling rather than no limb pairing when treadmill speed increased to a relatively high
speed (≥2 km/h). And those subjects who used no-limb-pairing pattern could not keep pace with the
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treadmill and drop out from the belt. Only two subjects successfully kept pace with the treadmill at
the speed of 2.5 km/h in no-limb-pairing pattern.
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Figure 6 illustrates the variations in the cycle duration, the proportion of limb stance phase
(swing duration versus crawling cycle duration), and the proportion of multi-limb stance phase
(versus crawling cycle duration) at different speeds. As expected, the crawling cycle duration decreased
as the crawling speed increased (Figure 6a). The proportion of single limb swing phase increased
(Figure 6b) with the crawling speed, and upper limbs showed a shorter proportion of swing phase than
lower limbs. Figure 6c shows that when crawling speed increased, the proportion of two-limb stance
phase increased, the proportions of three-limb stance phase and four-limb stance phase decreased,
and one-limb stance phase appeared at very high speed.
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3.2. Motion Intensity, Stability, and Complexity Variations of Trunk under Different Speeds

Power, harmonic ratio, and sample entropy of the waist acceleration signals were used to depict
the intensity, stability and complexity of trunk movements respectively. Figure 7 presents these
parameters of 30 subjects during crawling at different speeds. “Slope_Mean” means the average
slope of the fitting lines for all subjects, and “Slope_SD” means the standard deviation of the slopes
of these fitting lines. As shown in Figure 7a, power parameter increased with crawling speed at all
3 orientations and the average slope in VT orientation was the highest, which describes that trunk
movement became more and more intense with the speed increased and most power changes occurred
in the VT orientation. Figure 7b shows that harmonic ratio in ML orientation decreased, but values in
AP and VT orientations increased with crawling speed, which means that trunk movement becomes
less smooth in ML orientation, while smoother and more repeatable in VT and AP orientations.
Like power, the highest slope of harmonic ratios was obtained at the VT orientation. In Figure 7c,
the complexity of trunk movement shows an increasing trend with crawling speed in ML orientation
and AP orientation, a decreasing trend in VT orientation, which means that trunk movement becomes
more complex in ML and AP orientations but less complex in VT orientation with crawling speeds.
Sample entropy of trunks show an increasing trend with crawling speed in ML orientation and
a decreasing trend in VT orientation, which is opposite to the harmonic ratio. That is reasonable
because entropy is a parameter to describe the complexity of time series by calculating the rate of new
information. The movement is smoother and more regular, thus the rate of new information is lower.
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3.3. Trunk Motion Intensity, Stability and Complexity Parameters Comparison between Three Types of
Inter-Limb Coordination Patterns under Different Crawling Speeds

Power and sample entropy were also used to analyze the intensity and complexity of limbs
movements in this study. According to H. John Yack and Roseanne C. Berger [26], harmonic ratio was
used to judge the smoothness by measuring the repeatability of the biphasic pattern. Trunk movement
during crawling can be seen as biphasic pattern because the trunk moved from side to side in
a crawling cycle. However, the limbs kept swinging or standing in a crawling cycle, which resulted in
a single-phase mode of the ACC signal. Thus, harmonic ratio of limbs movements was not analyzed.
Only the power and sample entropy of left limbs was analyzed because the movements of left limbs
and right limbs were symmetrical during crawling. As shown in Table 1, the power of trunk, upper
limb, and lower limb all increased with crawling speed. The rising slopes of trunk power were higher
than those of limbs, and upper limbs were higher than lower limbs. This result means that crawling
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speed has the most significant effect on trunk intensity followed by upper limbs and lower limbs.
Different from trunk movement, sample entropy of limb movement increased with crawling speed in
ML, AP, and VT orientations. The changes of the complexity in the lower limbs are higher than those
in the upper limb in the ML and AP directions. In addition, the complexity of upper limb activity in
VT direction was most affected by crawling speed.

Table 1. Comparison between trunk and limbs in motion intensity and complexity changes with
crawling speed.

Slopes of Fitting Lines (Mean ± SD)

ML AP VT

Power
Trunk 0.3575 ± 0.1417 0.4916 ± 0.1497 0.7027 ± 0.1067

Upper limbs 0.3092 ± 0.1293 0.3992 ± 0.1170 0.4283 ± 0.1246
Lower limbs 0.2884 ± 0.1936 0.2019 ± 0.1752 0.1191 ± 0.0438

SE
Trunk 0.0869 ± 0.0512 0.0415 ± 0.0411 −0.0504 ± 0.0361

Upper limbs 0.0467 ± 0.0584 0.0202 ± 0.0645 0.1586 ± 0.0794
Lower limbs 0.0735 ± 0.0540 0.0783 ± 0.0858 0.0914 ± 0.0629

Figure 8 compares trunk motion parameters between subjects in different inter-limb coordination
patterns. As shown in Figure 8a, in any orientation, power shows slight differences between three
inter-limb coordination patterns at the same speed, meaning that trunk movement intensity has no
significant differences between subjects in different inter-limb coordination patterns. In Figure 8b,
trunk harmonic ratios are less than 1 in ML orientation and greater than 1 in AP and VT orientations.
At low speed (1 km/h), trot-like crawling has the highest harmonic ratios in AP and VT orientation,
while pace-like crawling has the lowest in AP and VT orientations. As the speed increases, harmonic
ratio of pace-like type grows rapidly, and the gap between the three patterns decreases. When it comes
to high speed (speed = 2 km/h and 2.5 km/h), harmonic ratios of pace-like type are close to or higher
than those of trot-like type. Meanwhile, no limb pairing type shows the lowest harmonic ratios in
AP and VT orientations at high speed. According to Figure 8c, there is no significant difference in
sample entropy between trot-like type and no limb pairing type in ML orientation, but pace-like type
shows lower sample entropy than the other two types at high speeds. In AP orientation, trot-like type
shows the lowest sample entropy and the pace-like type shows the highest sample entropy at low
speed (speed = 1 km/h). With the increase of the speed, the gap between the three types decreases.
When it comes to 2.5 km/h, no limb pairing type shows higher sample entropy than other two types.
In VT orientation, trot-like type has the lowest sample entropy, and the pace-like type shows equal
entropy with no limb pairing type at low speed (speed = 1 km/h). When it comes to 2.5 km/h, no limb
pairing type has the highest sample entropy.
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4. Discussion

Previous studies observed that human adults showed flexibility in inter-limb coordination patterns
under different crawling speeds, but there was a weak relationship between speeds and inter-limb
coordination patterns, as the selection of coordination patterns didn’t show a linear or consistent
relationship with the value of speeds [6]. In this study, most human adults preferred trot-like and
no limb pairing patterns at low speed, but trot-like and pace-like patterns when crawling speed
increased to a relatively high value. As crawling speed increased, crawling cycle duration decreased,
and the percentage of swing time increased. Cycle duration did not show difference between the upper
and lower limbs, and swing duration was found consistently shorter in the upper limbs compared
with the lower limbs. These results are consistent with those in related works [3,21,22]. Additionally,
we observed that when crawling speed increased, the proportion of two-limb stance duration increased,
the proportions of three-limb stance duration and four-limb stance duration decreased, and one-limb
stance appeared at a very high speed.

Little is known about the reason for the variety of inter-limb coordination in four-limb locomotion,
and the speculations about the inter-limb coordination pattern change caused by changing speeds have
not been confirmed yet with enough evidence. In order to reveal the underlying mechanism of the
inter-limb coordination change, the motion stability, intensity, and complexity of movements of trunk
and limbs during crawling were also explored in this study. Power, harmonic ratio, and sample entropy
of acceleration signals were used to depict the motion intensity, stability, and complexity respectively,
while ipsilateral phase lag was used to depict inter-limb coordination pattern. With the increase
of speed, the trunk movement was found to be more intense in all three orientations, more stable
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and regular in AP and VT orientations, while less regular and more random and complex in ML
orientation. As discussed in related studies of walking gait, control of ML orientation motion could
be thought to be under continuous feedback control allowing step-to-step adjustments for effective
balance control [27,28]. Similar to walking gait, we speculate that the CNS keeps the stability of trunk
in AP and VT orientations during crawling by adjusting the movement in ML orientation step by step.
In this study, the average slope of trunk power was higher than the slopes of upper and lower limbs in
three orientations. This result demonstrates that the change of crawling speeds has more significant
effect on amplitude and frequency of trunk movements than limbs. Besides, different from trunk
movements, the complexity of limb movement increased with crawling speed in all three orientations.
The differences in motion intensity and complexity between trunk and limbs can be attributed to the
fact that limbs, which have more degrees of freedom than trunk, are more flexible.

It is noteworthy that there is some relationship between inter-limb coordination pattern choice
and the motion’s stability and complexity of trunk. At low speed (1 km/h), trot-like groups have the
highest sample entropy values as well as the lowest values in VT and AP orientations among three
crawling patterns. This result means that trot-like gait is the most stable and regular crawling pattern at
low speed. From previous studies [2,6,9], it is well-known that the IPL value of healthy infants always
distributed around 50%, which means that most infants tend to use a trot-like inter-limb coordination
pattern. Meanwhile, mechanical factors including midline obstruction, limb length and unweighted
crawling seem to have little influence on trot-like coordination pattern of infants. Patrick concluded
the reason is the immaturity of infants’ nervous system [6]. Based on the results in this study, most
adults choose trot-like coordination pattern when crawling at low speeds, perhaps because trot-like is
the most stable pattern to keep themselves safe and maintain continuous motion. Also, at high speed,
no limb pairing group shows the lowest stability and the greatest complexity in AP and VT orientations,
which means no limb pairing is the least stable among three types. This phenomenon could explain
why subjects tend to avoid no limb pairing pattern when speed is over 2 km/h, no matter which
coordination type they used at low speeds. So, it is speculated that CNS could choose stable inter-limb
coordination pattern to keep body safe and avoid the tumble.

Besides, crawling inter-limb coordination can also be understood from the perspective of motor
control, which was defined to explore how the nervous system interacts with other body parts and
the environment to produce purposeful movements [32]. First, motor abundance gives a concept that,
for any given task, there are many functionally equivalent motor solutions [32,33]. These equivalent
motor solutions are synthetically determined by the difficulty of the motor task, the ability of person
and the factors of environment. Subjects could gain a balance in energy consumption, movement
efficiency, and biomechanical constraints by choosing their motor solutions. In this study, the existence
of several inter-limb coordination patterns during crawling could be considered as a phenomenon
of motor abundance, and the inter-limb coordination pattern choices were affected synthetically by
factors such as crawling speeds and individual ability.

Second, John P Scholz introduced the dynamic pattern theory of movement coordination [34].
When some parameter reaches a critical value, the system may exhibit a transition to a new or different
pattern of coordination. For example, a horse had a transition from trotting to galloping when it was
forced to increase velocity of locomotion, and the relative phase of hands motion transited from 180◦

to 0◦ with motion speed increased, as the increasing frequency of movement led to loss of stability,
so a pattern transition occurred at a critical value [34]. Dynamic pattern theory suggested that stability
may be one of the reasons for the change of the movement pattern, and the new pattern emerged as
a result of CNS interacted with environment and anatomical constraints. That is why patients like
hemiparesis, who had some changes in body structure, usually have special motor patterns [35,36].

Some other research also provided insightful information about the dynamic pattern theory to
explain the relationship between coordination pattern transition and central nervous system control
over stability. Holt et al. investigated the preferred walking frequency of human, and they found
that the preferred frequency was related to the energetic cost and stability [37]. Sides and Wilson
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investigated the intra-limb coordination in cycling with changing cadence and work rate, and they
found that the stable coordination pattern would be maintained, which support the dynamic pattern
theory [38]. Duncan et al. explained that participants would change posture when they performed
a stationary standing task on a simulated ship at sea to reach dynamic stability and keep balance [39].
Based on the results in this study, it can be speculated that the spontaneous inter-limb coordination
transition during crawling, from no-limb-pairing to trot-like or pace-like patterns when the speed
increased to a critical value, should be caused by the loss of stability. This conclusion accords with the
dynamic pattern theory.

Third, trot-like pattern and pace-like pattern have the unity in diagonal limbs or ipsilateral limbs.
Pairs of limb moving together seem easier to control than no limb pairing, which is a pattern with four
limbs moving in turn. As the task difficulty increased with crawling speed, subjects prefer to select
easy way to finish crawling task.

The research results of this study on the inter-limb coordination pattern choice during crawling
from the stability, intensity, and complexity of trunk and limbs shed lights on the underlying motor
control strategy of the human CNS and have important significance in the fields such as clinical
diagnosis, rehabilitation engineering and kinematics research. We will try to explore the abnormal
control strategy of crawling motion of children with cerebral palsy in future work.

5. Conclusions

Taking human adults and hands-knees crawling as research objects, this study investigated
the inter-limb coordination pattern choice under different speeds from the aspect of the motion
stability, intensity, and complexity of trunk and limbs. The research results demonstrate that some
relationship exists between inter-limb coordination pattern choice and the stability and complexity
of trunk movement, which could explain why subjects tend to avoid no limb pairing pattern at
high speeds no matter which coordination type they used at low speeds. The research result also
provides evidence that CNS choose stable inter-limb coordination pattern to keep the body safe and
avoid tumbling.
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