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Abstract

DNA nucleobases are the prime targets for chemical modifications by endogenous and exogenous 

electrophiles. Alkylation of the N7 position of guanine and adenine in DNA triggers base-

catalyzed imidazole ring opening and the formation of N5-substituted formamidopyrimidine (N5-

R-FAPy) lesions. Me-FAPy-dG adducts induced by exposure to methylating agents and AFB-

FAPy-dG lesions formed by aflatoxin B1 have been shown to persist in cells and to contribute to 

toxicity and mutagenicity. In contrast, the biological outcomes of other N5-substituted FAPy 

lesions have not been fully elucidated. To enable their structural and biological evaluation, N5-R-

FAPy adducts must be site-specifically incorporated into synthetic DNA strands using 

phosphoramidite building blocks, which can be complicated by their unusual structural 

complexity. N5-R-FAPy exist as a mixture of rotamers and can undergo isomerization between α, 

β anomers and furanose-pyranose forms. In this Perspective, we will discuss the main types of N5-

R-FAPy adducts and summarize the strategies for their synthesis and structural elucidation. We 

will also summarize the chemical biology studies conducted with N5-R-FAPy-containing DNA to 

elucidate their effects on DNA replication and to identify the mechanisms of N5-R-FAPy repair.
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1. Introduction

N5-Alkyl-formamidopyrimidines (N5-R-FAPy) are ring open DNA adducts that form upon 

imidazole ring opening of the corresponding N7-alkylpurine lesions.1–8 N7 positions of 

guanine and adenine in DNA are susceptible to electrophilic attack by a variety of alkylating 

agents. The resulting N7-substituted purines are destabilized due to the presence of positive 

charge at the N7 position9 and can undergo two competing reactions: depurination to form 

apurinic sites and imidazole ring opening to give N5-R-FAPy.1, 2, 10–13 While depurination is 

accelerated at low pH, N5-R-FAPy formation is preferred under basic conditions (Scheme 

1). Although under physiological conditions, N5-R-FAPy adducts are formed in much lower 

yields than the corresponding depurinated adducts, they may have a significant biological 

impact because of their persistence in cells and their ability to induce mutations.

Many simple alkylating agents including epoxides, nitrogen mustards, and alkyl halides 

preferentially alkylate the nucleophilic N7 position of guanine in DNA.14–21 However, not 

all of the resulting N7-dG adducts form the corresponding FAPy adducts under 

physiological conditions. Imidazole ring opening of N7-alkyl-dG is favored by electron 

withdrawing groups on the N7 substituent, which makes the C7-C8 bond more susceptible 

towards attack by hydroxyl anions.22, 23 Interestingly, imidazole ring opening of N7-alkyl-G 

adducts in RNA is 2–3 times faster than of their DNA counterparts, presumably due to the 

electron withdrawing effect of the 2′-hydroxyl group.24 Aflatoxin B1 epoxide,25–27 N-

methylnitrosamines,28–32 dimethyl sulfate,33, 34 tobacco carcinogen 4-

(methylnitrosamino)-1-(pyridyl)-1-butanone (NNK),35 N-methylnitrosourea,36 1, 2-

dimethylhydrazine, N, N-dimethylnitrosamine,28–32, 37 cyclophosphamide,38, 39 mitomycin 

C,40, 41 and ethyleneimine42 are some examples of alkylating agents that give rise to N5 

substituted FAPy adducts. N5-substituted FAPy adducts are also induced by leinamycin,20 

pluramycins,43 azinomycin,44, 45 and S-(2-haloethyl)glutathione.46, 47 Structurally related 

unsubstituted FAPy adducts can be formed by a radical mechanism upon exposure to 

reactive oxygen species (ROS)48–50 but are beyond the scope of this review.

Imidazole ring opening drastically changes the molecular shape and the hydrogen bonding 

characteristics of the parent purine nucleobase. As a result, N5-substituted FAPy lesions are 

likely to induce DNA polymerase stalling, toxicity, and mutations. For example, N5-AFB1-

FAPy adducts induced by Aflatoxin B1 are thought to play a major role in its 

hepatocarcinogenicity.51, 52 However, our understanding of the cellular formation and 

biological outcomes of N5-R-FAPy adducts induced by other DNA modifying agents is 

incomplete. Chemical synthesis of N5-R-FAPy nucleosides and N5-R-FAPy-containing 

DNA strands represents a special challenge due to the structural complexity of these unusual 

ring open lesions and their propensity to undergo isomerization. The goal of this Perspective 

is to summarize the current understanding of the mechanisms of formation, synthesis, 

isomerism, and biological consequences of N5-R-FAPy adducts. For additional information 

on N7-guanine alkylation and the chemistry of unsubstituted FAPy adducts induced by ROS, 

readers are referred to several recent reviews.7, 48–50, 53,54
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2. Structural Identification and Synthesis of N5-Substituted FAPy Lesions 

(N5-R-FAPy)

Since their discovery in the early 1960s, N5-substituted FAPy adducts have been a subject of 

intense investigation. In addition to simple DNA alkylating agents, a number of antitumor 

drugs and natural products have been shown to induce N5-R-FAPy adducts under 

physiological conditions, generating significant interest in these ring open structures. In this 

section, we will describe the discovery, mechanisms of formation, and synthesis of the major 

types of N5-R-FAPy adducts.

2.1. Methyl-FAPy-dG

DNA can be methylated upon exposure to exogenous agents such as dimethyl 

sulfate,17, 33, 34 N-methylnitrosamines,28–32 and tobacco specific nitrosamine 4-(methyl-

nitrosamino)-1-(3-pyridyl)-1-butanone (NNK).35 DNA methylation can also occur from the 

reactions with endogenous enzyme cofactor, S-adenosyl-L-methionine (SAM).55 The most 

reactive site in DNA towards methylating agents is the N7 position of guanine.9, 16 Haines et 
al. described imidazole ring opening of N7-methylguanosine in the presence of ammonia or 

sodium hydroxide at room temperature.2 The ring open adduct was cleaved with acid, and 

the resulting aglycone was assigned the structure of 2,4-diamino-6-hydroxy-5N-

methylformamidine (1 in Scheme 2) based on its spectroscopic properties.2

The biological significance of this finding remained unclear until 1983, when Beranek et al. 
isolated a novel nucleobase adduct from liver DNA of rats treated with the methylating 

agents, N, N,-dimethylnitrosoamine and 1,2-dimethyl hydrazine.37 The same adducts were 

subsequently found in bladder epithelial DNA of rats treated with N-methylnitrosourea.36 

The unknown lesions were chromatographically identical to the ring opened derivative of 7-

methylguanine prepared by alkaline hydrolysis of N7-methyl-Guo, followed by cleavage of 

the glycosidic bond with acid (Scheme 2).36 Two isomers of the adduct were isolated by 

HPLC. Further experiments revealed that following isolation as two separate peaks, these 

two isomers interconverted with each other to give a 1:1 mixture.36, 37 Thermal desorption 

mass spectra of the two isomers were identical, giving a molecular ion peak m/z 183 and 

major fragments at m/z 155 and 140, corresponding to the loss of CO and CO+CH3, 

respectively.37 1H-NMR spectra of the two products were also identical, both exhibiting two 

distinct sets of resonances (Figure 1).36 NMR spectra of these isomers were consistent with 

cis and trans isomers around the C5-N5 amide bond (Figure 2). NMR spectra revealed two 

sets of resonances, each corresponding to two different forms of N5-methyl-N5-

formyl-2,5,6-triamino-4-hydroxypyrimidine, which interconverted with each other.36 The 

relative abundances of the two rotamers were 1:9, 1:4, and 1:2 when spectra were taken in 

dimethylsulfoxide-d6, methanol-d4, and dimethylsulfoxide-d6/D2O, respectively (Figure 

1).36 These results indicated that ring-open N5-methyl-N5-formyl-2,5,6-triamino-4-

hydroxypyrimidine adducts are found in vivo (and thus may not require strongly basic 

conditions to be formed) and exist as at least two interconverting forms (1 and 2 in Figure 2).

The structural identities of the interconverting isomers of N5-methyl-FAPy adducts were 

further examined by proton NMR by Boiteux et al.10 Two methyl group signals were 
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observed at 2.7 and 2.81 ppm, with the relative intensities of 88% and 12%, while the 

corresponding formamido signals were observed at 7.61 ppm (88%) and 7.88 ppm (12%) 

(Figure 3). Nuclear Overhauser Enhancement (NOE) was observed on the formamido proton 

at 7.61 ppm by irradiation of the methyl signal at 2.7 ppm, whereas no NOE effect was 

observed for formamido proton when methyl signal at 2.81 ppm was irradiated. This 

indicated that the protons observed as resonances at 2.7 ppm and 7.61 ppm are in a close 

proximity to each other and therefore belong to the Z conformer of the N-methyl-formamido 

bond, while the other isomers giving rise to resonances at 2.8 and 7.88 ppm are the E 
rotamer (3 and 4 in Figure 2).

In summary, these early studies have revealed that, ring open N7-methyl-G adducts can form 

under physiological conditions. These adducts can exist as a mixture of four rotational 

isomers due to a hindered rotation about the C5-N5 and N-methyl-formamido bonds (1–4 in 

Figure 2). In the free nucleoside form these conformers rapidly interconvert with an 

estimated half-life of 8 min at 37 °C.10 Subsequently, these results were unambiguously 

supported by NMR studies of 15N-labeled adducts.56 As discussed below, the distribution of 

conformational isomers of N5-methyl-FAPy and other FAPy lesions is altered in double 

stranded DNA due to steric factors and hydrogen bonding interactions.

The first synthesis of Me-FAPy-dG nucleoside was reported by Christov et. al. in 2008.57 In 

their approach, 2′-deoxyguanosine was protected at the exocyclic amine with N,N-

dimethylformamide dimethylacetal and at the 5′-OH with DMT to give the doubly protected 

nucleoside 5 (Scheme 3). N7-methylation of 5 was carried out using CH3I in DMSO to give 

the N7-methyl-dG intermediate 6, which was not isolated (Scheme 3). Subsequent treatment 

of 6 with 1M NaOH and immediate neutralization yielded protected Me-FAPy-dG 7, which 

was characterized by NMR spectroscopy and high resolution mass spectrometry.57 The 

corresponding Me-FAPy-G ribonucleoside was synthesized using a similar route.58 N7-

methylation of guanosine was achieved by reaction of unprotected guanosine with 

diazomethane, which was obtained from nitrosomethylurea as reported by Farmer et. al.59 

Next, N7-methylguanosine was incubated with 0.15M ammonia for 30 min at 25 °C, 

yielding the Me-FAPy-G in 60% yield. The availability of Me-FAPy-dG and Me-FAPy-Guo 

has made it possible to incorporate these structures in nucleic acids chains using the 

phosphoramidite approach (Section 3 below).

2.2. Ethyl FAPy Adducts

N7-ethylguanine is the main DNA lesion formed upon exposure to ethylating agents, and it 

can be converted to the corresponding Et-FAPy adducts.19, 58 van Delft et al. reported the 

synthesis of Ethyl-FAPy-dG (9 in Scheme 4) from N7-ethyl-dG 8 by basic treatment in 0.5 

M ammonia for 70 min at 25 °C, followed by cooling to −80 °C and lyophilization (Scheme 

4).58 The conversion yield was reported as 95%.58 The corresponding ribonucleoside (Et-

FAPy-Guo) was prepared analogously by treating N7-Et-Guo with 0.1 N KOH at ambient 

temperature.19 A characteristic change in UV spectra was observed when N7-Et-Guo (λmax, 

243 and 272 nm) was converted to Et-FAPy-Guo (λmax 265 nm in acid and 247 nm under 

basic conditions (pH 13, Figure 4).19
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2.3. 2-Hydroxyethyl FAPy Adducts

N7-(2-hydroxyethyl)guanine (N7-heG, structure 10a in Scheme 5) represents the major 

adduct produced upon exposure of DNA to ethylene oxide, which is commonly used as an 

intermediate in chemical industry. Ethylene oxide can also be formed endogenously through 

P450-mediated metabolism of ethylene.60, 61 As a result, N7-heG adducts are ubiquitously 

present in tissues of mice exposed to ethylene oxide and are among the most abundant 

endogenous DNA lesions measured, with > 30,000 N7-heG lesions per cell.53, 62

Roe et. al.63 reported the first synthesis of he-FAPy adducts. Guanosine was treated with 

ethylene oxide in glacial acetic acid at 50–55 °C to give N7-he-Guo (10b in Scheme 5).58 

This intermediate was incubated with 0.5 M ammonia for 40 min at 25 °C, followed by 

lyophilization to give N7-(2-hydroxyethyl)-FAPy-Guo (compound 11b).63 The 2′-deoxy 

counterparts 10a and 11a were prepared in a similar fashion.63

2.4. 2-Oxoethyl-FAPy

Vinyl chloride is an important industrial chemical classified as a known carcinogen.64–67 It 

is epoxidized by cytochrome P450 2E1 to chlorooxirane, which reacts extensively with 

DNA.68 Acetoxyoxirane, an acetylated analogue of chlorooxirane, was used in many studies 

of DNA alkylation because it is more chemically stable than chlorooxirane, but generates the 

same types of DNA adducts.69 Acetoxyoxirane can be readily prepared from vinyl acetate 

and dimethyldioxirane.69

Similar to other simple epoxides, chlorooxirane preferentially alkylates N7G in DNA, and 

the resulting adducts can undergo imidazole ring opening.69 Christov et. al. reported the first 

synthesis of oxoethyl-FAPy-dG (Scheme 6).69 In brief, dG was reacted with acetoxyoxirane 

in acetic acid at room temperature for 3 h to give N7-oxyethyl-dG 12. At pH 7.8, compound 

12 was found to undergo two competing reactions: deglycosylation to give an abasic site 

(major pathway) and imidazole ring opening to give compound 13 in 10 % yield (Scheme 6, 

top). Compound 13, which was accounted for 10% of total reaction mixture, was highly 

unstable and underwent spontaneous cyclization to give a ring closed compound (cyclized 

product, Scheme 6). In a similar way the allyl-FAPy-dG was obtained by the alkylation of 

dG with allyl bromide to give compound 14 which was further treated with 1M NaOH to 

give the corresponding FAPy adduct 15 (Scheme 6, bottom).

2.5. Ethylamine-FAPy

Ethyleneimine (aziridine) is an industrial chemical widely used in the production of 

polymers, coatings, adhesives, drugs, dyes, cosmetics, and antineoplastic agents.70, 71 

Carboxylic acid derivatives of aziridine have been reported as immunomodulators.72 

Ethyleneimine is an extremely reactive alkylating agent which targets the N7-purine 

positions in DNA. In 1984, Hemminki et. al.42 reported that ethyleneimine reactions with 

guanosine and 2′-deoxyguanosine at pH 6.5 in 0.2 M ammonium formate for 6 h gave rise 

to N7-dG adducts 16a or 16b (Scheme 7).42 The corresponding ring opened adducts 17a and 

17b were formed in 80% yield. Unlike N7 adducts of simple alkylating agents, the 

conversion of aziridine adducts to the corresponding FAPy structures took place under mild 

conditions, probably due to protonation of the amino side chain, which facilitates hydroxyl 
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ion attack at C-8 position of N7-alkylated nucleoside (Scheme 7). As described below, a 

similar mechanism accelerates FAPy adduct formation from antitumor nitrogen mustards.

2.6. FAPy Adducts of Nitrogen Mustards

Nitrogen mustards (NM) are bis-electrophiles capable of cross-linking DNA to form toxic 

interstrand and intrastrand cross-links (Figure 5). Nitrogen mustard drugs such as 

cyclophosphamide, chlorambucil, and mechlorethamine (18–21) are widely used in the 

treatment of immune diseases, lymphoma, leukemia, multiple myeloma, and ovarian 

carcinoma (Figure 5).73–76 The antitumor activity of NMs has been attributed to their ability 

to cross-link the twin strands of DNA.77 The resulting bifunctional lesions, if not repaired, 

can inhibit DNA replication and transcription, eventually leading to cell cycle arrest, 

apoptosis, and the inhibition of tumor growth. In 1982, Chetsanga et. al. first reported 

imidazole ring opening of N7-guanine adducts generated by phosphoramide mustard in 

DNA.78 Alkylated DNA was treated with 0.2 N NaOH for 30 min at 37 °C to obtain the 

corresponding FAPy adducts. The reaction mixture contained five isomers of phosphoramide 

mustard-imidazole ring-opened dG complexes.78 Recently, the Turesky group for the first 

time detected NM-FAPy adduct in mustard-treated DNA and in human cell culture.79

Christov et al. recently reported the first synthesis of NM-FAPy adducts, which were 

subsequently incorporated into DNA strands by phosphoramidite chemistry (Section 3 

below).80 The synthesis began with N2 – formamidine protected compound 22, which was 

further protected at 5′OH treated with DMT-Cl to give DMT protected dG (23, Scheme 8). 

Compound 23 was reacted with ethyl nitrogen mustard in trifluoroethanol to give N7-dG 

intermediate 24, which was not isolated. Further imidazole ring opening of 24 was 

performed in the presence of 1M NaOH to give NM-FAPy-dG 25 (85% yield).80

2.7. Aflatoxin B1 (AFB 1)-FAPy-dG

Aflatoxins are carcinogenic mycotoxins produced by certain molds that can contaminate 

agricultural products such as peanuts and corn.81, 82 Specifically, Aflatoxin B1 is produced 

by Aspergillus flavus and A. parasiticus and has been implicated in liver cancer in 

populations consuming contaminated grains.83 Aflatoxin B1 is metabolically activated to 

epoxide 26 (Figure 6), which is capable of alkylating guanine nucleobases of DNA to give 

N7-guanine adducts 27, which spontaneously depurinate to give abasic sites.84

Aflatoxin exposure induces high levels of G→T transversions.85–88 AFB-N7-dG adducts 

were initially hypothesized to be responsible for these genetic changes.83, 89, 90 However, 

site-specific mutagenesis experiments have revealed that N7-dG adducts 27 are only weakly 

mutagenic in E. coli. (4%).91 It was then proposed that apurinic (AP) sites arising from 

depurination of N7-guanine adducts may be the source for AFB genotoxicity.14, 92 However, 

Essigmann and coworkers have shown that AFB 1 epoxide treated cells exhibit a unique 

mutagenic signature distinct from that of AP sites. It was subsequently shown that N7-AFB-

dG undergoes imidazole ring opening at physiological pH to give the corresponding AFB-

FAPy-dG adduct 28.89, 90 AFB-FAPy-dG formation occurs readily at physiological pH,83 

and the resulting lesions are highly mutagenic84, 90, 93–95 and persist in vivo.84, 93, 94 It is 

now generally accepted that ring open adducts AFB-FAPy-dG (28 in Figure 6) are largely 
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responsible for the key G to T mutations that lead to hepatocarcinoma development 

following exposure to Aflatoxin B1.96

The first synthesis of AFB-FAPy-dG adducts was reported by Harris and coworkers 

(Scheme 9).82 5′-DMT-protected-2′-deoxyguanosine was treated with AFB epoxide 26 in 

THF to give the corresponding N7-dG adduct 29. Protected AFB-FAPy-dG 30 was obtained 

by incubating compound 29 at pH 9.5 overnight (15 mM Na2CO3/30 mM NaHCO3 buffer at 

ambient temperature). Subsequent detritylation of compound 30 in 0.1 M HCl for 15 min 

gave AFB-FAPy-dG nucleoside 31.82 The use of 5′-protected dG was critical to prevent 

anomerization of the sugar (see below Section 3).82

The presence of multiple isomeric forms of AFB-FAPy-dG has made it challenging to 

deduce the exact chemical structure of AFB-FAPy-dG. Initial NMR studies by Miller and 

Garner groups have revealed that AFB-FAPy-dG existed as a mixture of at least four 

isomers.89, 90 These four isomers were isolated by HPLC as two separate peaks, with each 

fraction containing a pair of inseparable species. Miller and Garner initially hypothesized 

that the structures of the AFB-FAPy isomers involved ring closed forms 32B and 33B, along 

with the corresponding ring open structures 32A and 33A (Figure 7).89, 90 Subsequent 

structural studies by Hertzog et. al.90 have reassigned the structures of AFB-FAPy isomers 

as two pairs of geometrical isomers 34 and 35, which were in equilibrium with the rotamers 

36 and 37 (Figure 8). UV absorption spectra of 34 and 35 were reported to have maxima at 

265, 340 and 364 nm, with pH having only a minor effect on the spectra.71 However, the 

presence of structural isomers 34 and 35, with different position of the formyl group (N5 vs 

N6), due to different direction of imidazole ring opening following hydroxyl ion attack, was 

in contrast with previous studies of FAPy adducts generated by methylating agents, 

sterigmatocystin, and mitomycin, in which the formyl group was always placed at the N5 

atom as in 34 and 36.10, 36, 41, 97

Most recently, detailed NMR experiments were conducted by the Harris group82 to elucidate 

the correct structure of AFB-FAPy adducts (Figure 9). Two sets of stereoisomers are 

possible for AFB-FAPy adducts; (a) geometrical isomers around the formamide group and 

(b) atropisomers at the pyrimidine C5–N5 bond (38–41 in Figure 9). The first pair of isomers 

(38/40 and 39/41) forms as a result of rotation about the formamide bond (highlighted in 

blue, Figure 9). Since aflatoxin is a chiral molecule, this leads to a pair of diastereomers 

separable by HPLC. Additional isomers (38/39 and 40/41) are produced due to hindered 

rotation about the C5–N5 bond (highlighted in red). The four isomers (38–41) in Figure 9 

are separable by HPLC, but interconvert with each other.82 The rotational barrier for this 

interconversion is relatively high due to the steric bulk of the AFB substituent at the N5.82 1H 

NMR spectra of nucleobases 38 and 39 are very similar. The pair of formyl signals are 

observed at 8.29 and 7.59 ppm (compound 38) and 8.22 and 7.52 ppm (compound 39). 

These four formyl signals are split into doublets with coupling constants ~17 Hz, confirming 

the attachment of the formyl group to the N5 position of pyrimidine ring. Similar 

observations were made for the isomers of FAPy nucleoside 31 (AFB-FAPy-dG). The 

complete NMR studies of AFB-FAPy-dG included COSY, TOCSY, HMQC, HMBC, 

NOESY, and ROESY.82
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Structurally related FAPy adducts of sterigmatocystin, a mycotoxin that can form in moldy 

grain, green coffee, and cheese, have been reported by Baertschi et. al.98 Sterigmatocystin is 

produced by some strains of Aspergillus, Penicillium, and Bipolaris sp.99, 100 

Sterigmatocystin 1,2 epoxide 42 (Scheme 10) was prepared from sterigmatocystin and 

incubated with DNA for 7 days at 5 °C to form the corresponding N7-alkylated adduct 43. 

Imidazole ring opening of this adduct was performed by incubating compound 43 at pH 9.8 

at 25 C for 2 hr to obtain sterigmatocystin-FAPy 44 (Scheme 10).97, 99, 100

2.8. Mitomycin C-FAPy Adducts

Mitomycin C (MMC, in Scheme 11) is an antitumor antibiotic widely used in cancer 

chemotherapy.101 It is a bifunctional alkylating agent capable of cross-linking DNA, leading 

to cell cycle arrest and apoptosis. MMC alkylates N7-G position in DNA to give the 

corresponding guanine adduct.40 In 1987, Tomasz et. al. reported that the mitomycin C 

forms FAPy-dG lesions under basic conditions.41 d(GpC) dinucleotide was treated with 

MMC at pH 3.5–4 to give the corresponding N7-alkylguanine adduct 45. Subsequent 

imidazole ring opening under basic condition yielded MMC-FAPy-dG 46 (Scheme 11).

Five isomers of MMC-FAPy-dG (47–50) were identified, including α and β anomers and 

furanose/ pyranose nucleosides (Figure 10).41 The α anomer 53 may form through imino 

intermediate 52 (Scheme 12), a rearrangement that can take place in double stranded DNA, 

but is much faster for free nucleosides. The pyranose isomers of FAPy-dG adducts (54 in 

Scheme 12) may form by intramolecular attack of C5′-hydroxyl on the imine functionality 

of intermediate 52.41, 102 It should be noted that the rearrangement to pyranose form is not 

possible in the absence of a free C5′-hydroxyl group (as in DNA strands).7, 103 Therefore, 

during nucleoside and phosphoramidite synthesis of FAPy adducts, the formation of 

pyranose isomers can be minimized by protecting the 5′position of the sugar, typically using 

the DMT group.57

3. Synthesis of DNA Oligodeoxynucleotides Containing N5-R-FAPy Adducts

In order to establish the role of N5-substituted FAPy adducts in mutagenicity and to uncover 

their possible contributions to the therapeutic effects of DNA modifying agents, it is 

necessary to establish the chemical structures, stability, and mispairing characteristics of N5-

R-FAPy adducts. This requires chemical synthesis of DNA molecules containing structurally 

defined, site-specific N5-R-FAPy adducts. Such a synthesis can be a challenging task due to 

the unusual structural complexity of this class of adducts and their ability to undergo 

isomerization.82 Standard solid phase synthesis coupling conditions can result in a mixture 

of DNA strands containing α and β anomers, as well as both furanose and pyranose forms, 

and special precautions must be taken to minimize this structural complexity.

Previous attempts to prepare N5-R-FAPy containing DNA strands can be broadly divided 

into three general approaches; (i) direct treatment of DNA with alkylating agents and base to 

introduce FAPy, (ii) chemical synthesis of alkylated-FAPy-phosphoramidite building blocks 

and their incorporation into DNA via solid phase synthesis (SPS), and (iii) solid phase 

synthesis employing carbocyclic nucleoside analogues.
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3.1. Direct Alkylation of DNA to Generate N5-R-FAPy

In the most straightforward approach, DNA strands containing a FAPy adduct can be 

prepared by treating oligodeoxynucleotides containing a single guanine base with alkylating 

agents, followed by basic treatment to introduce N5-R-FAPy (Scheme 13). This 

methodology was employed by Brown et al. to generate DNA containing AFB-FAPy-dG.82 

Synthetic DNA 13-mer containing a single dG residue was treated with AFB-epoxide in 100 

μL phosphate buffer (10 mM sodium phosphate, 100 mM NaCl, pH 7.0) for 30 min (Scheme 

14). Further, the alkylated DNA was dissolved in sodium carbonate solution (pH 10) to open 

the imidazole ring, and the resulting AFB-FAPy-dG containing oligodeoxynucleotide was 

purified by HPLC. The main limitations of this approach are that it is limited to DNA 

sequences containing a single guanine and that a mixture of isomers can be generated.

Tudek et al.104 employed a similar direct alkylation approach to study the mutagenic 

specificity of Me-FAPy-purines in M13mp18 phage DNA. Single stranded M13 phage DNA 

was incubated with dimethylsulfate (DMS) to obtain DNA containing N7-methyl-dG (83%), 

and N7-methyl-dA (2.2%) (Scheme 15). This DNA was further incubated in 0.2M NaOH for 

15 min at 37 °C to obtain DNA containing the corresponding FAPy adducts.104 It should be 

noted that this approach induced Methyl-FAPy-dG and Methyl-FAPy-dA adducts at random 

sites within the plasmid.

Chetsanga et. al. treated DNA containing [3H]-dG with phosphoramide mustard. To obtain 

labelled DNA, a guanine requiring Bacilius Subtilis strain was grown in cell culture 

supplemented with deoxy[8-3H]guanosine, and cells were lysed by lysosome treatment.78 

The purified DNA consisting [3H]guanosine was treated with phosphoramide mustard to 

obtain alkylated DNA and with 0.2N NaOH to produce PM-FAPy containing DNA (Scheme 

16). As in the paper by Tudek et al., this approach does not produce site-specific adducts.104

3.2. Incorporation of Alkylated-FAPy Adducts into DNA via Phosphoramidite Chemistry

To enable the preparation of DNA strands containing site specific, structurally defined N5-R-

FAPy adducts, solid phase synthesis starting with nucleoside phosphoramidites can be 

employed. In 2008, the Rizzo group reported the synthesis of Me-FAPy-dG phosphoramidite 

(Scheme 17). Compound 55 (generated as shown in Scheme 3 above) was treated with 

phosphoramidite reagent in the presence of tetrazole in anhydrous dichloromethane for 2 h 

at room temperature to obtain Me-FAPy-dG phosphoramidite 56 in 78% yield (Scheme 

17).57 This phosphoramidite building block was employed in solid phase synthesis (SPS) 

experiments in order to incorporate Me-FAPy-dG into short DNA sequence 5′-d(TT-Me-

FAPy-dG-TTC)-3′.

The critical step in the solid phase synthesis of Me-FAPy-dG containing ODNs is the 

deprotection of the 5′-OH group of Me-FAPy-dG, since the unprotected nucleoside 

undergoes rapid rearrangement to the pyranose form (Scheme 12 and discussion above).57 

During solid phase synthesis, a “short” deprotection step was employed rather than the 

traditional deprotection step.57 Upon HPLC analysis of enzymatic digests, five Me-FAPy-

dG peaks were observed (Figure 11), of which one peak was the pyranose form (Peak 1) 
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whereas other four peaks corresponded to furanose nucleosides in an α and β anomeric 

forms.57

A similar strategy was employed to prepare NM-FAPy-dG building block (59 in Scheme 

18).80 The protected NM-FAPy-dG (compound 25) was prepared as shown in Scheme 8. 

Compound 25 was then treated with cesium acetate in 18-crown-6 ether to replace chloro 

group of NM with an acetyl group (57). The 6-oxo group was deprotected with TBAF in 

THF to give compound 58, which upon phosphitylation in dichloromethane in the presence 

of tetrazole gave phosphoramidite building block 59 in 50% yield. This nucleoside was 

incorporated into 12 and 24-mer oligodeoxynucleotides by solid phase synthesis.80

During automated solid-phase synthesis, a short deprotection cycle was employed in order to 

minimize the rearrangement of NM-FAPy-dG to the pyranose form of the nucleoside. 

However, HPLC analysis of the resulting DNA strands revealed two peaks, both having the 

expected molecular weight and representing furanose and pyranose forms of the adduct. 

When the standard DNA synthesis protocol (normal deprotection time) was employed, a 1:1 

ratio of furanose to pyranose ring containing product formation was observed. The thermal 

melting profile of the NM-FAPy-containing 12 mers gave inconsistent results due to the 

presence of α and β anomers (1:1).80

3.3. Carbocyclic Nucleoside Analogues of FAPy

As described above, a major obstacle in solid phase synthesis of FAPy-dG containing DNA 

strands is that they readily undergo rapid isomerization to give α anomers and pyranose 

forms under standard DNA synthesis conditions.105, 106 Due to this rapid anomerization, it 

has only been possible to incorporate α/β anomeric mixtures of FAPy adducts into DNA. 

Hydrolysis of glycosidic bond of FAPy-dG at elevated temperatures further complicates 

their synthesis.

To circumvent these problems, Carell et al. have developed the nonhydrolizable and non-

epimerizable β analogues of the FAPy-dG lesions.105–107 In this approach, the oxygen atom 

of the deoxyribose moiety was replaced with a methylene group to give the corresponding 

carbocyclic nucleoside. This replacement had a minor effect on base pairing.59

The synthesis of Bz-cFAPy-dG (Scheme 19)105–107 started with enantiomerically pure 

cyclopentylamine 60, which was synthesized as described by Cullis and Dominguez.108 

Coupling of compound 60 with protected 2-amino-6-chloro-5-nitro-4-oxopyrimidine (61) 

furnished the nitro pyrimidine derivative 62 (86%), which was subsequently subjected to 

reduction to give the corresponding aminopyrimidine compound 63 (58%). Further, the 

primary amine of compound 63 was coupled with benzaldehyde and subjected to reduction 

with sodium cyanoborohydride to give the N5-benzylated compound 64. The formyl group 

was introduced at the C-5 position by reaction of compound 64 with acetic formic anhydride 

to give Bz-cFAPy-dG 65 (89%) (Scheme 19).

To prepare the nucleoside phosphoramidite of 65, compound 65 was protected at 5′-OH by 

DMTCl in pyridine at room temperature to give the DMT derivative 66 in 55% yield 

(Scheme 19). Phosphitylation of 66 was carried out under argon in acetonitrile in the 
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presence of tetrazole and DIPEA to give phosphoramidite 67 in 54% yield, which was 

subsequently incorporated into DNA. These authors reported that since the standard capping 

procedure during DNA synthesis was not compatible with Bz-cFAPy-dG, a solution of 2,6-

lutidine and pivaloylic anhydride in THF (v/v/v 1:1:8) was used in place of phenoxyacetyl 

anhydride for capping, and 4,5-dicyanoimidazole (0.25 M) was used as the coupling reagent. 

The coupling time for the Bz-cFAPy-dG phosphoramidite was much longer compared to 

standard phosphoramidite methods (10 min vs 144 s).106

DNA strands containing Bz-cFAPy-dG were purified by HPLC and analyzed by MALDI-

TOF. LC-MS of enzymatic digests showed no structural alteration of Bz-cFAPy-dG during 

ODN synthesis and purification. Thermodynamic studies of c-FAPy (no substitution on the 

formamide group) oligodeoxynucleotides revealed that c-FAPy conferred significant duplex 

destabilization.105, 106 Interestingly, the base excision repair enzyme Fpg recognized the 

unnatural N7-benzyl-cFAPy-dG lesion via an unproductive binding mode, leading to 

enzyme inhibition.107

4. Effects of N5-R-FAPy Adducts on DNA Replication

4.1. Methyl-FAPy-dG

Structurally, ring open N5-R-FAPy adducts are substituted pyrimidines, and are expected to 

mispair with purines during DNA replication. However, initial studies with bacterial DNA 

polymerases (e.g. Klenow fragment of E. coli. DNA polymerase I) have shown that Methyl-

FAPy-dG blocked bacterial DNA replication in vitro, but did not induce any 

mutations.11, 53, 109, 110 Similarly, O’Connor and others reported that E. coli. DNA 

polymerase I exo and T4 DNA polymerases were inhibited one nucleotide before Me-FAPy-

G.11 Inhibition of DNA synthesis by Me-FAPy-G is stronger than ROS-induced lesion 8-

oxo-dG, but is weaker than that of apurinic sites and FAPy-A (FAPy-Ade ≈AP 

site>FAPy-7Me-G>8-oxoG).54, 111

Rizzo et al. examined in vitro bypass of Me-FAPy-dG in the presence of eukaryotic DNA 

polymerases α, β, and hPol δ/PCNA.112 Me-Fapy-dG blocked high fidelity polymerases at 

either the insertion or the extension step. Translesion synthesis was observed for hPols η, κ, 

and hRev1/Pol ζ. These polymerases primarily inserted the correct base (C) opposite the 

lesion, however hPols η and κ also catalyzed the misinsertion of Thy, Gua, and Ade 

opposite Me-Fapy-dG, and generated a single nucleotide deletion product. These authors 

concluded that although the amounts of Me-FAPy-dG lesions in cells are relatively low, their 

miscoding potential could contribute to genomic instability.112

Tudek et. al.111, 113 investigated the biological properties of Me-Fapy-dG and Me-Fapy-dA 

in M13mp18 phage DNA. Lesions containing plasmids were generated as described above 

in section 3.1 (Scheme 15), and were transfected into E. coli. The presence of Me-FAPy 

adducts led to a significant decrease in transfection efficiency and increased mutational 

frequency in the lacZ gene following SOS induction.111, 113 However, sequencing analyses 

have revealed primarily A →G transitions, while mutations at GC base pairs were only 

slightly elevated. These results suggest that Me-FAPy-G is primarily a lethal lesion in E. 
coli. In contrast, the corresponding Me-FAPy-A adducts are a more miscoding, causing 
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A→G transitions.54, 104 Me-FAPy-A (Figure 12) was two orders of magnitude more 

mutagenic than Me-FAPy-G.54, 111

4.2. AFB-FAPy-G

The biological outcomes of AFB1-FAPy-dG adducts (Figure 13) have been examined in 

detail due to their proposed roles in aflatoxin-mediated liver cancer. In contrast to N7-AFB-

G, AFB1-FAPy-G is highly persistent in rat liver DNA, reaching maximum adduct amounts 

2 weeks after exposure.89 One of the AFB1-FAPy rotamers (68A in Figure 13) has been 

shown to be a potent block to DNA synthesis, even when DNA polymerase of lowered 

replication fidelity was used (MucAB).96 Both AFB1-FAPy-G and N7-AFB1-G caused 

G→T transversions, which is consistent with the observed G→ T mutations in codon 249 

of the p53 tumor suppressor gene in 50% of hepatocellular carcinomas and in AFB1-treated 

human hepatocytes cultures.51, 52 In addition, AFB1-induced G→ T mutations in the ras 
oncogene appear to be important for liver tumor progression.86, 87 Taken together, these 

results indicate that AFB1-FAPy adducts may be the ultimate lesions responsible for 

mutagenesis and genotoxicity of aflatoxin.96, 114

5. Cellular Repair of N5-R-FAPy Adducts

Many of the previous studies of FAPy adduct repair have been limited to unsubstituted FAPy 

induced by ROS.49, 50, 53 Repair studies of N5-substituted FAPy-adducts are less extensive, 

and several examples are given below.

FPG glycosylase: Formamidopyrimidine DNA glycosylase (Fpg) was first identified 

in 1978–1979 as a DNA glycosylase that removes Me-FAPy-G from DNA.13 Along 

with Me-FAPy-G, this glycosylase also excises ROS-induced unsubstituted FAPy-G, 

unsubstituted FAPy-A, as well as damaged pyrimidines and 8-oxo-dG.13,115–119 

Substituent size on the N5 position of -the adduct has been shown to influence 

enzyme activity. For example, Tudek et. al. have shown that Me-FAPy-G was excised 

by Fpg 7-times faster than Et-FAPy-G.120 It is not known whether other N5-R-FAPY 

adducts are also substrates for this repair pathway.

yOgg 1: 8-oxo-G DNA glycosylase (yOgg 1) excises Me-FAPy-G, but does not 

remove Me-FAPy-A.121, 122 Furthermore, Fpg and its eukaryotic homolog Ogg1 have 

been reported to recognize unsubstituted FAPy-dG and the carbocyclic analog of Bz-

FAPy-dG (Bz-cFAPy-dG, Figure 14) with high affinity.

hNEIL and mNEIL 1: Both hNEIL 1 (human NEIL 1) and mNEIL 1 (mouse NEIL 1) 

excised Me-FAPy-G, along with a number of pyrimidine-derived nucleobase lesions. 

However, hNEIL is the only human enzyme that excises FAPy-Ade 

(unsubstituted).123–127

E. coli. Endonuclease IV: E. coli. Endonucleoase IV (Endo IV) is an AP 

endonuclease specific for double stranded DNA . It also removes the 3′-blocking 

phosphate groups128–130 and possess the 3′ →5′ endonuclease activity.131, 132 

ODNs containing α-dA, α-dT, α-dC, α-FAPy-dG, α-FAPy-dA lesions are substrates 

to Endo IV.133–137 Asagoshi et. al. reported that oligodeoxynucleotides containing α-
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Me-FAPy-dG are not substrates for Endo IV.110, 138 However, in 2000 Christov and 

others showed that α-Me-FAPy-dG is indeed a substrate for Endo IV. 139 The Me-

FAPy-dG lesion is a substrate for Fpg/Nei family of glycosylases as well. It is 

possible that Endo IV and Fpg glycosylases play specialized roles in FAPy adduct 

repair, with Endo IV recognizing only the α-anomer of N5-alkyl-FAPy lesions and 

Fpg glycosylase recognizing the β-anomer form of the adduct.

Nucleotide excision repair Alekseyev and Essigmann reported that Aflatoxin B1 

formamidopyrimidine adducts (AFB1-FAPy-dG, Figure 13) are preferentially 

repaired by the nucleotide excision repair pathway in vivo.140 These authors 

transfected plasmids containing site-specific AFB1-FAPy-dG lesions into E.coli cells 

and employed the host cell reactivation assay to monitor lesion repair in wild type 

cells and their repair deficient clones. Cells deficient in nucleotide excision repair 

(uvrA) were unable to remove the damage, while BER mutants (mutM) were affected 

to a lesser extent.140 This was confirmed by in vitro experiments with site-

specifically modified oligodeoxynucleotides and purified MutM protein, which 

revealed excision products characteristic of NER.140

6. Future Prospects and Outlook

Although the chemistry and biology of the N5-substituted FAPy lesions have been a subject 

of interest for several decades, the majority of the published studies have focused on two 

types of FAPy lesions (Me-FAPy and AFB-FAPy). The chemical biology of other N5-R-

FAPy adducts is incompletely understood, and their roles in chemical carcinogenesis remain 

unknown. Based on the published studies of Me-FAPy and AFB-FAPy, such lesions may be 

extremely important for the biological mechanisms of many DNA damaging agents, if 

formed in vivo. However, with a few exceptions, it is not known whether significant amounts 

of N5-R-FAPy adducts form in cells treated with DNA alkylating drugs and environmental 

agents. Future mass spectrometry based studies are urgently needed to establish the 

concentrations of these secondary adducts in cells and tissues. Chemical synthesis of DNA 

strands containing structurally defined N5-R-FAPy represents a significant challenge due to 

their propensity to undergo isomerization. Furthermore, FAPy lesions exist as a mixture of 

rotamers which present a range of possibilities for base pairing due to changes in hydrogen 

bond donor acceptor patterns. Future studies employing novel solid phase synthesis 

methodologies are needed in order to establish the relationship between N5-R-FAPy adduct 

structures and their biological outcomes, as well as to elucidate their effects on DNA 

structure.
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Abbreviations

FAPy formamidopyridines

dG 2′-deoxyguanosine

dA 2′-deoxyadenosine

DNA deoxynucleic acid

N7-heG N7-(2-hydroxy)ethyl guanine

PM phosphoramide

NM nitrogen mustard

MMC mitomycin C

AFB aflatoxin

THF tetrahydofuran

DCM dichloromethane

CH3I methyliodide

HCl hydrochloric acid

DMSO dimethylsulfoxide

NaOH sodium hydroxide

AcOH acetic acid

EI ethyleneimine

DMTCl dimethoxytrityl chloride

HPLC high performance liquid chromatography

UV ultraviolet

NMR nuclear magnetic resonance

ppm parts per million

Me methyl

ROS reactive oxygen species

ODN oligodeoxynucleotides

DMS dimethylsulfate

Na2CO3 sodium carbonate

NaHCO3 sodium bicarbonate
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AFB-FAPy aflatoxin formamidopyrimidine

Me-FAPy methyl formamidopyrimidine

Et-FAPy ethyl formamidopyrimidine

MMC-FAPymitomycin C formamidopyridine

NM-FAPy nitrogen mustard formamidopyridine

PM-FAPy phosphoramide formamidopyridine

Bz-cFAPy benzyl carbocyclic formamidopyridine
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Figure 1. 
500 MHz NMR spectra of N5-methyl-N5-formyl-2,5,6-triamino-4-hydroxypyrimidine. 

Spectra were obtained in DMSO-d6/D2O (1:1) (a), in MeOH-d4 (b); and in DMSO-d6 (c).36 

Used by permission of Oxford University Press.
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Figure 2. 
Rotational isomers of Methyl-FAPy-Gua adducts identified by Beranek et al.36, 37
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Figure 3. 
Proton NMR spectra showing formamido signals with methylene protons of Methyl-Fapy 

isomers. Spectra were taken in DMSO-d6.10 Used by permission of Oxford University Press.
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Figure 4. 
UV absorption spectra of (A) 7-Et-Guo in water (—), 0.1 N HCl (--) and 0.1N KOH (….). 

Spectrum shown for 0.1N KOH is for Et-FAPy-G. (B) Ethyl-FAPy-Guo in 0.1 N KOH (….), 

0.1N HCl (--).19
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Figure 5. 
Structures of nitrogen mustards.
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Figure 6. 
Structures of aflatoxin B1 epoxide 26, its cationic N7-dG adduct 27, and AFB-FAPy-dG 28.
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Figure 7. 
Proposed structures of AFB-FAPy-dG isomers put forward by Miller and others.89

Pujari and Tretyakova Page 30

Chem Res Toxicol. Author manuscript; available in PMC 2017 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Structures of AFB-FAPy isomers proposed by Hertzog et. al.90
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Figure 9. 
Structures of AFB-FAPy isomers elucidated by Harris et al.82
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Figure 10. 
Structural isomers of MMC-FAPy-dG.
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Figure 11. 
HPLC analysis of ODN 5′-d(TT-Me-FAPy-dG)-TTC-3′. (A) Analysis of ODN synthesis 

with a short deprotection cycle. (B) Analysis of ODN synthesis with a long deprotection 

cycle. In both figures, peak 1 represents the formation of pyranose adduct, whereas other 

peaks are mixture of α and β isomers.57
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Figure 12. 
Structures of N5-R-FAPy lesions investigated in biological studies.
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Figure 13. 
Structures of N7-AFB1-G and AFB1-FAPy lesions investigated in biological studies.82
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Figure 14. 
Rotamers of Bz-cFAPy-dG.107
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Scheme 1. 
Mechanisms leading to the formation of FAPy adducts in DNA.
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Scheme 2. 
Formation of methyl-FAPy from dG.
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Scheme 3. 
Synthesis of Me-FAPy-dG from N2, 5′-OH -protected dG.57
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Scheme 4. 
Synthetic scheme for Ethyl-FAPy-dG.58
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Scheme 5. 
Synthesis of N7-(2-hydroxyethyl)-FAPy-dG.63
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Scheme 6. 
Synthesis of 2-oxyethyl-FAPy-dG.69
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Scheme 7. 
Synthesis of Ethylamine-FAPy-dG.42

Pujari and Tretyakova Page 44

Chem Res Toxicol. Author manuscript; available in PMC 2017 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 8. 
Synthesis of NM-FAPy-dG by Christov et. al.80
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Scheme 9. 
Synthesis of AFB-FAPy-dG.82
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Scheme 10. 
FAPy formation of sterigmatocystin 1 epoxide.97
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Scheme 11. 
Synthesis of MMC-FAPy-dG.41

Pujari and Tretyakova Page 48

Chem Res Toxicol. Author manuscript; available in PMC 2017 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 12. 
Isomerization of N5-R-FAPy adducts to α, β anomers 51, 53 and pyranose derivatives 54 via 

an imine intermediate.

Pujari and Tretyakova Page 49

Chem Res Toxicol. Author manuscript; available in PMC 2017 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 13. 
Direct treatment of DNA containing a single dG residue to introduce N5-R-FAPy-residue.
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Scheme 14. 
Synthesis of AFB-FAPy-dG oligonucleotide.82
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Scheme 15. 
Direct methylation of M13 phage DNA to form Me-FAPy adducts.111
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Scheme 16. 
Preparation of DNA containing radilabaled phosphoramide mustard-FAPy adducts.104
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Scheme 17. 
Synthesis of Me-FAPy-dG phosphoramidite.57
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Scheme 18. 
Preparation of NM-FAPy-dG phosphoramidite building block for solid phase synthesis.80
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Scheme 19. 
Synthesis of Bz-cFAPy-dG phosphoramidite.105–107
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