
Polyunsaturated Fatty Acids and Recurrent Mood Disorders: 
Phenomenology, Mechanisms, and Clinical Application

Erik Messamore1,2, Daniel M. Almeida3, Ronald J. Jandacek4, and Robert K. McNamara1,*

1Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of 
Medicine, Cincinnati, OH 45219-0516

2Lindner Center of HOPE, Mason, OH, USA

3Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, 
Cincinnati, OH 45224 United States

4Department of Pathology, University of Cincinnati, Cincinnati OH 45237, USA

Abstract

A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 

PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the 

pathophysiology and etiology of recurrent mood disorders including major depressive disorder 

(MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater 

habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. 

Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 

PUFA levels which are associated with increased risk for the initial development of mood 

symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be 

multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have 

antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal 

development can recapitulate key neuropathological, neurochemical, and behavioral features 

associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA 

biostatus is associated with abnormalities in cortical structure and function also observed in mood 

disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly 

during development, in the pathophysiology of mood dysregulation, and support implementation 

of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders.

*Corresponding Author: Robert K. McNamara, Ph.D., Department of Psychiatry and Behavioral Neuroscience, University of 
Cincinnati College of Medicine, 260 Stetson Street, Rm. 3306, Cincinnati, OH 45218-0516, PH: 513-558-5601, FX: 513-558-4805, 
robert.mcnamara@uc.edu. 

DISCLOSURES
R.K.M. has received research support from NARSAD, Martek Biosciences/DSM Inc, Ortho-McNeil Janssen, AstraZeneca, Eli Lilly, 
Kyowa Hakko Bio Co., LTD, and the Inflammation Research Foundation (IRF), was a member of the IRF scientific advisory board, 
and served as a paid consultant for VAYA Pharma Inc., and Vifor Pharma Inc. The NIH did not have any role in the design, 
implementation, analysis or interpretation of the research. The other authors do not have any financial disclosures.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Prog Lipid Res. Author manuscript; available in PMC 2018 April 01.

Published in final edited form as:
Prog Lipid Res. 2017 April ; 66: 1–13. doi:10.1016/j.plipres.2017.01.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Major depressive disorder; Bipolar disorder; Omega-3 fatty acids; Eicosapentaenoic acid (EPA); 
Docosahexaenoic acid (DHA)

1. Introduction

Major mood disorders including major depressive disorder (MDD) and bipolar I disorder are 

characterized by a dysregulation in emotional homeostasis. Specifically, MDD is typically 

associated with recurrent and protracted episodes of depression and bipolar I disorder is 

characterized by recurrent episodes of both mania as well as depression. The initial onset of 

MDD most frequently occurs during adolescence and young adulthood [1], and the initial 

onset of mania, and by definition bipolar I disorder, most frequently occurs during childhood 

and adolescence [2]. Depressive symptoms frequently precede the initial onset of mania 

[3,4] and are associated with increased risk for developing mania in the offspring of bipolar 

parents [5]. Moreover, the high rate of attention deficit hyperactivity disorder (ADHD) in 

youth with bipolar disorder, and lower age at onset of mania in patients with co-occurring 

ADHD, are consistent with ADHD being risk factor for mania [6]. In addition to significant 

psychosocial impairment, MDD and bipolar I disorder are associated with elevated rates of 

cardiometabolic risk factors [7,8] and excess premature mortality [9,10] compared with 

general population estimates.

Over the past three decades there has been extensive research devoted to identifying genetic 

risk factors associated with mood disorders. However, to-date a robust and consistent pattern 

has yet to emerge suggesting that the etiology is polygenic and multifactorial. Indeed, 

subtotal heritability estimates and monozygotic twin discordance rates indicate that non-

genetic factors also confer significant vulnerability [11,12]. For example, a meta-analysis of 

community-based twin studies of MDD yielded a heritability estimate of 0.37, indicating 

that approximately two thirds of the liability is attributable to environmental factors [13]. 

While there is strong evidence for familial transmission of bipolar disorder [14–16], non-

genetic factors shared within families may also contribute to risk transmission [17]. There is 

also growing evidence that early environmental factors can impact gene expression patterns 

through epigenetic modifications (i.e., DNA methylation)[18]. Because environmental risk 

factors are amenable to modification, developing a clearer understanding of their role in the 

etiology of mood disorders may provide new insights to guide and inform early intervention 

strategies.

One candidate environmental risk factor that is amenable to modification is the habitual diet. 

Evidence has emerged over the last three decades which suggests that the fatty acid 

composition of the habitual diet may be relevant to the pathophysiology and potentially 

etiology of mood disorders. Cross-national and cross-sectional epidemiological surveys, 

longitudinal prospective cohort studies, prospective intervention studies, and basic science 

research have provided converging evidence implicating omega-3 (n-3) polyunsaturated fatty 

acids (PUFA) insufficiency, and associated increases in the n-6/n-3 PUFA ratio, in the 

pathophysiology of mood disorders. The goals of this review are to provide an overview of 
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epidemiological and clinical research investigating the role of these PUFAs in mood 

disorders, discuss plausible mechanisms mediating dietary PUFA composition and mood 

dysregulation, and then consider strategies to translate this evidence into clinical practice.

2. PUFA Biochemistry

As background, the PUFA family includes n-3 and n-6 fatty acids. Ubiquitous dietary 

sources of the plant-derived n-3 PUFA precursor α-linolenic acid (18:3n-3) include flaxseed, 

linseed, canola, soy, and perilla oils, and sources of the plant-derived n-6 PUFA precursor 

linoleic acid (18:2n-6) include safflower, soy, and corn oils. These plant-derived PUFAs are 

considered ‘essential’ because they cannot be formed endogenously and therefore require 

procurement through the diet. The biosynthesis of n-3 PUFAs, including eicosapentaenoic 

acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), and n-6 PUFAs including 

arachidonic acid (20:4n-6), from their plant-derived precursors requires a series of common 

and competitive microsomal desaturation and elongation reactions [19](Fig. 1). Enzymes 

regulating PUFA biosynthesis include delta-6 desaturase (FADS2) and delta-5 desaturase 

(FADS1) and elongases (e.g., ELOVL5). Desaturase enzymes are regulated by multiple 

factors including gonadal hormones [20–24], insulin [25], single nucleotide polymorphisms 

[26], as well as epigenetic (i.e., DNA methylation) modifications induced by dietary fatty 

acids [27,28]. The final synthesis of DHA is catalyzed by multiple enzymes within 

peroxisomes [29], and heritable defects in peroxisome biogenesis genes are associated with 

impaired DHA synthesis as well as other lipid and neurological abnormalities [30]. 

Nevertheless, it has been estimated that only 24 percent of the variability in levels of EPA 

and DHA arise from heritable factors [31]. Therefore, n-3 and n-6 PUFA biosynthesis is 

complex and involves both heritable genetic as well as non-genetic factors.

Extant evidence from human studies suggest that the biosynthesis of n-3 and n-6 PUFAs 

from plant-derived fatty acid precursors is extremely inefficient [32–35]. This may be due in 

part to the fact that n-3 and n-6 PUFA biosynthesis are mediated by common and 

competitive enzymatic reactions. Indeed, translational evidence indicates that the balance of 

linolenic acid to α-linolenic acid in the diet is an important determinant of n-3 and n-6 

PUFA biosynthesis [36–39]. Dietary intake of preformed n-3 or n-6 PUFAs is more effective 

for increasing their levels in peripheral or central tissues than is enzyme-mediated 

biosynthesis from short-chain precursors [40–44]. Preformed n-6 PUFAs including 

arachidonic acid can be obtained directly from animal-based foods including beef, chicken, 

and eggs, and preformed n-3 PUFAs can be obtained directly from fatty cold water fish, 

including salmon, trout, tuna, as well as fish oil and algal-derived supplements. Therefore, 

both n-3 and n-6 PUFA content as well as the ratio of linolenic acid to α-linolenic acid in 

the habitual diet are important determinants of PUFA biostatus.

In addition to being incorporated into cellular phospholipid membranes, the n-6 PUFAs 

including arachidonic acid and n-3 PUFAs including EPA and DHA also serve as precursors 

for immune-inflammatory signaling modulators (Fig. 1). Phospholipid-bound arachidonic 

acid can be mobilized via calcium-dependent cytosolic isoform of phospholipase A2 

(cPLA2), and free arachidonic acid is a substrate for cyclooxygenase (COX)-mediated 

biosynthesis of prostaglandins (i.e., PGH2) and thromboxanes, as well as lipoxygenase 
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(LOX)-mediated biosynthesis of leukotrienes and lipoxins. COX-generated PGH2 is 

converted to PGE2 via PGE synthase, and PGE2 stimulates the biosynthesis of down-stream 

pro-inflammatory cytokines including interleukin-6 (IL-6) at the level of transcription [45–

48]. In contrast, EPA competes with arachidonic acid for metabolism by COX enzymes, and 

COX and LOX metabolites of DHA and EPA (i.e., D- and E-series resolvins) have potent 

inflammation-resolving properties [48–52]. Therefore, EPA+DHA and arachidonic acid 

have opposing effects on immune-inflammatory signaling cascades, and a shift in their ratio 

may contribute to dysregulated inflammatory signaling homeostasis [53].

3. Associations with mood disorders

3.1. Observational studies

Cross-national evidence indicates that habitual fish intake is correlated with breastmilk [54] 

and blood [55] n-3 PUFA biostatus. For example, in the U.S., where annual seafood 

consumption is approximately 2-fold lower than in Japan [56], erythrocyte EPA+DHA levels 

are approximately fifty percent lower [57,58] and breastmilk DHA levels approximately 5-

fold lower [54] compared with Japanese levels. Cross-national epidemiological surveys have 

observed a significant inverse correlation between per capita fish or seafood consumption 

and lifetime prevalence rates of MDD [59,60], postpartum depression [61], and bipolar 

spectrum disorders [62]. A retrospective study found that shifts away from fish-based to 

Western diets in Arctic communities were associated with increased rates of seasonal 

affective disorder, depression, suicide, and cardiovascular disease [63]. Moreover, a 

longitudinal prospective study of 4,856 adults residing in the U.S. found that greater linoleic 

acid intake was associated with increased risk of depression in men but not women during 

the 10.6 year follow-up period [64]. Within the U.S., it has been estimated that over the last 

century there has been a gradual increase in the consumption of linoleic acid and a 

corresponding decline in α-linolenic acid and n-3 PUFAs [65]. It will therefore be of interest 

to retrospectively evaluate whether this increase in n-6/n-3 PUFA ratio was associated with 

increased prevalence rates of mood disorders in the U.S. during this period.

Cross-sectional studies further suggest that higher intake of fish (as well as fruit, vegetables, 

and whole grains) is associated with a reduced depression risk [66]. For example, a cross-

sectional survey of 21,835 adult and elderly subjects from Norway found that subjects who 

ingested cod liver oil on a daily basis (EPA: ~300–600 mg/d; DHA: ~300–600 mg/d) were 

30 percent less likely to have depressive symptoms than non-users after adjusting for 

multiple possible confounding factors [67]. In view of evidence that the initial onset of mood 

disorders frequently occurs during the peri-adolescent period [1,2], it is notable that surveys 

have found that a large percentage of adolescents residing in Western countries consume low 

quantities of n-3 PUFA in their habitual diet which may be associated with depressive 

symptoms and cardiometabolic risk factors [68–77]. While findings from dietary surveys 

provide general support for an inverse association between n-3 PUFA intake and the 

prevalence of depressive symptoms in the general population, collinear cultural, 

socioeconomic, and/or genetic variables may mediate or moderate this association [78].
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3.2. PUFA biostatus

Because estimating dietary fatty acid intake based on retrospective recall may be prone to 

errors and biases, and the n-3 PUFA composition in different types of fish varies widely, an 

alternative and more objective approach is to investigate fatty acid levels in blood and 

tissues. For example, erythrocyte (red blood cell) phospholipid membrane EPA+DHA levels 

are positively correlated with habitual dietary fish intake frequency [58], and increase in a 

linear dose-dependent manner following long-term fish oil supplementation [79]. Using this 

approach, several cross-sectional studies conducted in different countries have investigated 

blood fatty acid levels in patients with mood disorders. A meta-analysis of fourteen cross-

sectional studies comprising n=648 depressed patients and n=2,670 healthy control subjects 

observed significant blood (plasma, erythrocyte) deficits in EPA and DHA, but not 

arachidonic acid or total n-6 PUFA, in patients with depressive symptoms [80]. Similarly, a 

meta-analysis of 6 cross-sectional studies comprising n=118 bipolar I disorder patients and 

n=147 healthy controls found significant erythrocyte deficits in DHA, and to a lesser extent 

EPA, in patients with bipolar I disorder [81]. In the latter study levels of linoleic acid and 

arachidonic acid were not different, and extant evidence also suggests that saturated and 

monounsaturated (i.e., oleic acid) fatty acid levels are not abnormal in patients with mood 

disorders. While the majority of these studies were conducted in adults, other studies have 

similarly found that pediatric and adolescent patients with MDD [82,83] or bipolar I 

disorder [84,85] also exhibit erythrocyte EPA and/or DHA deficits compared with healthy 

youth. Together, these findings provide strong evidence for an association between mood 

disorders and low EPA and/or DHA biostatus, as well as associated increases in the n-6/n-3 

PUFA ratio.

Recent evidence further suggests that n-3 PUFA deficits coincide with, and may precede, the 

initial onset of mood symptoms. For example, robust erythrocyte DHA deficits were 

observed in mediation-naïve first-episode manic patients that were diagnosed with bipolar I 

disorder [86]. Moreover, asymptomatic adolescents who are at increased risk for developing 

mood disorders i.e., they have with a biological parent with bipolar I disorder [15], exhibit 

erythrocyte EPA+DHA levels that are intermediate between first-episode manic patients and 

offspring of parents with no family history of psychiatric illness [85]. Furthermore, 

adolescent offspring of bipolar parents with depressive symptoms or MDD, i.e., at ultra-high 

risk for developing bipolar I disorder [5], exhibit erythrocyte EPA+DHA deficits that are 

significantly lower than adolescents with no personal or family history of psychiatric illness 

[85]. These findings suggest that low EPA+DHA biostatus coincides with the initial onset of 

mood symptoms and may be associated with symptom progression in high-risk youth.

Some fatty acid composition studies [84,87,88] but not others [83,85,86,89] have observed 

an inverse correlation between blood n-3 PUFA levels, or positive correlations with the 

n-3/n-6 PUFA ratio (i.e., arachidonic acid/EPA), and depression or manic symptom severity 

within groups of patients. The latter discrepancies may be due in part to uniformity in mood 

symptom severity scores and more robust inverse correlations between manic and depressive 

symptom severity and blood n-3 PUFA levels are observed when both healthy controls and 

patients with a wider range of symptom severity are included [85]. Moreover, a recent study 

found that the inverse association between EPA+DHA levels and depressive symptoms was 
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only observed in subjects with elevated oxidative stress biomarkers [90]. It is also notable 

that a large percentage of bipolar patients have a history of psychotic symptoms [91] and a 

meta-analysis of case-control studies observed significant erythrocyte DHA as well as 

arachidonic acid deficits in first-episode psychosis patients [92]. The latter finding suggests 

that arachidonic acid deficits may distinguish risk for psychosis versus MDD or bipolar 

disorder. Furthermore, there is a high rate of ADHD in youth with bipolar disorder [6], and a 

meta-analysis found that youth with ADHD also exhibit robust EPA+DHA deficits [93]. 

These findings suggest that n-3 PUFA deficits are not uniquely associated with mood 

symptoms, and are also associated with a broader range of psychiatric symptoms frequently 

exhibited by patients with mood disorders.

While prospective longitudinal studies are required to evaluate whether low EPA+DHA 

biostatus can serve as a reliable prognostic indicator of risk for ‘endogenous’ mood 

dysregulation, recent evidence suggests that low n-3 PUFA biostatus increases risk for the 

initial onset of mood symptoms elicited by ‘exogenous’ pro-inflammatory signaling 

cascades [94]. Specifically, prospective studies have found that lower baseline DHA levels, 

or a higher ratio of arachidonic acid to EPA+DHA, are a significant predictor of depression 

development in initially non-depressed hepatitis C patients during treatment with interferon-

α (IFN-α)[95–97]. Additionally, during IFN-α treatment hepatitis C patients with a higher 

baseline ratio of arachidonic acid to EPA+DHA are also at increased risk for developing core 

symptoms of bipolar I disorder including anger and irritability [98]. In view of evidence that 

a subset of patients with mood disorders exhibit elevated biomarkers of inflammation [53], 

these prospective findings suggest that low EPA+DHA biostatus may also increase risk for 

‘endogenous’ mood dysregulation in response to a natural pro-inflammatory challenge (e.g., 

viral infection). While there is currently nothing known about DHA and EPA metabolite 

levels (i.e., D- and E-series resolvins) in patients with mood disorders, research is warranted 

to evaluate whether impaired biosynthesis of D- and E-series resolvins secondary to DHA

+EPA deficits contribute to mood dysregulation by creating a chronic low-grade pro-

inflammatory state.

Other cross-sectional studies have investigated fatty acid levels in postmortem brain tissue. 

The most abundant n-3 PUFA found in mammalian brain gray matter is DHA, which 

comprises approximately 12% of total fatty acid composition, whereas EPA is rapidly 

oxidized and consequently comprises <1% of total brain fatty acid composition [99]. 

Preliminary evidence suggests that mammalian erythrocyte and cortical gray matter DHA 

levels are positively correlated under steady state dietary conditions [41,100]. Although 

several case-control studies have investigated the fatty acid composition of regional 

postmortem gray matter from patients with mood disorders, some studies but not others have 

observed DHA deficits in patients with MDD or bipolar I disorder [101–113]. These 

equivocal results may be due in part to the challenges and limitations associated with the 

postmortem approach [114], and additional research is needed to understand the relationship 

between blood and cortical DHA levels in patients with mood disorders. An alternative 

approach is to investigate relationships between n-3 PUFA intake and biostatus and 

neurophysiological variables in living patients using neuroimaging [115]. As discussed in 

great detail below, emerging evidence suggests that DHA biostatus is associated with 
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different measures of cortical structural and functional integrity in brain regions repeatedly 

implicated in the pathophysiology of mood disorders.

In view of evidence that mood disorders are associated with elevated rates of 

cardiometabolic risk factors [7,8] and excess premature mortality attributable in part to 

cardiovascular-related disorders [9,10], it is also relevant that low erythrocyte EPA+DHA 

biostatus is associated with cardiometabolic risk factors including elevated triacylglycerol 

and C-reactive protein levels [116,117] as well as risk for sudden cardiac death [118–121]. 

Moreover, suicide is a primary cause of excess premature mortality in patients with mood 

disorders [9,10], and low erythrocyte DHA biostatus was found to be a significant predictor 

of future suicidal attempts in medication-free MDD patients [122], and blood n-3 PUFA 

deficits are observed in suicidal patients [123,124]. Therefore, n-3 PUFA deficits exhibited 

by patients with mood disorders may also contribute risk for premature mortality secondary 

to suicide and cardiometabolic disorders.

4. Etiological mechanisms

While extant evidence suggests that mood disorders are associated with blood deficits in n-3 

PUFA, but not n-6 PUFA, understanding the etiological variables that contribute to blood 

n-3 PUFA deficits may have implications for treatment and prevention. Candidate etiological 

mechanisms including impaired biosynthesis, elevated lipid peroxidation, psychotropic 

medication effects, and dietary n-3 PUFA insufficiency, are discussed in greater detail below 

(Fig. 2).

4.1. Impaired biosynthesis

Reductions in the expression or function of the microsomal and peroxisomal enzymes that 

mediate EPA and/or DHA biosynthesis from α-linolenic acid would be anticipated to lead to 

robust deficits in blood EPA and DHA levels [29,125,126]. However, extant evidence 

suggests that mood disorders are not associated with deficits in other major n-3 PUFAs 

including docosapentaenoic acid (DPA, 22:5n-3) or n-6 PUFA including arachidonic acid 

[80,81]. This fatty acid signature would suggest that EPA+DHA deficits cannot be attributed 

to impaired microsomal desaturase and elongase activity. This is also supported by a recent 

genotyping study which did not observe an association between common single-nucleotide 

polymorphisms in FADS1 or FASD2 genes and depression or suicidality in MDD patients 

[127]. However, DNA methylation in the Elovl5 gene was found to be associated with 

depression and suicidality [128], and abnormalities in FADS1 and FADS2 mRNA 

expression have been observed in the postmortem prefrontal cortex of patients with mood 

disorders [129–131]. Recent evidence further suggests that patients with mood disorders do 

not exhibit impaired peroxisomal function despite exhibiting robust DHA deficits [132]. 

While additional research is needed to better characterize the role of genetic and epigenetic 

factors in the n-3 PUFA deficits observed in patients with mood disorders, existing evidence 

suggests that impaired biosynthesis does not represent a major etiological mechanism.
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4.2. Lipid peroxidation

Mood disorders are associated with elevated indices of oxidative stress [133,134] which may 

also contribute to erythrocyte membrane EPA and DHA deficits. For example, incubation of 

erythrocytes from healthy control subjects with hydrogen peroxide decreased EPA and DHA 

composition to levels observed in MDD patients [135]. Moreover, deficiencies in oxidative 

defenses (i.e., vitamin E, alpha-tocopherol) are associated with increased susceptibility of 

erythrocyte n-3 PUFA to oxidative degradation [136], and erythrocyte EPA+DHA 

composition is positively correlated with plasma vitamin E concentrations [137]. Different 

case-control studies have separately found that MDD patients exhibit significantly lower 

serum vitamin E concentrations [138] and elevated indices of oxidative stress [133]. 

However, other evidence suggests that erythrocyte EPA+DHA deficits exhibited by patients 

with mood disorders are dissociable from biomarkers of lipid peroxidation [139]. For 

example, first-episode manic patients exhibit lower indices of lipid peroxidation [140] and 
lower erythrocyte EPA+DHA levels [85,86] compared with healthy controls. Nevertheless, 

additional studies are warranted to investigate whether antioxidant supplementation can 

increase EPA+DHA levels in patients with mood disorders to evaluate causality.

In view of the high rate of cigarette smoking among patients with mood disorders [141,142], 

it is also relevant that studies have found that cigarette smoking is associated with elevated 

indices of erythrocyte lipid peroxidation [143], and is also inversely correlated with plasma 

EPA+DHA and arachidonic acid concentrations [144]. However, other studies have found 

that cigarette smoking is not correlated with erythrocyte EPA+DHA levels among healthy 

male and female adults [57,58], and cross-sectional studies that specifically investigated the 

contribution of cigarette smoking to erythrocyte EPA+DHA status in patients with mood 

disorders did not observe an association [86,145]. Furthermore, robust erythrocyte EPA

+DHA deficits have been observed in patients that reported to have never smoked cigarettes 

[86]. These findings suggest that elevated lipid peroxidation secondary to cigarette smoking 

cannot uniformly account for the EPA+DHA deficits observed in patients with mood 

disorders.

4.3. Psychotropic medications

Another potential etiological factor that may contribute to n-3 PUFA deficits in mood 

disorder patients is chronic exposure to psychotropic medications, including mood-

stabilizers, antidepressants, or antipsychotics. Indeed, many of the case-control studies 

observing n-3 PUFA deficits in patients with mood disorders employed medicated patients. 

However, EPA+DHA deficits have been observed in chronically medicated, medication-

withdrawn, and medication-naïve patients [85,86,89]. Moreover, in a prospective study it 

was found that erythrocyte DHA deficits observed in first-episode bipolar patients at 

medication-free baseline were not altered following 52 weeks treatment with lithium [86]. 

Additional evidence suggests that erythrocyte EPA and/or DHA deficits are present in 

medication-free [85,89] as well as selective serotonin reuptake inhibitor (SSRI)-treated [83] 

MDD patients. Furthermore, chronic treatment with the SSRI fluoxetine, which resulted in 

clinically-relevant plasma concentrations, did not significantly alter rat erythrocyte EPA

+DHA levels under controlled dietary conditions [146]. In contrast, chronic treatment with 

the atypical antipsychotics risperidone or quetiapine significantly increased erythrocyte 
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DHA composition in rats under controlled dietary conditions [147,148]. However, 52 week 

treatment with quetiapine did not significantly alter erythrocyte DHA deficits observed in 

medication-free bipolar patients at baseline [86]. Taken collectively, extant translational 

evidence would suggest that the blood EPA+DHA deficits observed in mood disorder 

patients cannot be wholly attributed to chronic exposure to psychotropic medications.

4.4. Dietary n-3 PUFA insufficiency

Several lines of evidence suggest that the n-3 PUFA deficit observed in patients with MDD 

or bipolar disorder are attributable to dietary n-3 PUFA insufficiency. This is directly 

supported by evidence that patients with mood disorders consume less EPA+DHA in their 

habitual diet [84,149,150]. Perhaps most compelling is the observation that dietary 

supplementation with fish oil significantly increases erythrocyte EPA+DHA levels in 

patients with mood disorders [83,151,152]. The latter finding additionally suggests that 

patients can efficiently absorb EPA+DHA from the gut and incorporate these fatty acids into 

erythrocyte membranes. In contrast, dietary supplementation with flax oil (a rich source of 

α-linolenic acid) does not significantly increase erythrocyte DHA levels in youth with 

bipolar I disorder [153], a result also observed in healthy subjects [42]. While greater intake 

of linoleic acid would have the potential to decrease n-3 PUFAs in patients with mood 

disorders [36], extant evidence suggests that patients with mood disorders do not exhibit 

elevated blood linoleic acid or n-6 PUFA levels compared with healthy subjects [80,81]. 

Therefore, while the etiology of the EPA+DHA deficits observed in patients with mood 

disorders may be multifactorial, extant evidence suggests that increasing dietary EPA+DHA 

intake is sufficient to correct this deficit.

5. n-3 PUFA supplementation studies

There has been considerable interest in evaluating whether n-3 PUFA supplementation has 

acute psychotherapeutic effects in patients with mood disorders. Over the past 20 years, 

numerous open-label and placebo-controlled n-3 PUFA supplementation trials have been 

conducted, and more recently several independent meta-analyses have been performed on 

placebo-controlled trials. While there have been discrepancies among the results of placebo-

controlled trials, independent meta-analyses have reported a modest but statistically 

significant advantage of n-3 PUFA interventions over placebo for reducing depression 

symptom severity in patients with MDD [154–157] or bipolar disorder [155,158]. Controlled 

and open-label trials have also found that n-3 PUFA supplementation, administered either 

adjunctively or as monotherapy, significantly reduce depression and manic symptom severity 

in pediatric and adolescent patients [83,151,152,159]. Secondary analyses suggest that a 

larger EPA/DHA ratio has greater antidepressant efficacy [157], and a recent study found 

that higher EPA+DHA biostatus at baseline, which was associated with higher endpoint EPA

+DHA biostatus following n-3 PUFA supplementation, was associated with increased 

antidepressant efficacy in depressed coronary heart disease patients [160]. Emerging 

evidence from controlled and open-label trials further suggests that n-3 PUFAs may augment 

the therapeutic efficacy of SSRI medications [83,161–164] and may be protective against 

adverse cardiometabolic [165–168] and hepatic [169,170] side-effects associated with 

second generation antipsychotic medications. Additional evidence suggests that increasing 
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n-3 PUFA biostatus may be protective against the initial onset of depressive symptoms in 

hepatitis C patients during treatment with IFN-α [171], and to reduce suicidality in MDD 

patients [164]. Although extant evidence suggests that n-3 PUFA supplementation may have 

acute antidepressant and/or mood-stabilizing effects, large-scale controlled trials will be 

required to confirm and extend this body of evidence.

6. Neuropathophysiological mechanisms

Translational studies have elucidated several plausible biological mechanisms that may 

mediate the association between low n-3 PUFA status and mood dysregulation (Fig. 2). 

Consistent with a neurodevelopmental etiology, the initial onset of mood disorders 

frequently occurs during childhood and adolescence [1,2], a developmental period 

associated with the rapid cortical accrual of DHA [100] and both regressive (i.e., synaptic 

pruning) and progressive (i.e., myelination) cortical maturational processes [172–174]. 

Rodent neurodevelopmental studies have provided critical insight into the role of dietary n-3 

fatty acids in normal brain development, and have the advantage of systematic and selective 

manipulation of n-3 fatty acid intake while controlling myriad potentially confounding 

variables that can impact clinical research. Additionally, converging evidence from 

neuroimaging studies is providing clarification regarding brain regions and 

neuropathological biomarkers associated with mood disorders, and more recently, 

associations between these biomarkers and n-3 PUFA biostatus.

6.1. Rodent studies

In brief, rodent studies have demonstrated that deficits in brain DHA accrual during 

perinatal development are associated with perturbations in neurogenesis [175,176], 

neuroblast migration [177,178], neurotrophic factor expression [179,180], and 

synaptogenesis [181]. Deficits in cortical DHA accrual during perinatal development are 

also associated with elevations in peripheral [182] and central [183,184] pro-inflammatory 

signaling cascades which have been found in separate studies to be down-regulated by 

mood-stabilizer medications [185]. Moreover, greater cortical DHA levels increase 

resilience to neurodegenerative processes associated with inflammation [186], lipid 

peroxidation [187,188] and glutamate excitotoxicity [189–191], and promotes neurovascular 

coupling [192]. Rodent studies also suggest that perinatal n-3 PUFA deficiency leads to 

long-standing alterations in neurotransmitter systems, including dopamine [193–195] and 

serotonin [196,197], and neuroendocrine systems, including corticosterone [198] and 

melatonin [199], implicated in mood regulation. n-3 PUFA deficiency also leads to elevated 

behavioral indices of depression, aggression, and anxiety [198,200,201] whereas dietary fish 

oil fortification decreases depression-like behavior [202,203]. These and other rodent 

findings suggest that n-3 PUFA deficiency during perinatal development can recapitulate key 

neuropathological, neurochemical, and behavioral features associated with mood disorders.

6.2. Clinical neuroimaging studies

There is emerging consensus from neuroimaging evidence that mood disorders are 

associated with abnormalities in connectivity between the prefrontal cortex and limbic 

emotional structures mediated in part by frontal white matter pathology [204–214]. Frontal 
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lobe connectivity with limbic structures is mediated in part by the uncinate fasciculus and 

superior longitudinal fasciculus, prominent white matter tracts that develop during gestation 

and undergo significant maturation during childhood and adolescence. Accumulating 

evidence suggests that n-3 PUFAs promote cortical white matter microstructural integrity 

[215], and a recent study found that fish oil supplementation increased white matter 

microstructural integrity and decreased depressive symptom severity in MDD patients [216]. 

Moreover, perinatal n-3 PUFA deficiency in monkeys [217], or low erythrocyte DHA 

biostatus in typically developing children [218], are both associated with reduced functional 

connectivity within prefrontal cortical networks. These preliminary findings suggest that 

lower n-3 PUFA intake and biostatus may contribute to reduced functional connectivity 

within prefrontal cortical networks.

The third trimester of human gestation is a period associated with the initial formation of 

connections between brain regions including the uncinate fasciculus and superior 

longitudinal fasciculus [219], and preterm birth, which leads to deficits in third trimester 

cortical DHA accrual [220–222], is associated with both decreased white matter tract 

integrity and reduced connectivity within frontal lobe cortical networks [223–232]. In view 

of the high rate of ADHD in youth with bipolar disorder, it is relevant that preterm birth 

and/or low birth weight is associated with increased risk for developing ADHD in childhood 

[233–235] and mood, anxiety, and psychotic disorders during adolescence and young 

adulthood independent of multiple confounding variables including maternal history of 

psychiatric illness [236–239]. While these associations suggest that DHA deficits during 

critical neurodevelopmental periods may contribute to suboptimal frontal lobe cortical 

network maturation, it is not currently known whether early deficits in cortical DHA accrual 

directly contribute to frontal lobe cortical network pathology in patients with mood 

disorders.

Evidence from neuroimaging studies also suggest that n-3 PUFA intake and biostatus is 

associated with cortical structural integrity over the lifespan [240–245]. For example, greater 

habitual dietary n-3 PUFA intake [240] and erythrocyte EPA+DHA composition [245] are 

associated with larger hippocampal volumes among healthy adults. It is relevant, therefore, 

that hippocampal gray matter volume deficits are among the most consistent and robust 

neurostructural abnormalities observed in patients with MDD [246]. Furthermore, greater 

habitual dietary n-3 PUFA intake is associated with larger amygdala volumes among healthy 

adults [240], and structural imaging studies have consistently observed smaller amygdala 

volumes in children and adolescents with bipolar I disorder [247]. Near-infrared 

spectroscopy [248,249], functional magnetic resonance imaging (fMRI)[250,251], and 

magnetic resonance spectroscopy (1H MRS) studies [252–254], further suggest that higher 

n-3 PUFA intake or biostatus promote cerebrovascular efficiency and neuronal integrity. As 

observed in n-3 PUFA deficient rodents [183], recent neuroimaging evidence suggests that 

depression is also associated with increased microglial activation indicative of 

neuroinflammation [255]. While this preliminary neuroimaging evidence supports a 

potential link between low n-3 PUFA status and the abnormalities in cortical structure and 

function observed in patients with mood disorders, additional research is needed to establish 

this link and elucidate whether these abnormalities can be prevented with early n-3 PUFA 

intervention.
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7. Clinical applications

In the previous sections we reviewed a body of translational evidence which suggests that 

n-3 PUFA deficiency, particularly during perinatal development, may represent a modifiable 

risk factor for neuropathophysiological processes implicated in mood disorders. Together 

these and other data provide a compelling rationale to begin to translate this body of 

evidence into clinical practice in an effort to optimize treatment and improve long-term 

health outcomes for patients. Below we briefly discuss existing screening and treatment 

resources and general guidelines required for implementation in psychiatric practice.

7.1. Screening for n-3 PUFA deficiency

Blood fatty acid analysis by gas-liquid chromatography can provide a valid measure of a 

patient’s fatty acid biostatus [256]. As discussed in greater detail previously, erythrocyte 

EPA+DHA composition, termed the ‘omega-3 index’, has been widely characterized as a 

risk biomarker in the context of coronary heart disease [121,257]. In this regard, erythrocyte 

EPA+DHA composition of ≤4% of total fatty acids has been suggested to represent an 

appropriate criterion for defining a state of ‘n-3 PUFA deficiency’ warranting corrective 

intervention. Based on cross-sectional evidence that patients with mood disorders commonly 

exhibit erythrocyte EPA and/or DHA deficits [80,81], and are at increased risk for 

cardiovascular-related disease [9,10], erythrocyte EPA+DHA composition of ≤4% may also 

be considered undesirable in the context of psychiatric practice. It is notable that one study 

found that 90 percent of adolescents with SSRI-resistant MDD exhibited erythrocyte EPA

+DHA composition of ≤4% [83]. Importantly, there are currently laboratories that specialize 

in determining the fatty acid composition of whole blood obtained from a finger prick, a 

sampling method that is highly amenable to routine clinical practice. As proof-of-concept, 

beginning in mid-2014 measurement of whole blood fatty acid levels was implemented as 

part of the routine laboratory assessment at a university-affiliated mental health care center. 

To date fatty acid levels have been collected from over 100 patients with mood and anxiety 

disorders. Our initial results suggest that the rate of whole blood EPA+DHA levels of ≤4 

percent of total fatty acid composition in patients is significantly greater than the general 

U.S. population (75% vs. 25%)[258]. Therefore, analogous to routine cholesterol testing 

routine testing for n-3 PUFA deficiency is currently feasible within the context psychiatric 

clinical practice.

7.2. Treating n-3 PUFA deficiency

As discussed, dietary supplementation with n-3 PUFA formulations (i.e., fish oil) is 

efficacious for the treatment of EPA+DHA deficits observed in patients with mood 

disorders. Prescription ethyl ester EPA+DHA (Lovaza® in the US, Omacor® in Europe, 

GlaxoSmithKline), purified ethyl ester EPA containing no DHA (Vascepa®, Amarin 

Corporation), and a free versus ethyl ester EPA+DHA formulation (Epanova®, 

AstraZeneca) have been approved by the U.S. FDA for the treatment of 

hypertriacylglycerolemia (≥500 mg/dL). More recently a generic version of Lovaza has 

become available (Teva Pharmaceuticals USA, Inc.). Over-the-counter fish oil supplements, 

as well as formulations derived from vegetarian sources, containing similar EPA+DHA 

concentrations are also widely available. It is important to note, however, that no n-3 PUFA 
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formulation is currently approved by the FDA for the treatment of any psychiatric disorder, 

and reimbursement for off-label use is ultimately at the discretion of the insurance provider.

Regarding guidelines for dosing, the U.S. Food and Drug Administration (FDA) considers 

n-3 PUFA doses up to 3 g/d to be ‘generally regarded as safe’, and the European Food 

Safety Authority (EFSA) considers doses up to 5 g/d to be safe. The American Psychiatric 

Association has adopted the consensus recommendations of the American Heart Association 

for an EPA+DHA dose of 1 g/d in patients with MDD [259]. The American Heart 

Association also recommends 3 g/d EPA+DHA for reducing elevated triacylglycerol levels. 

Controlled dose-response studies suggest that daily EPA+DHA doses of 1–2 g are sufficient 

to increase erythrocyte EPA+DHA composition to levels ≥4% [79]. As with other 

psychotropic medications, upward dose titration may be required as clinically indicated 

(e.g., [151]) and lower initial starting doses may be appropriate for children.

Potential acute adverse events associated with n-3 PUFA supplementation include 

gastrointestinal disturbances, including nausea, diarrhea, gastroesophageal reflux, belching, 

and less commonly vomiting. To minimize these gastrointestinal adverse events patients 

should be instructed to take their pills with meals. Although taking fish oil at high doses (>3 

g/d) has been associated in isolated cases with increased bleeding time in subjects also 

taking anticoagulant medications [260], controlled clinical trials have found that chronic 

high dose EPA+DHA alone or in combination with aspirin does not increase risk for 

clinically-significant increases in bleeding time [261]. Extant evidence further suggests that 

there is no relationship between n-3 PUFAs and prostate cancer risk [262]. Another safety 

consideration involves the potential threat of contamination of fish and seafood with methyl 

mercury and other environmental pollutants. However, most fish oil supplements are highly 

purified and do not exceed U.S. FDA limits for methyl mercury and other environmental 

contaminants. As with all medications, patients should be informed of potential risks 

associated with fish oil-based products.

8.0. Summary and conclusions

Emerging translational evidence over the past three decades suggests that habitual dietary 

n-3 PUFA insufficiency, particularly during perinatal development, may represent a 

modifiable risk factor for mood disorders. This is indirectly supported by cross-national as 

well as cross-sectional evidence for an inverse association between dietary n-3 PUFA intake 

and prevalence rates of mood disorders in the general population. Meta-analyses of cross-

sectional fatty acid composition studies provide strong evidence that pediatric, adolescent, 

and adult patients with mood disorders exhibit blood n-3 PUFA deficits compared with 

healthy age-matched controls. While controversial, evidence also suggests that n-3 PUFA 

deficiency may decrease risk for suicide and cardiovascular disease, two primary causes of 

excess premature mortality in patients with mood disorders. Although the etiology of the n-3 

PUFA deficits observed in patients with mood disorders may be multifactorial, extant 

evidence suggests that increasing dietary n-3 PUFA intake is sufficient to correct this deficit. 

Several independent meta-analyses of controlled trials suggest that acute n-3 PUFA 

supplementation may reduce mood symptom severity, and recent evidence further suggests 
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that increasing n-3 PUFA biostatus is protective against the initial development of mood 

symptoms in response to inflammation as well as cardiometabolic risk factors.

Neuroimaging and rodent studies are beginning to elucidate plausible biological 

mechanisms that may link low n-3 PUFA status and mood dysregulation. Evidence from 

rodent neurodevelopmental studies suggest that n-3 PUFA deficiency during perinatal 

development can recapitulate key neuropathological, neurochemical, and behavioral features 

associated with mood disorders including enduring impairments in dopamine and serotonin 

neurotransmission. Clinical neuroimaging evidence further suggests that low n-3 PUFA 

biostatus may contribute to abnormalities in cortical structure and function that are 

consistently observed in patients with mood disorders. Consistent with biochemical evidence 

that DHA and EPA, and their bioactive metabolites, have anti-inflammatory and 

inflammation resolving properties, one potential neuropathogenic mechanism linking n-3 

PUFA deficiency and relevant neuropathological processes is neuroinflammation. 

Neuroinflammation may contribute to white matter pathology and associated deficits in 

regional network connectivity. As discussed, this mechanism is directly supported by the 

recent observation that fish oil supplementation increased white matter microstructural 

integrity in MDD patients in conjunction with reductions in depression symptom severity. 

Nevertheless, additional research is needed to better characterize the link between n-3 PUFA 

intake and biostatus, neuroinflammation, neurodevelopment, and risk of mood 

dysregulation.

When taken collectively, this body of evidence provides a strong empirical foundation in 

support of dietary n-3 PUFA deficiency being relevant to the pathophysiology and 

pathoetiology of mood disorders. Because n-3 PUFA deficiency can be corrected through 

dietary n-3 PUFA supplementation, it represents a ‘modifiable’ risk factor that is amenable 

to treatment and prevention. The reviewed translational evidence provides a compelling 

rationale to begin translating this knowledge into clinical practice in an effort to optimize 

treatment response and improve long-term health outcomes for patients and their offspring. 

As an initial step, screening for and treating n-3 PUFA deficiency in patients with mood 

disorders is currently feasible in routine psychiatric practice, as evidenced by our recent pilot 

program conducted in a mental health care center. Furthermore, because n-3 PUFA 

monotherapy is safe and well-tolerated it is ideally suited as a preemptive intervention for 

youth at increased risk for developing mood disorders. The latter approach is supported by 

the observation that fish oil supplementation prevented or delayed the onset of psychosis in 

ultra-high risk youth [263,264]. Within a ‘clinical staging’ framework, n-3 PUFA 

monotherapy would also represent a safe first-line intervention for the treatment of early 

moderate mood symptoms, particularly in those that may be at increased risk for adverse 

events associated with conventional pharmaceutical medications. While the notion of 

nutritional medicine has been slow to impact conventional psychiatric training and practice 

[265], dietary n-3 PUFA deficiency represents a primary therapeutic candidate that warrants 

incorporation into psychiatric practice.
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Figure 1. 
Diagram illustrating the biosynthetic pathways of n-3 and n-6 PUFAs from plant-derived 

dietary precursors. The biosynthesis of docosahexaenoic acid (DHA, 22:6n-3) from α-

linolenic acid (18:3n-3), and arachidonic acid (20:4n-6) from linolenic acid (18:2n-6), 

requires a series of common and competitive elongation and desaturation reactions mediated 

by microsomal enzymes. The final synthesis of DHA requires additional modifications 

including β-oxidation within peroxisomes. Unesterified arachidonic acid is a substrate for 

cyclooxygenase (COX)-mediated biosynthesis of prostaglandins and thromboxanes, as well 

as lipoxygenase (LOX)-mediated biosynthesis of leukotrienes and lipoxins. COX and LOX 

metabolites of unesterified DHA (i.e., docosanoids) as well as EPA have inflammation-

resolving properties.
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Figure 2. 
Diagram illustrating candidate etiological factors that may contribute to n-3 PUFA 

deficiency in patients with mood disorders, and candidate pathogenic mechanisms that may 

mediate n-3 PUFA deficiency and mood dysregulation.
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