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The Venus flytrap Dionaea muscipula captures insects and con-
sumes their flesh. Prey contacting touch-sensitive hairs trigger trav-
eling electrical waves. These action potentials (APs) cause rapid
closure of the trap and activate secretory functions of glands, which
cover its inner surface. Such prey-induced haptoelectric stimulation
activates the touch hormone jasmonate (JA) signaling pathway,
which initiates secretion of an acidic hydrolase mixture to decompose
the victim and acquire the animal nutrients. Although postulated
since Darwin’s pioneering studies, these secretory events have not
been recorded so far. Using advanced analytical and imaging tech-
niques, such as vibrating ion-selective electrodes, carbon fiber amper-
ometry, and magnetic resonance imaging, we monitored stimulus-
coupled glandular secretion into the flytrap. Trigger-hair bending or
direct application of JA caused a quantal release of oxidizable mate-
rial from gland cells monitored as distinct amperometric spikes. Spikes
reminiscent of exocytotic events in secretory animal cells progres-
sively increased in frequency, reaching steady state 1 d after stimula-
tion. Our data indicate that trigger-hair mechanical stimulation
evokes APs. Gland cells translate APs into touch-inducible JA signaling
that promotes the formation of secretory vesicles. Early vesicles
loaded with H+ and Cl− fuse with the plasma membrane, hyperacidi-
fying the “green stomach”-like digestive organ, whereas subsequent
ones carry hydrolases and nutrient transporters, together with a glu-
tathione redox moiety, which is likely to act as the major detected
compound in amperometry. Hence, when glands perceive the hap-
toelectrical stimulation, secretory vesicles are tailored to be released
in a sequence that optimizes digestion of the captured animal.
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Certain plants have turned the sword; they capture and con-
sume animals, including potential herbivores (1, 2). Growing

on mineral-deficient soils, the carnivorous Venus flytrap
(Dionaea muscipula) lures, captures, and digests small arthropods
(3–8) to feed on the nutrients extracted from their flesh (9–12).
Closure of the bilobed snap trap is initiated by mechanical stimu-
lation of trigger hairs located at the inner trap surface. Each trigger-
hair bending elicits the firing of an action potential (AP). With the
first AP, the trap stays open, but memorizes the initial strike. If a
second one fires within 20 s, it triggers rapid trap closure. In case an
insect is trapped and struggles to escape, two and more hapto-
electric stimuli activate jasmonate (JA) signaling and biosynthesis
(3, 6, 7). From the fifth strike on, glands raise their expression levels
of hydrolase and nutrient transporter genes. When mechanosti-
mulation is replaced by application of coronatine (COR), a mimic
of the biologically active JA hormone JA-Ile, it can substitute for
the mechanoelectric stimulation of the flytrap (7). Haptoelectric
signaling and touch hormone activation turn the closed trap into a
“green stomach,” flooding the entrapped prey with an acidic di-
gestive fluid (3, 6, 13). Although prey capture and consumption of
the Venus flytrap has been known since Darwin’s time (2), the

molecular mechanisms of fluid phase secretion underlying animal
consumption have remained unknown (14). In this study, ampero-
metric carbon fibers were used in the plant field to monitor the
dynamics and kinetics of mechanoelectric and JA stimulation of the
secretory events, providing insight into exocytosis-dependent liquid
filling of the digestive organ.

Results
Upon haptoelectric trap activation, the surface area of the multi-
cellular gland cell complex increases by 30% and an acidic protein
moiety is released into the green stomach formed by the hermeti-
cally sealed lobes of the trap (3, 5–7, 13). In search of the membrane
reservoir responsible for the surface increase of stimulated glands,
we exposed traps to the JA-Ile mimic COR. Forty-eight hours after
stimulus onset, membrane pits observed in electron micrographs
(EMs) of glands suggested that secretory vesicle fusion had taken
place predominantly at the apical end of head cells (outermost cell
layer or L1) (Fig. 1 and Fig. S1B). Head cells of nonstimulated
glands only occasionally showed exocytotic vesicles (1.5 ± 0.4 per
cell; Fig. 1 A and C), but in the outermost layer of JA-stimulated
glands’ cells, we detected a pronounced increase of pits associated
with the more apical plasma membrane sections (16.5 ± 1.5 per cell,
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∼0.18 μm in diameter; Fig. 1 B, D, and E). These results in-
dicate that the secretory stimulation causes granule docking
and membrane fusion.

Microelectrode Ion Flux Measuring Resolves Early Secretion of Acidic
Vesicles. In a previous study, we compared the transcriptomic
profile of nonstimulated glands with the transcriptomic profile of
glands stimulated by either insects or COR. Before stimulation,
the transcription profile of resting glands is already dominated by
secretory processes (7). Dionaea secretion is directly coupled to
acidification; H+ and chloride, Cl−, are released into the di-
gestive fluid of the tightly sealed trap (15). To test whether touch
stimulation of the flytrap’s trigger hairs is translated into ion
fluxes across the gland plasma membrane, we used Ca2+-, Cl−-,
and H+-sensitive microelectrode ion flux measuring (MIFE)
microelectrodes (3, 16), which measure fluxes by recording local
concentration gradients. After five to 10 consecutive trigger-hair
stimulations and a lag time of about 10 min, a rapid shift in the
net ion fluxes toward net Ca2+ uptake into the gland cells was
observed (Fig. 2A). The mean net Ca2+ flux after mechanical
stimulation (five APs) of the Venus flytrap was about 9.9 ±
1.8 nmol·m−2·s−1 (Fig. 2B; mean ± SE, n = 6). Within the first
hour following stimulation, the ion fluxes were dominated by
Ca2+ fluxes. Upon Ca2+ entry, the intracellular Ca2+ level rises
(6) and JA signaling is activated (3, 7). Either consecutive
trigger-hair stimulation alone or a direct application of JAs or
COR induces secretion. With JAs, secretion in traps is initiated
before they close (6). Following application of JAs, however,
Ca2+-sensitive MIFE electrodes did not record net Ca2+ flux into
glands (Fig. 2 A and B). Hormone stimulation triggered proton
release, however, which appeared within 5–10 min following
stimulation onset (Fig. 2 C and D). Net H+ efflux reached its
peak between 1 and 2.5 h after stimulus application and then
gradually recovered (Fig. 2C). When comparing the time that
glands required to reach peak proton extrusion in response to
mechanical or chemical stimulation, JAs were the fastest (Fig.
2C). Thus, JA-induced proton release was significantly faster

than proton release elicited by mechanical stimulation (Fig. 2C,
Inset), which reached peak currents of 54 ± 7 nmol·m−2·s−1

(mean ± SE, n = 6). Also the lag time of H+ efflux resulting from
the different stimulations was longest in response to mechanical
stimulation (Fig. 2D). This time dependence fits the notion that
the rise in gland JA is downstream of haptoelectrics and gland
calcium entry.
Regardless of whether it was stimulated or not, the resting

membrane potential of glands remained in the range of −120
to −140 mV (12). This finding might indicate that trap acidification
results from electroneutral exocytotic H+ release rather than the
massive activation of plasma membrane proton pumps. This notion
is supported by the COR-induced increase in vacuolar AHA10-type
proton pump transcripts (17), together with the proton pump
transcripts of a ClC-type proton-chloride antiporter (18), two
components required for hyperacidification of secretory vesicles (SI
Text and Fig. S2). To test whether H+ fluxes are accompanied by
Cl− fluxes, we used chloride-sensitive MIFE electrodes side-by-side
with the pH microelectrodes. Confirming our working model, we
monitored pronounced Cl− net efflux from glands in COR-
stimulated traps (Fig. 2E; blue), but not in resting (Fig. 2E; gray)
traps. COR-induced chloride currents appeared with a similar time
dependence and amplitude as the proton fluxes (Fig. 2 C and E).
Both fluxes were correlated with each other (R2 = 0.61, P < 0.01),
exhibiting a stoichiometry between H+ and Cl− close to 1:1
(Fig. 2F). The electrochemistry-based MIFE experiments illustrated
above can only be conducted in an aqueous environment. In such a
wet scenario, we monitored initial secretion-associated proton ex-
trusion in response to COR about 9 min after stimulation (Fig. 2D).
To resolve the onset of gross gland fluid secretion in the initially dry
Dionaea trap, we followed the fluid production after COR stimu-
lation by infrared gas analysis (IRGA) and magnetic resonance
imaging (MRI). First, fluid phase secretion-associated trap water
vapor emission was detected in IRGA recordings 151 ± 13 min (n =
3, mean ± SD) following trap stimulation with COR (Fig. S2A).
After reaching peak humidity, trap water emission slowly decreased
and suddenly dropped after 445 ± 84 min (n = 3, mean ± SD) to

Fig. 1. Exocytotic vesicle fusion is stimulated in activated gland complexes. EMs of the outer layer of resting (A and C) and COR-stimulated (B, D, and E)
Dionaea gland complexes are shown. A detailed view (A, B, and E) and overview (C and D) are shown. Whereas resting glands only exhibit a few exocytotic
events, a massive rise in exocytotic vesicle fusion with the plasma membrane (black arrows) could be detected 48 h after COR stimulation. B, dark-stained
body; C, cuticle; CW, cell wall; ER, endoplasmic reticulum; M, mitochondria; S, secreted fluid; V, vacuole. Slight shadow lines are due to carrier film handling
during TEM sample preparation; all images are noncomposite originals.
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the basal level of evaporation before COR application and in
nonstimulated controls (Fig. S3A). This rapid drop in water emis-
sion reflects hermetical sealing of the trap lobes (6). Filling of the
closed trap with digestive fluid was visualized by MRI (Fig. S3B and
Movie S1).

Detection of Digestive Vesicles via Amperometry.With animal cells,
exocytotic events can be monitored noninvasively via amper-
ometry, detecting redox currents when electrodes are placed
near the membrane surface of secretory cells (19, 20). Given that
amperometry detects oxidizable substances, such as neurotrans-
mitters, neuropeptides, and hormones released from secretory
vesicles, we adopted this electrochemical approach to probe for
exocytotic events in active flytrap glands. Aiming to detect spikes
associated with secretory cargo release from the inner trap sur-
face, we placed carbon fiber microelectrodes in contact with the
apical face of the glands’ upper head cells (Fig. S1 A and B).
Under these experimental conditions, no amperometric signals
were detectable in nonstimulated glands (Fig. S1C). However,

with glands stimulated by five to 20 trigger-hair displacements,
signals similar to the signals measured with secretory animal cells
could be monitored (21, 22) (Fig. 3A), albeit with a much slower
time course due to cell wall geometry. When placing two elec-
trodes next to each other, both electrodes recorded characteristic
increases in amperometric current in a close temporal relation-
ship, as shown in Fig. 3 A and B, excluding the possibility that
such discrete events were artifacts generated in one or the other
electrode. In these experiments, we had to use strong pH buff-
ering to preserve the sensitivity of the amperometric electrodes
(Materials and Methods).
The amperometrically detected chemical species is released to

the apoplast at the point of exocytosis. From that point source,
the released substance diffuses to the electroactive tip of the
carbon fiber, where it is oxidized. It has been shown that placing
electrodes more than several microns away from the cell surface
results in a significant decrease in signal and spatiotemporal
resolution (23, 24). Therefore, the best scenario for detecting
exocytotic events without diffusional dilution is to touch the cell
surface with the electrode. This limitation by diffusion can be
described by Fick’s law. Thus, we fitted the amperometrically
detected spikes with a 3D diffusion equation according to Eq. 1
(Materials and Methods). From this calculation, we gained a
parameter, tc, which is a characteristic diffusion time, depending
on the distance between the point source of secretion and the
carbon fiber tip, given a certain diffusion coefficient, D. Fitting
sharp secretory events observed when electrodes were placed
directly on the Dionaea gland surface with a high spatiotemporal
resolution resulted in tc values of about 4–5 s. Plotting the rel-
ative signal abundance against the calculated tc values of de-
tected secretory events, a broadly homogeneous distribution was
obtained (Fig. S1D). In other words, the amperometric approach
we used detects secretory events originating from various dis-
tances to the tip of the carbon fiber or else implies a range of
diffusion coefficients. Interestingly, we did not obtain any tc
values ≤3.15 s in 63 analyzed spikes. Assuming a constant D
value in the performed experiments and tc ≥ 3.15 s, we can
calculate a lower bound for the geometrical distance between the
point of secretion and the carbon fiber (Eq. 2) and the diffusion
constant, D, of the secreted substance in the medium (Materials
and Methods). In contrast to animal cells, the plasma membrane
of plant cells is covered with an extra layer of cellulose-based cell
wall and a lipid-based cuticle. Thus, the minimal tc value
obtained for Dionaea glands very likely results from the cell wall-
cuticle shell that keeps the fiber electrode at some distance (r)
from exocytotic vesicles fusing with the gland cell plasma mem-
brane. From EMs similar to the EMs shown in Fig. 1, we cal-
culated a minimal distance between the electrode and secreted
vesicle fusing with the head gland cell plasma membrane of
∼0.5 μm (Fig. 1B). Introducing this value in the Eq. 2, we are
able to calculate the diffusion constant of the fluid secreted from
Dionaea in its diffusion medium (containing the cell wall and
cuticle). The calculated value of D = 1.92 × 10−10 cm2·s−1 indi-
cates a high diffusional resistance of the gland cell wall. For
comparison, the diffusion coefficient of dopamine in water was
reported at 6.0 × 10−6 cm2·s−1 (25). Also, in the animal system,
diffusion in tissue or in solutions containing biological macro-
molecules is known to be hindered by the cellular matrix. Hafez
et al. (26) have reported that the diffusion coefficient of dopa-
mine at the surface of an adrenal cell is one-tenth compared with
its diffusion in water. The small diffusion constant reported here
for Dionaea also illustrates the slow time characteristics of the
detected amperometric spikes with a half-life (t1/2) time constant
of 87.82 ± 12.14 s (mean ± SE, n = 92). Compared with the free
aqueous diffusion of catecholamine release in neuronal cells,
the t1/2 of Dionaea plant secretory events is enlarged by a factor
of ∼10,000 (24, 26).

Fig. 2. Net ion fluxes measured from stimulated Dionaea glands via the
MIFE technique. (A) Net Ca2+ flux in response to mechanical (touched either
two or five times within 10 s) and chemical [1 mM methyl jasmonate (MJ)]
stimulation. (B) Peak Ca2+ flux response values for data shown in A (mean ±
SE, n ≥ 5). (C) H+ flux kinetics in response to touch and JA stimulation. Each
flux was normalized to its maximum flux (100%) to illustrate the difference
in the peak time (mean ± SE, n ≥ 5). (Inset) Comparison of touch and MJ
treatments at high temporal resolution. (D) Lag time in H+ flux responses
between treatments shown in C. JA-induced proton release was significantly
faster compared with mechanical induction (P ≤ 0.01, one-way ANOVA).
(E) Net Cl− fluxes measured in COR-stimulated (blue bars) and nonstimulated
(gray bars) glands at various time points after stimulation (mean ± SE, n ≥ 4).
Cont, control. (F) Correlation of net H+ and Cl− fluxes measured from COR-
stimulated glands at different time points illustrated in E. Each point rep-
resents a separate measurement. For all MIFE flux data, the sign convention
is “influx-positive.”
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To determine emergence and manifestation of gland cell
exocytosis, we monitored the frequency of secretory events for
up to 145 h. Traps were stimulated either mechanically by a
series of 20 consecutive trigger-hair bendings or by spraying
COR onto the traps’ inner surface. Within the first 4–5 h after
stimulation onset, no significant signals could be monitored. The
first exocytosis-type spiking was observed after about 6 h (Fig.
3D). Thereafter, exocytotic events occurred more frequently,
reaching about half-maximum spiking after 12–13 h. Maximal
spiking rates were detected after 24 h and remained high for
another 2 d before slowly declining at days 4 and 6 (Fig. 3D).
Interestingly, COR stimulation and trigger-hair bendings resul-
ted in a similar time dependence of spiking frequency. This
finding indicates that JA induction of secretory vesicle forma-
tion, loading, and membrane fusion, rather than touch in-
duction of JA biosynthesis, represents the rate-limiting step during
Dionaea gland cell exocytosis.
We also found that the Ca2+ channel blocker gadolinium strongly

reduced the volume of secreted fluid (Movie S2). To investigate the
inhibitory effect of Gd3+ on trap secretory fluid production further,
traps were sprayed with 10 mM Gd3+ (∼2.5 μmol) 24 h before
mechanical stimulation. This Gd3+ challenge did not affect the
traps’ naturally fast closure in response to two trigger-hair strikes,
however. When traps were mechanically stimulated for secretion by
five to 20 trigger-hair displacements, gadolinium-sprayed traps were
found to be strongly reduced in extruded fluid volume. Compared
with control traps, which secreted 2.12 ± 0.67 μL per 1,000 glands
within 48 h, Gd3+-pretreated traps released only 0.35 ± 0.25 μL per

1,000 glands (Fig. 3C, black bars). At the same time, exocytotic
events amperometrically determined with single gland cells dropped
from 14.3 ± 4.17 events per hour in controls to 2.1 ± 2.45 events per
hour in the Gd3+-exposed traps (Fig. 3C, red bars). The pronounced
Gd3+ block of secretion seen by amperometry and MRI suggests
that JA and calcium signaling is required for haptoelectric and JA
stimulation of Dionaea gland cell secretion.
What kind of redox moiety does Dionaea’s secretory gland cells

release? To gain and maintain functional integrity of cysteine-rich
hydrolytic enzymes exuded into the digestive fluid (13, 27, 28), a
defined redox status in the extracellular bioreactor is required.
Glutathione (GSH) represents an important redox regulator of
enzyme functions in plant cells (29, 30). GSH can be derived from
activated sulfate [adenosine 5′-phosphosulfate (APS)] via a well-
known enzymatic pathway (Fig. S4). Gene expression analysis
based on RNA-sequencing data (available at tbro.carnivorom.
com; cf. ref. 7) indicated that COR might induce genes involved in
GSH production and transport. These analyses were further
confirmed by quantitative real-time PCR. Among these genes, the
APS reductase (DmAPR3) is strongly up-regulated 12 h after
COR stimulation (Fig. 4B). APS reductase represents the most
important regulatory enzyme of the pathway that determines the
flux of sulfate into organic sulfur compounds in plants (31,
reviewed in ref. 32). In addition, the availability of C-N skeletons
for cysteine synthesis is promoted in response to the JA mimic
through enhanced serine O-acetyltransferase (DmSERAT2) ex-
pression and through cysteine synthesis by itself via elevated
O-acetylserine(thiol)lyase (DmOASTL) expression (33) (Fig. 4C).

Fig. 3. Amperometric detection of exocytotic events in Dionaea glands. (A) Long-term spiking response of stimulated glands. Current spikes resulting from
the exocytosis of individual vesicles were detected with two electrodes simultaneously clamped to +900 mV. (B) Two examples of analyzed exocytotic current
spikes are shown. Fitting these events with Eq. 1 [f(x) = M/(t−t0)1.5 * exp(−tc/(t−t0)] (red line) reveals characteristics of release quantified by M and tc that
reflect the amount and distance of fusing vesicle to carbon fiber. (C) Gadolinium (Gd3+; 10 mM) was sprayed 24 h before mechanical stimulation of the Venus
flytraps. Twenty-four hours after stimulation, the number of amperometrically detected events within 1 h (red) and the secreted volume (black) were cal-
culated. Compared with control traps, gadolinium inhibits secretion as well as amperometrically detectable exocytotic spiking. Data are mean ± SD (n ≥ 25).
(D) Time course of exocytosis-related spiking in response to touch (red) and COR (black). For the given time points, the number of exocytotic events was
calculated. Both stimuli lead to the same long-term spiking response in flytrap glands. Data represent mean ± SD (n ≥ 54).
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Moreover, the putative GSH transporter, oligopeptide transporter 6
(DmOPT6), is transcriptionally induced after COR treatment as
well. Interestingly, all four transcripts are induced by both
COR or prey capture in a similar fashion (Fig. 4 B–D and tbro.
carnivorom.com). Therefore, enhanced sulfate reduction and
assimilation seems to be required for both the synthesis of
cysteine-rich hydrolytic enzymes and additional synthesis of
GSH, which can be detected in the secreted fluid.
To test whether GSH is released into the extracellular com-

partment, we sampled digestive fluids from stimulated flytraps
and analyzed the samples for the presence of antioxidants (34–
36). Indeed, we could detect GSH in Dionaea’s extracellular fluid
(Fig. 4A). In contrast to GSH, however, ascorbate was not de-
tectable by state-of-the-art methods (36, 37). Although the GSH

concentration in whole Dionaea traps was not significantly al-
tered by COR treatment, the stomach GSH concentration was
on the order of 10 μM 48 h after stimulation onset (Fig. 4A, red
bars). To test the sensitivity of the carbon fibers used in our
amperometric analysis toward this reactive oxygen species
(ROS) scavenger, we performed experiments with defined GSH
concentrations (Fig. S1E). In these experiments, the reduced
GSH was oxidized at the positively charged carbon fiber,
resulting in a positive current. Interestingly, the amperometric
current, detected with a constant potential of +900 mV in so-
lutions of defined GSH concentrations, saturated with a half-
maximal concentration of 10 μM (Fig. S1E), which corre-
sponds well with the actual GSH concentration in the secreted
fluid. Thus, it is likely that under our conditions, secreted GSH is
detected in the amperometric analysis. Nevertheless, we expect
the amperometry to detect additional electroactive substances
besides GSH released in the secreted fluid of stimulated Venus
flytraps.

Discussion
The molecular machinery underlying secretory vesicle fusion
with the plasma membrane in animal cells is known in great
detail (38–40). Upon chemical or electrical stimulation of se-
cretory animal cells, exocytotic events can be detected within
milliseconds (41–44). In these fast-responding cells, certain pools
of preformed cargo-loaded vesicles are released immediately
after stimulus onset. Following haptoelectric calcium entry in
Dionaea glands, JA signaling triggers vesicle acidification and de
novo synthesis of secretory proteins. The fact that carbon fiber
electrodes detect amperometric signals no earlier than about 6 h
after mechanical and JA stimulation (Fig. 3D) may indicate that
the oxidizable compound, most likely the tripeptide GSH, is
contained only in those vesicles equipped with hydrolases. In the
acidic extracellular digestive fluid, GSH is very stable, providing
for a proper redox state for sustained hydrolase activity (45).
Dionaea’s secretion events occur on a slow time scale. The ap-

parent diffusion constant of released substances, as calculated
from the waveform of the amperometric signal, was D = 1.92 ×
10−10 cm2·s−1, which indicates a high diffusional resistance of the
gland cell wall. For comparison, the diffusion constant of cat-
echolamines in aqueous solution is 1 × 10−6 to 8 × 10−7 cm2·s−1

(19, 46). Thus, diffusion in the cell wall of Dionaea glands is about
four orders of magnitude slower than diffusion of small molecules
in aqueous solution. In contrast to fast synaptic signaling in the
nervous system of animals, this slow diffusion, as well as the slow
time course of release, reflects the biology of the insect-processing
flytrap: Once Dionaea captures prey via its fast haptoelectric
sensing system, exocytotic release and slow diffusion of a tailored
hydrolase mixture into the digestive fluid perfectly serves the long-
term nutrient needs of the plant.

Materials and Methods
To access the inner trap surface for amperometric recordings (even in
stimulated plants), unstimulated traps in the open position were fixed in a
chamber and mechanically locked to prevent trap closure upon stimulation.
For inhibitor pretreatments, plants were sprayed with 10 mM GdCl3, or H2O
as a control. Twenty-four hours after pretreatments, traps were stimulated
for secretion either mechanically (touch of trigger hairs five to 10 times
within 1 min) or by hormone spraying (100 μM COR). At the given time
points after stimulation, amperometric measurements were performed with
open-fixed traps still attached to the plant. The chamber was filled with
standard bath solution [1 mM KCl, 1 mM CaCl2, 50 mM Hepes/NaOH (pH 7)]
and placed on a microscope stage (Zeiss Axioscope 2 FS). A three-electrode
configuration was used, where an Ag/AgCl electrode served as the ref-
erence electrode grounding the bath solution. Two sensory carbon fiber
electrodes with a diameter of 5 μm (ALA Scientific Instruments) were used
for amperometric detection. Carbon fibers were gently placed on top of the
gland head cells if not stated otherwise. During amperometric recordings,
electrodes were held at +900 mV with two VA-10X amperometry amplifiers

Fig. 4. Synthesis of the reactive oxygen species scavenger GSH is induced in
stimulated Dionaea traps. (A) GSH levels in traps (black) or secreted fluid
(red) under nonstimulated conditions (cont) or 24 h after spray application
of 100 μM COR. Note that resting traps do not secrete (ns) digestive fluid.
Data represent mean ± SD (n ≥ 4). (B–D) COR induces key genes involved in
GSH biosynthesis. Expression of the APS reductase (DmAPR3), O-acetylserine
(thiol)lyase (DmOASTL), and oligopeptide transporter 6 (DmOPT6) in Dio-
naea gland complexes is shown. Traps were sprayed with water (Cont, black)
or 100 μM COR (red), and gland complexes were harvested at the time points
indicated. Transcript numbers are given relative to 10,000 molecules of actin
(DmACT1) (mean ± SE, n = 6).
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(ALA Scientific Instruments). Oxidative current was acquired via VA-10X
amplifiers and digitized at 20 kHz through an ITC-18 digital-to-analog con-
vertor (InstruTECH). Data were acquired using Patch master (HEKA Elek-
tronik) and analyzed with a custom-written fit running under Igor 6.
Detected events were described by following equations (47):

fðxÞ=M
�ðt-t0Þ1.5 *expð-tc=ðt-t0ÞÞ. [1]

Here, t0 is the time of signal onset (a free-fitting parameter) and M depends
on the amount of secreted substance as well as on the diffusion coefficient,
D. The parameter tc depends on D and the distance, r, between the point
source of secretion and the carbon fiber tip according to:

tc = r2
�
4 D. [2]

Further details on materials and methods can be found in SI Materials
and Methods.
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teine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula
Ellis) is regulated by different stimuli from prey through jasmonates. PLoS One 9:
e104424.

6. Escalante-Pérez M, et al. (2011) A special pair of phytohormones controls excitability,
slow closure, and external stomach formation in the Venus flytrap. Proc Natl Acad Sci
USA 108:15492–15497.

7. Bemm F, et al. (2016) Venus flytrap carnivorous lifestyle builds on herbivore defense
strategies. Genome Res 26:812–825.

8. Kreuzwieser J, et al. (2014) The Venus flytrap attracts insects by the release of volatile
organic compounds. J Exp Bot 65:755–766.

9. Adamec L (1997) Mineral nutrition of carnivorous plants: A review. Bot Rev 63:
273–299.

10. Böhm J, et al. (2016) Venus flytrap HKT1-type channel provides for prey sodium up-
take into carnivorous plant without conflicting with electrical excitability. Mol Plant
9:428–436.

11. Scherzer S, et al. (2015) Calcium sensor kinase activates potassium uptake systems in
gland cells of Venus flytraps. Proc Natl Acad Sci USA 112:7309–7314.

12. Scherzer S, et al. (2013) The Dionaea muscipula ammonium channel DmAMT1 provides
NH4

+ uptake associated with Venus flytrap’s prey digestion. Curr Biol 23:1649–1657.
13. Schulze WX, et al. (2012) The protein composition of the digestive fluid from the

venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteomics 11:
1306–1319.

14. Robins RJ, Juniper BE (1980) The secretory cycle of Dionaea muscipula Ellis. 1. The
fine-structure and the effect of stimulation on the fine-structure of the digestive
gland-cells. New Phytol 86:279–296.

15. Rea PA, Joel DM, Juniper BE (1983) Secretion and redistribution of chloride in the
digestive glands of Dionaea muscipula Ellis (Venus flytrap) upon secretion stimula-
tion. New Phytol 94:359–366.

16. Shabala L, Ross T, McMeekin T, Shabala S (2006) Non-invasive microelectrode ion flux
measurements to study adaptive responses of microorganisms to the environment.
FEMS Microbiol Rev 30:472–486.

17. Aprile A, et al. (2011) Expression of the H+-ATPase AHA10 proton pump is associ-
ated with citric acid accumulation in lemon juice sac cells. Funct Integr Genomics
11:551–563.

18. Ahnert-Hilger G, Jahn R (2011) CLC-3 spices up GABAergic synaptic vesicles. Nat
Neurosci 14:405–407.

19. Wightman RM, et al. (1991) Temporally resolved catecholamine spikes correspond to
single vesicle release from individual chromaffin cells. Proc Natl Acad Sci USA 88:
10754–10758.

20. Chow RH, von Rüden L, Neher E (1992) Delay in vesicle fusion revealed by electro-
chemical monitoring of single secretory events in adrenal chromaffin cells. Nature
356:60–63.

21. Chow RH, Klingauf J, Heinemann C, Zucker RS, Neher E (1996) Mechanisms de-
termining the time course of secretion in neuroendocrine cells. Neuron 16:369–376.

22. Mosharov EV (2008) Analysis of single-vesicle exocytotic events recorded by amper-
ometry. Methods Mol Biol 440:315–327.

23. Jankowski JA, Schroeder TJ, Ciolkowski EL, Wightman RM (1993) Temporal charac-
teristics of quantal secretion of catecholamines from adrenal medullary cells. J Biol
Chem 268:14694–14700.

24. Wightman RM, Schroeder TJ, Finnegan JM, Ciolkowski EL, Pihel K (1995) Time course
of release of catecholamines from individual vesicles during exocytosis at adrenal
medullary cells. Biophys J 68:383–390.

25. Gerhardt G, Adams RN (1982) Determination of diffusion-coefficients by flow-
injection analysis. Anal Chem 54:2618–2620.

26. Hafez I, et al. (2005) Electrochemical imaging of fusion pore openings by electro-
chemical detector arrays. Proc Natl Acad Sci USA 102:13879–13884.

27. Paszota P, et al. (2014) Secreted major Venus flytrap chitinase enables digestion of
Arthropod prey. Biochim Biophys Acta 1844:374–383.

28. Takahashi K, et al. (2011) A cysteine endopeptidase (“dionain”) is involved in the
digestive fluid of Dionaea muscipula (Venus’s fly-trap). Biosci Biotechnol Biochem 75:
346–348.

29. Scheibe R, Dietz KJ (2012) Reduction-oxidation network for flexible adjustment of
cellular metabolism in photoautotrophic cells. Plant Cell Environ 35:202–216.

30. Noctor G, et al. (2012) Glutathione in plants: An integrated overview. Plant Cell
Environ 35:454–484.

31. Scheerer U, et al. (2010) Sulphur flux through the sulphate assimilation pathway is
differently controlled by adenosine 5′-phosphosulphate reductase under stress and in
transgenic poplar plants overexpressing gamma-ECS, SO, or APR. J Exp Bot 61:609–622.

32. Rennenberg H, Herschbach C (2014) A detailed view on sulphur metabolism at the
cellular and whole-plant level illustrates challenges in metabolite flux analyses. J Exp
Bot 65:5711–5724.

33. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in
photosynthetic organisms: Molecular functions and regulations of transporters and
assimilatory enzymes. Annu Rev Plant Biol 62:157–184.

34. Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce
needles (Picea abies L). Plant Sci 57:113–117.

35. Strohm M, et al. (1995) Regulation of glutathione synthesis in leaves of transgenic
poplar (Populus tremula × Populus alba) overexpressing glutathione synthetase. Plant
J 7:141–145.

36. Arab L, et al. (2016) Acclimation to heat and drought Lessons to learn from the date
palm (Phoenix dactylifera). Environ Exp Bot 125:20–30.

37. Herschbach C, Scheerer U, Rennenberg H (2010) Redox states of glutathione and
ascorbate in root tips of poplar (Populus tremula × P. alba) depend on phloem
transport from the shoot to the roots. J Exp Bot 61:1065–1074.

38. Leszczyszyn DJ, et al. (1991) Secretion of catecholamines from individual adrenal
medullary chromaffin cells. J Neurochem 56:1855–1863.

39. Chow RH, Klingauf J, Neher E (1994) Time course of Ca2+ concentration triggering
exocytosis in neuroendocrine cells. Proc Natl Acad Sci USA 91:12765–12769.

40. Vukašinovi�c N, Žárský V (2016) Tethering complexes in the Arabidopsis endomem-
brane system. Front Cell Dev Biol 4:46.

41. Tse A, Lee AK (2000) Voltage-gated Ca2+ channels and intracellular Ca2+ release
regulate exocytosis in identified rat corticotrophs. J Physiol 528:79–90.

42. Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane:
Implications for secretion in neuroendocrine cells. Biophys J 72:674–690.

43. Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69.
44. Koh DS, Hille B (1997) Modulation by neurotransmitters of catecholamine secretion

from sympathetic ganglion neurons detected by amperometry. Proc Natl Acad Sci
USA 94:1506–1511.

45. Jocelyn PC (1972) Biochemistry of the SH Group; The Occurrence, Chemical Properties,
Metabolism and Biological Function of Thiols and Disulphides (Academic, London).

46. Rice ME, Gerhardt GA, Hierl PM, Nagy G, Adams RN (1985) Diffusion coefficients of
neurotransmitters and their metabolites in brain extracellular fluid space. Neuroscience
15:891–902.

47. Jackson MB (2006) Molecular and Cellular Biophysics (Cambridge Univ Press, Cam-
bridge, UK).

48. Shi CY, et al. (2015) Citrus PH5-like H(+)-ATPase genes: Identification and transcript
analysis to investigate their possible relationship with citrate accumulation in fruits.
Front Plant Sci 6:135.

49. Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC
proteins ClC-4 and ClC-5. Nature 436:420–423.

50. Robertson JL, Kolmakova-Partensky L, Miller C (2010) Design, function and structure
of a monomeric ClC transporter. Nature 468:844–847.

51. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic
chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427.

52. Spurr HW, Holcomb GE, Hildebrandt AC, Riker AJ (1964) Distinguishing tissue of
normal + pathological origin on complex media. Phytopathology 54:339–343.

53. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in
electron microscopy. J Cell Biol 17:208–212.

54. Shabala SN, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ ion fluxes around the
elongation region of corn roots and effects of external pH. Plant Physiol 113:111–118.

55. Samuilov S, Lang F, Djukic M, Djunisijevic-Bojovic D, Rennenberg H (2016) Lead up-
take increases drought tolerance of wild type and transgenic poplar (Populus tremula
x P. alba) overexpressing gsh 1. Environ Pollut 216:773–785.

56. Duyn JH, Yang Y, Frank JA, van der Veen JW (1998) Simple correction method for
k-space trajectory deviations in MRI. J Magn Reson 132:150–153.

Scherzer et al. PNAS | May 2, 2017 | vol. 114 | no. 18 | 4827

PL
A
N
T
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701860114/-/DCSupplemental/pnas.201701860SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701860114/-/DCSupplemental/pnas.201701860SI.pdf?targetid=nameddest=STXT

