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A central component of spatial navigation is determining where
one can and cannot go in the immediate environment. We used
fMRI to test the hypothesis that the human visual system solves
this problem by automatically identifying the navigational affor-
dances of the local scene. Multivoxel pattern analyses showed that
a scene-selective region of dorsal occipitoparietal cortex, known as
the occipital place area, represents pathways for movement in
scenes in a manner that is tolerant to variability in other visual
features. These effects were found in two experiments: One using
tightly controlled artificial environments as stimuli, the other using
a diverse set of complex, natural scenes. A reconstruction analysis
demonstrated that the population codes of the occipital place area
could be used to predict the affordances of novel scenes. Taken
together, these results reveal a previously unknown mechanism
for perceiving the affordance structure of navigable space.
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It has long been hypothesized that perceptual systems are opti-
mized for the processing of features that afford ecologically

important behaviors (1, 2). This perspective has gained renewed
support from recent work on action planning, which suggests that
the action system continually prepares multiple, parallel plans that
are appropriate for the environment (3, 4). If this view is correct,
then sensory systems should be routinely engaged in identifying
the potential of the environment for action, and they should ex-
plicitly and automatically encode these action affordances. Here
we explore this idea for spatial navigation, a behavior that is es-
sential for survival and ubiquitous among mobile organisms.
A critical component of spatial navigation is the ability to un-

derstand where one can and cannot go in the local environment:
for example, knowing that one can exit a room through a corridor
or a doorway but not through a window or a painting on the wall.
We reasoned that if perceptual systems routinely extract the pa-
rameters of the environment that delimit potential actions, then
these navigational affordances should be automatically encoded
during scene perception, even when subjects are not engaged in
a navigational task.
Previous work has shown that observers can determine the

overall navigability of a scene—for example, whether it is possible
to move through the scene or not—from a brief glance (5). How-
ever, no study has examined the coding of fine-grained navigational
affordances, such as whether the direction one can move in the
scene is to the left or to the right. Furthermore, only recently have
investigators begun to characterize the affordance properties of
scenes, and this work has focused not on navigational affordances
but on more abstract behavioral events that can be used to define
scene categories, such as cooking and sleeping (6). It therefore
remains unknown whether navigational affordances play a funda-
mental role in the perception of visual scenes, and if so, which brain
systems are involved.
To address this issue, we used multivoxel pattern analysis of

fMRI data in two experiments. In Exp. 1, subjects were scanned
while viewing artificially rendered images of rooms that varied in
the locations of the visible exits. In Exp. 2, subjects were scanned

while viewing natural photographs of rooms that varied in regard
to the paths that one could take to walk through the space. In
both experiments, subjects performed tasks that made no refer-
ence to these affordances and were unrelated to navigation.
Despite the orthogonal tasks, we predicted that the navigational
affordances of the scenes would be automatically extracted and
explicitly coded in the visual system. To test this hypothesis, we
attempted to identify fMRI activation patterns that distinguished
between scenes based on the spatial structure of their naviga-
tional affordances, but generalized over other scene properties.
To anticipate, our data suggest that these representations are
indeed automatically extracted, and that the strongest repre-
sentation of navigational affordances is in a scene-selective re-
gion of visual cortex known as the occipital place area (OPA).

Results
Navigational Affordances in Artificially Rendered Environments. The
goal of the first experiment was to identify representations of
navigational affordances in the visual system. To do this, we created
a set of tightly controlled, artificially rendered stimuli that allowed
us to systematically manipulate navigational affordances while
maintaining complete control over other visual properties of the
scenes. Specifically, we designed 3D models of virtual environ-
ments and generated high-resolution renderings of these environ-
ments with a variety of surface textures (Fig. 1). All environments
had the same coarse local geometry as defined by the spatial layout
of the walls, but the locations and number of the visible exits were
varied to create eight stimulus conditions that differed in their
navigational affordance structure. To ensure that differences be-
tween these conditions could not be trivially explained by differ-
ences in the spatial distribution of low-level visual features across
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the image, half of the stimuli in each condition included paintings
in locations not occupied by doorways. These paintings were ap-
proximately the same size and shape as the doors, but did not af-
ford egress from the room.
Twelve subjects (eight female) viewed images of these environ-

ments while being scanned on a Siemens 3.0 T Trio MRI scanner
using a protocol sensitive to blood oxygenation level-dependent
(BOLD) contrasts (see SI Methods for details). All participants
provided written informed consent in compliance with procedures
approved by the University of Pennsylvania Institutional Review
Board. Stimuli were presented for 2 s each while subjects main-
tained central fixation and performed an orthogonal task in which
they indicated whether two dots that appeared overlaid on the
scene were the same color (Fig. S1). The dots appeared in varying
locations, requiring subjects to distribute their attention across the
visual field.
We focused our initial analyses on three regions that have

previously been shown to be strongly involved in scene processing:
the OPA, the parahippocampal place area (PPA), and the retro-
splenial complex (RSC) (7–11). All three of these regions respond
more strongly to the viewing of spatial scenes than other stimuli,
such as objects and faces, and are thus good candidates for sup-
porting representations of navigational affordances. As a control,
we also examined activity patterns in early visual cortex (EVC).
Scene regions were identified based on their greater response to
scenes than objects in independent localizer scans, and the EVC
was defined based on its greater response to scrambled objects
than scenes. To probe the information content of these regions of
interest (ROIs) we created representational dissimilarity matrices
(RDMs) through pairwise comparisons of neural activity patterns
for each condition, and then calculated the correlation of these
RDMs with a model that quantified the similarity of navigational
affordances based on the number and locations of the rooms’ exits
(Fig. 2A and SI Methods). (See Whole-Brain Searchlight Analyses
below for results outside of these ROIs.)
This analysis revealed strong evidence for the coding of navi-

gational affordances in the OPA (Fig. 2B) [t(11) = 8.06, P =

0.000003], but no reliable effects in the PPA, RSC, or EVC (all
P > 0.24). Direct comparisons showed that this effect was signif-
icantly stronger in the OPA than in each of the other ROIs (all
P < 0.026). The neural RDMs in this analysis were constructed
from comparisons of stimulus sets that differed in surface textures
and, in some cases, also differed in the identity or presence of
paintings along the walls (SI Methods). In follow-up analyses, we
found that the OPA was the only ROI to exhibit significant effects
for the coding of navigational affordances across all manipulations of
textures and paintings (Fig. S2). The scenes with paintings are par-
ticularly informative because they control for low-level visual dif-
ferences across affordance conditions. When analyses were restricted
to comparisons between scenes with paintings, the mean represen-
tational similiarity analysis (RSA) effect in the OPA was similar to
that in Fig. 2 (Fig. S2C). When analyses were restricted to com-
parisons between scenes with paintings and scenes without paintings,
the mean RSA effect in the OPA was reduced by half (Fig. S2D).
We also examined univariate responses and found that, for

scenes without paintings, the mean response in most ROIs in-
creased in relation to the number of doorways, but this was not
observed in any ROI for scenes with paintings, which are better
matched on visual complexity (Fig. S3). Thus, fine-grain
affordance information can be detected in multivariate pattern
analyses, but it is not a prominent component of the average
univariate response in an ROI.
Together, these results demonstrate that the OPA extracts

spatial features from visual scenes that can be used to identify
the navigational affordances of the local environment. These
representations appear to reflect fine-grained information about
the structure of navigable space, allowing the OPA to distinguish
between scenes that have the same coarse geometric shape but
differ on the layout of visible exits. Furthermore, these findings
demonstrate that affordance representations in the OPA exhibit
some degree of tolerance to the other visual properties of scenes,
suggesting a general-purpose mechanism for coding the naviga-
tional structure of space across a range of contexts.
We were surprised that we did not observe reliable evidence for

navigational-affordance coding in the PPA, which has long been
hypothesized to represent the spatial layout of scenes (8, 12–14).
One possibility is that the PPA is sensitive to the coarse shape of
the local environment as defined by the walls, but is insensitive to
fine-grained manipulations of spatial structure as defined by
the locations of exits. Another (nonexclusive) possibility is that the
PPA encodes higher-level, conjunctive representations of the
textural and structural features of scenes (15, 16), making it un-
suited for generalizing across scenes with the same affordance
structure but different textures (which might be perceived as being
different places). This finding would be consistent with the hy-
pothesis that the PPA supports the identification of familiar places

Fig. 1. Examples of artificially rendered environments used as stimuli in
Exp. 1. Eight navigational-affordance conditions were defined by the num-
ber and position of open doorways along the walls. For each condition, we
created 18 aesthetic variants that differed in surface textures and the shapes
of the doorways (one shown for each condition), and for each of these
aesthetic variants, we created one stimulus in which walls with no exit were
blank (Top two rows) and one stimulus in which walls with no exit contained
an abstract painting (Bottom two rows).
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Fig. 2. Coding of navigational affordances in artificially rendered envi-
ronments. (A) Model RDM of navigational affordances defined by overlap in
the locations of the open doorways. (B) RSA of this model RDM in each ROI.
The OPA showed a strong and reliable effect for the coding of navigational
affordances. Error bars represent ± 1 SEM; ****P < 0.0001.
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and landmarks, as both textural and structural features contribute
to place identity (17). To address the latter possibility, we per-
formed a follow-up analysis of neural dissimilarities in the PPA
and OPA to examine the relationship between texture and navi-
gational affordance coding in these regions (SI Methods). This
analysis suggested that the PPA was sensitive to the conjunction of
textural and structural scene features, as evidenced by a trend
toward an interaction between these factors, and the fact that
affordance coding was only found for scenes of the same texture.
In contrast, the OPA encodes affordance structure regardless of
textural differences (Fig. S4). This finding explains the lack of
reliable effects in the PPA for the original set of analyses, and it
suggests that the PPA may use a different mechanism for scene
processing than the OPA. Specifically, the PPA may perform a
combinatorial analysis of the multiple scene features that identify
a place or landmark.

Navigational Affordances in Complex, Natural Images. The artificial
stimuli used in Exp. 1 allowed for a tightly controlled design with
specific manipulations of scene properties. This was useful for
the initial identification of scene affordance representations.
However, an important question is whether the results would
generalize to more complex, naturalistic scenes. We addressed
this in the second experiment by testing for the coding of navi-
gational affordances using photographs of real-world environ-
ments. Specifically, we examined fMRI responses to 50 images of
indoor scenes viewed at eye level with clear navigational paths
emanating from the observer’s point of view (Fig. S5). Sixteen
new subjects (eight female) were scanned on a Siemens 3.0 T
Prisma scanner while viewing these images for 1.5 s each. Sub-
jects were asked to maintain central fixation while performing an
orthogonal category-detection task (i.e., pressing a button whenever
a scene was a bathroom) (Fig. S6).
An intuitive way to conceptualize the navigational affordances

of real-world scenes is as a set of potential paths radiating along
angles from the implied position of the viewer (1). For each
image in Exp. 2, we asked a group of independent raters to in-
dicate with a computer mouse the paths that they would take to
walk through each environment starting from the bottom of the
scene (Fig. 3A). From these responses we created heat maps that
provided a statistical summary of the navigational trajectories in
each image, and we then quantified these data over a range of
angular directions radiating from the starting point at the bottom
center of the image (Fig. 3B). We modeled affordance coding
using as a set of explicitly defined encoding channels with tuning
curves over the range of angular directions. To do this, we ap-
plied an approach that has previously been used to characterize
the neural coding of color and orientation (18, 19). Specifically,
we modeled navigational affordances using a basic set of re-
sponse channels with tuning curves that were maximally sensitive
to trajectories going to the left, center, or right (Fig. 3B and SI
Methods). Scenes were then represented by the degree to which
they drove the responses of these channels. This encoding model
thus reduces the high-dimensional trajectory data to a small set
of well-defined feature channels. We then created a model RDM
based on pairwise comparisons of all scenes’ affordance repre-
sentations (Fig. 3C; see Fig. S7 for a visualization). The scenes
used in the fMRI experiment were selected from a larger set of
such labeled images to ensure that this navigational RDM was
uncorrelated with RDMs derived from several models of low-
level vision and spatial attention (SI Methods).
We used RSA to compare the navigational model RDM to the

same set of visual ROIs examined in Exp. 1. This analysis showed
a strong effect for the coding of navigational affordances in the
OPA (Fig. 3 C and D) [t(15) = 4.54, P = 0.0002], replicating the
main finding of the first experiment. Interestingly, we also ob-
served a weaker but significant effect in the PPA [t(15) = 2.42,
P = 0.0144], which may reflect the fact that the affordances in the

real-world stimuli were not regulated to be independent of coarse-
scale geometry or scene texture. Nonetheless, navigational affor-
dances were encoded most reliably in the OPA, and direct com-
parisons show that affordance coding in the OPA was stronger than
in each of the other ROIs (all P < 0.042).
We next performed a follow-up analysis to compare the coding

of navigational affordances with representations from the Gist
computer-vision model (20). The Gist model captures low-level
image features that often covary with higher-level scene prop-
erties, such as semantic category and spatial expanse. Using
partial-correlation analyses, we identified the RSA correlations
that could be uniquely attributed to each model (SI Methods).
The Gist model had a higher RSA correlation than the afford-
ance model across all ROIs, with the largest effect in the EVC
(Fig. S8A) [t(15) = 7.68, P = 0.00000071] and significant effects
in the OPA [t(15) = 3.15, P = 0.0033] and PPA [t(15) = 5.08, P =
0.000067]. Critically, the effects of the affordance model remained
significant in the OPA [t(15) = 3.75, P = 0.00096] and PPA [t(15) =
1.82, P = 0.044] when the variance of the Gist features was
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Fig. 3. Coding of navigational affordances in natural scenes. (A) In a norming
study, a group of independent raters were asked to indicate the paths that
they would take to walk through each scene starting from the bottom center
of the image (Left). These data were combined across raters to produce a heat
map of the possible navigational trajectories through each scene (Center).
Angular histograms were created by summing the responses within a set of
angular bins radiating from the bottom center of each image (Right). (B) The
resulting histograms summarize the trajectory responses across the entire
range of angles that are visible in the image. Navigational affordances were
modeled using a set of hypothesized encoding channels with tuning curves
that broadly code for trajectories to the left (L), center (C), and right (R). Model
representations were computed as the product of the angular-histogram
vectors and the tuning curves of the navigational-affordance channels. a.u.,
arbitrary units. (C) A model RDM was created by comparing the affordance-
channel representations across images. (D) RSA showed that the strongest
effect for the coding of navigational affordances was in the OPA. Error bars
represent ± 1 SEM; *P < 0.05, ***P < 0.001.
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partialled out (Fig. S8A). Moreover, when the variance explained
by the EVC was partialled out from the scene-selective ROIs (SI
Methods), the effect of the affordance model remained signifi-
cant in the OPA [t(15) = 3.95, P = 0.00065] and PPA [t(15) =
3.10, P = 0.0036], but the Gist model was no longer significant in
either of these regions (Fig. S8B) (both P > 0.35). These results
suggest that the features of the Gist model are coded in the EVC
and preserved in downstream scene-selective regions, whereas
navigational affordance features are extracted by computations
within scene-selective cortices.
These findings show once again that the OPA encodes the

navigational affordances of visual scenes by demonstrating that
the effect observed with artificial stimuli generalizes to natural
scene images with heterogeneous visual and semantic properties.
The results also provide further support for the idea that this in-
formation is extracted automatically, even when subjects are not
engaged in a navigational task (although the apparent automaticity
of these effects does not rule out the possibility that affordance
representations could be modulated by the demands of a naviga-
tional task). Finally, these findings demonstrate the feasibility of
modeling the neural coding of navigational affordances in natural
scenes using a simple set of response channels tuned to the ego-
centric angles of potential navigational trajectories.

Reconstructing Navigational Affordances from Cortical Responses.
The findings presented above indicate that the population codes
of scene-selective visual cortex contain fine-grained information
about where one can navigate in visual scenes. This finding suggests
that by using the multivoxel activation patterns of scene-selective
ROIs, we should be able to reconstruct the navigational affor-
dances of novel scenes regardless of their semantic content and
other navigationally irrelevant visual properties. In other words, it
should be possible to train a linear decoder that can predict the
affordances of a previously unseen image. We tested this possibility
by attempting to generate heat maps of the navigational affordances

of novel scenes from the activation patterns within an ROI. To
maximize the prediction accuracy of this model, we first concate-
nated the ROI data across all subjects to create a multisubject re-
sponse matrix, which contains a single activation vector for each
training image that was created by combining the response patterns
to that image across all subjects (Fig. 4A). We then performed a
series of pixel-wise reconstruction analyses using principal compo-
nent regression (SI Methods). We assessed prediction accuracy
through a leave-one-stimulus-out (LOO) cross-validation procedure.
We found that the responses of the OPA were sufficient to generate
affordance reconstructions at an accuracy level that was well above
chance, more so than the other scene regions and EVC (Fig. 4 B and
C) (P < 0.05 permutation test). This finding suggests that the pop-
ulation codes of the OPA contain rich information about the
affordance structure of the navigational environment, and that these
representations could be used to map out potential trajectories in
local space. As in the RSA findings above, the PPA also showed a
weaker but significant effect for the reconstruction analysis (P <
0.05 permutation test), providing further evidence that the PPA may
also contribute to affordance coding in natural scenes.

Whole-Brain Searchlight Analyses. The fMRI analyses above focus on
the responses in scene-selective ROIs. To test for possible effects of
navigational-affordance coding outside of our a priori ROIs, we also
performed whole-brain searchlight analyses on the data from Exps.
1 and 2 (SI Methods). Searchlights were spheres with a 6-mm radius
around each voxel; data were corrected for multiple comparisons
across the entire brain using a permutation test to establish the true
family-wise error (FWE) rate. In both experiments, we found evi-
dence for the coding of navigational affordances in a region located at
the junction of the intraparietal and transverse occipital sulci, corre-
sponding to the dorsomedial boundary of the OPA (Fig. 5). No other
regions showed significant effects in either experiment (see SI
Searchlight Results and Fig. S9 for a more detailed examination
of the searchlight clusters).
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Fig. 4. Reconstruction of navigational-affordance maps. (A) Navigational-affordance maps were reconstructed from the fMRI responses within each ROI.
First, a data-fusion procedure was used to create a set of multisubject ROI responses for use in the reconstruction model. For each ROI, principal component
analysis (PCA) was applied to a matrix of voxel responses concatenated across all subjects. The resulting multisubject PCs were used as predictors in a set of
pixelwise decoding models. These decoding models used linear regression to generate intensity values for individual pixels from a weighted sum of multi-
subject fMRI responses. The ability of the models to reconstruct the affordances of novel stimuli was assessed through LOO cross-validation on each image in
turn. (B) Example reconstructions of navigational-affordance maps from the cortical responses in each ROI. (C) Affordance maps were reconstructed most
accurately from the responses of the OPA. Bars represent the mean accuracy across images. Error bars represent ± 1 SEM. The dashed line indicates chance
performance at P < 0.05 permutation-test FWE.
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Discussion
The principal goal of this study was to identify representations of
navigational affordances in the human visual system. We found
evidence for such representations in the OPA, a region of scene-
selective visual cortex located near the junction of the transverse
occipital and intraparietal sulci. Scenes with similar navigational
affordances (i.e., similar pathways for movement) elicited similar
multivoxel activation patterns in the OPA, whereas scenes with
different navigational affordances elicited multivoxel activation
patterns that were more dissimilar. This effect was observed in
Exp. 1 for virtual rooms that all had the same coarse geometry but
differed in the locations of the exits, and it was replicated in
Exp. 2 for real-world indoor environments that varied on multiple
visual and semantic dimensions. Indeed, in Exp. 2, it was possible
to reconstruct the affordances of novel environments using the
multivoxel activation patterns of the OPA. Crucially, in both ex-
periments, affordance representations were observed even though
subjects performed tasks that did not require them to plan routes
through the environment. This finding suggests that navigational
affordances are encoded automatically even when they are not
directly task-relevant. Together, these findings reveal a mechanism
for automatically identifying the affordance structure of the local
spatial environment.
Previous work on affordances has focused largely on the actions

afforded by objects, not scenes. Behavioral studies have shown
that visual objects prime grasp-related information that reflects
their orientation and function (21), and neural evidence suggests
that objects automatically activate the visuospatial and motor re-
gions that mediate their commonly associated actions (22). Like
objects, spatial scenes also afford a set of potential actions, and
one of the most fundamental of these is navigation (5). In fact,
some of the earliest work on the theory of affordances focused on
aspects of the spatial environment that afford locomotion (1).
However, little work has examined how the brain maps out the
affordances of navigable space. Here we provide evidence for the

neural coding of such affordances, demonstrating that the human
visual system routinely extracts the visuospatial information
needed to map out the potential paths in a scene. This proposed
mechanism also aligns well with a recent theory of action-
planning known as the affordance-competition framework, which
suggests that observers routinely encode multiple, parallel plans of
the relevant actions afforded by their environment and then rapidly
select among these when implementing a behavior (4).
The fact that navigational affordance representations were an-

atomically localized to the OPA has important implications for
our understanding of the functional organization of the visual
system. The OPA, along with the PPA and RSC, constitute a
network of brain regions that show a strong response to visual
scenes (7, 11) [note that in the literature, the OPA has also been
referred to as the transverse occipital sulcus (10)]. The OPA is
located in the dorsal visual stream, a cluster of processing path-
ways that has been broadly associated with visuospatial perception
and visuomotor processing (23, 24). Many studies have examined
the contribution of the dorsal stream to visually guided actions of
the eyes, hands, and arms (25), but little is known about its pos-
sible role in extracting visuospatial parameters useful for naviga-
tion. It has recently been proposed that, within the scene-selective
network, the OPA is particularly well suited for guiding navigation
in local space (26), although there is also evidence that it plays a
role in scene categorization (27, 28). The OPA is sensitive to
changes in the chirality (i.e., mirror-image flips) and egocentric
depth of visual scenes (26, 29), both of which reflect changes in
navigationally relevant spatial parameters. A recent study using
transcranial magnetic stimulation showed that the OPA has a
causal role in perceiving spatial relationships between objects and
environmental boundaries, but not between objects and other
objects (30). Furthermore, the OPA is known to show a reti-
notopic bias for information in the periphery, which could facili-
tate the perception of extended spatial structures, and also a bias
for the lower visual field, where paths tend to be (31). However,
no previous study has investigated whether the OPA, or any other
region, encodes the structural arrangement of the paths and
boundaries in a scene. Our experiments show that the OPA does
indeed encode these environmental features, thus providing
critical information about where one can and cannot go in a
visual scene.
In contrast, we observed weaker evidence for the coding of

navigational affordances in the PPA and RSC. The null effect of
affordance coding in RSC is consistent with previous work in-
dicating that this region primarily supports spatial-memory re-
trieval rather than scene perception (32–34). The absence of robust
affordance coding in the PPA, on the other hand, is at first glance
surprising, as it has long been hypothesized that the PPA encodes
the geometric layout of scenes (8, 35), possibly in the service of
guiding navigation in local space (8, 12, 13, 36). And previous work
indicates that the PPA represents at least some coarse aspects of
scene geometry (12, 13). A possible interpretation of the current
results is that the PPA supports affordance representations that are
coarser than those of the OPA, and thus do not reflect the detailed
affordance structure of scenes. Alternatively, the PPA may encode
fine-grained geometry related to affordances, but these represen-
tations might not have been revealed in the current experiments
because they do not generalize across scenes that are interpreted as
being different places. Supporting the latter view, the secondary
analysis of Exp. 1 suggests that the PPA supports combinatorial
representations of multiple scene features, including both afford-
ance structure and visual textures. Such combinatorial represen-
tations would be especially useful for place recognition, given that
places are more likely to be distinguishable based on combinations
of shape and texture rather than shape or texture alone. Indeed,
recent work shows that the PPA contains representations of
landmark identity, which may reflect knowledge of the many visual
features that are associated with a familiar place (16, 17, 37, 38).

A

B

Fig. 5. Whole-brain searchlight analyses. (A) RSA of navigational-affordance
coding for the artificially rendered environments of Exp. 1. (B) RSA of
navigational-affordance coding for the natural scene images of Exp. 2. Con-
sistent with the ROI findings, both experiments show whole-brain corrected
effects at the junction of the intraparietal and transverse-occipital sulci. The
green outlines correspond to the borders of the OPA parcels.
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The findings from our first experiment lend additional support to
this theory.
Several key questions remain for future work. First, what is the

coordinate frame used by the OPA to code navigational affor-
dances? Regions within the dorsal visual stream are known to code
the positions of objects and other environmental features relative
to various reference points, including the eyes, head, hands, and
world (25). Our data suggest that the OPAmay encode affordances
in an egocentric reference frame but this remains to be tested.
Second, are the responses of the OPA best explained by a stable set
of visual-feature preferences, or can these feature preferences be
flexibly modulated by navigational demands? Third, what is the
role of memory in the analysis of navigational affordances?
Affordances in our stimuli could be identified solely from visual
features, but in other situations spatial knowledge, such as memory
for where a path leads, might come into play, as might semantic
knowledge about material properties (e.g., the navigability of
pavement, sand, or water). Memory systems might also be crucial
for using affordance information to actively plan paths through the
local environment to reach specific goals (39). Fourth, how do
navigational affordances influence eye movements and attention?
We attempted to minimize the contribution of these factors by
asking subjects to maintain central fixation, and by examining im-
ages in which salient visual features were uncorrelated with navi-
gational affordances, but in other circumstances, affordances and

attention will likely interact. Fifth, what higher-level systems do
these OPA representations feed into and how are these repre-
sentations used? Within the dorsal stream, the OPA straddles
several retinotopically defined regions, including V3A, V3B, LO1,
LO2, and V7, and may also extend into more anterior motion-
sensitive regions (40). This finding suggests that the OPA is situ-
ated near the highest stage of the occipito-parietal circuit before it
diverges into multiple, parallel pathways in the parietal lobe (23).
Thus, affordance representations in the OPA could underlie a
number of navigational functions, including the planning of routes
and online action guidance, but exactly what these functions are,
and the downstream projections that support them, remain to
be determined.
In conclusion, we have characterized a perceptual mechanism

for identifying the navigational affordances of visual scenes.
These affordances were encoded in the OPA, a scene-selective
region of dorsal occipitoparietal cortex, and they appeared to be
extracted automatically, even when subjects were not engaged in
a navigational task. This visual mechanism appears to be well
suited for providing information to the navigational system about
the layout of paths and barriers in one’s immediate surroundings.

Methods
Full details on materials and procedures are provided in SI Methods.
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