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Abstract

Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops
over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value
reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic
interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based
processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present
research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety
signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction,
increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced
food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven
by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change
in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone
onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of
medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role
for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for
investigating the endogenous cholinergic circuits that signal satiety.

(s N

The decrease in the drive to eat is not all or none but instead develops over the course of a meal, where with
each bite the incentive value of food is reduced, eventually resulting in the state of being sated. Such
reappraisal of value is a process that has been strongly attributed to nucleus accumbens function and
provides a motivation-based framework for investigating the neural underpinnings of satiety. Nicotine, by
acting on central nicotinic acetylcholine receptors, is well know to be a potent anorectic; nevertheless
precisely how cholinergic brain circuits regulate appetite is poorly understood. The aim of this study was
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Introduction

The need for maintaining energy homeostasis has re-
sulted in the intricate wiring between specialized brain
circuits for guiding food-seeking behavior. The nucleus
accumbens (NAc), located in the ventral region of the
striatum, is strategically located for integrating informa-
tion relevant to such behavior, as it receives significant
inputs from energy-sensing brain regions and ones that
encode for the value of environmental stimuli (Phillipson
and Giriffiths, 1985; McDonald, 1991; Brog et al., 1993;
Trivedi et al., 1998). By virtue of its output to motor
systems, the NAc is at an interface between these regions
and those necessary for generating complex actions im-
portant for survival (Jones and Mogenson, 1980; Mogen-
son et al., 1980).

Although comprising < 3% of striatal neurons (Bolam
et al., 1984; Phelps et al., 1985; Contant et al., 1996; Zhou
et al., 2002), cholinergic interneurons (CINs) are known to
form a dense plexus of local innervation (Bolam et al.,
1984; Kawaguchi, 1993; Contant et al., 1996; Descarries
and Mechawar, 2000). This small but far-reaching NAc
population is known to be critical for NAc function (Hoebel
et al., 2007; Williams and Adinoff, 2008; Mark et al., 2011).
For example, disruptions in NAc-CIN functioning have
been linked to a number of psychiatric conditions includ-
ing depression (Chau et al., 2001; Warner-Schmidt et al.,
2011), addiction (Hikida et al., 2001; Iltzhak and Martin,
2002; Williams and Adinoff, 2008), and related withdrawal
symptomology (Hikida et al., 2003; Avena et al., 2008),
highlighting the importance of this NAc neuronal popula-
tion in various reward-based cognitive processes.

One theory of CIN function posits that by reducing the
incentive value of rewarding stimuli, locally released NAc
acetylcholine (ACh) can act as a motivational stop signal
(Hoebel et al., 2007). Support for this idea comes from
data demonstrating a behavioral link between increased
NAc cholinergic transmission and reduced seeking be-
havior for drugs (Hikida et al., 2001, 2003; Zhou et al.,
2007) and natural rewards (Rada et al., 2005; Avena et al.,
2006). The decreased desire for food associated with
satiety is not typically an all-or-none process but instead
develops cumulatively over the course of a meal. The
gradual change in consumption behavior occurs through
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an iterative devaluation of the incentive value of food.
Such reappraisal of value is a process that has been
strongly attributed to NAc function (Corbit et al., 2001;
Cardinal et al., 2002; Singh et al., 2010; Mannella et al.,
2013) and provides a motivation-based framework for
investigating the neural underpinnings of satiety.

Support for NAc-ACh as a satiety signal comes from
microdialysis studies demonstrating that NAc-ACh reaches
maximum levels toward the end of a meal and strongly
correlates with a decrease in food-seeking and consump-
tion behavior (Mark et al., 1992; Rada et al., 2005; Avena
et al., 2008). The physiologic impact of this local rise in
ACh on food intake is unclear however, as pharmacolog-
ical disruptions in NAc-ACh transmission have resulted in
conflicting behavioral results (Pratt and Kelley, 2004; Will
et al., 2006; Perry et al., 2009; Pratt and Blackstone,
2009). Moreover, selective NAc-CIN lesions both increase
food intake over the course of days and decrease the
amount consumed after a 24-h fast (Hajnal et al., 2000). In
addition, the heterogeneous pre- and postsynaptic distri-
bution of cholinergic receptor subtypes and anatomically
distinct ACh populations projecting to the NAc (Woolf and
Butcher, 1981; Dautan et al., 2014) have made it difficult
to pinpoint the importance of NAc-CIN activity in con-
trolling food intake. These challenges highlight the lim-
itations of traditional pharmacological approaches in
linking functionally specialized cholinergic circuits with
adaptive behavioral responses. To further characterize the
relationship between NAc-CIN activity and satiety-related
changes in motivation, the present study used designer
receptor (DREADD) technology targeted to NAc-CINs for
controlling their activity while mice seek out and consume
food. Our results provide further support for NAc-CINs play-
ing an important role in controlling food intake and offer a
potential mechanism by which NAc-CINs may act to signal
satiety through the inhibition of NAc output.

Methods

Experimental animals

All animal procedures were performed in accordance
with the UK Animals (Scientific Procedures) Act of 1986.
Male heterozygous mice expressing Cre recombinase un-
der the control of the ChAT promoter [ChAT::cre mice
(B6N;129S6-Chati™2craltowl/ ). The Jackson Laboratory]
were used in the experiments. Mice were housed 2-10
animals per polycarbonate cage and provided ad libitum
with water and standard lab diet (RM3, Special Diet Ser-
vices, Essex, UK) in a holding room maintained under a
12-h light cycle (lights off at 7 p.m.) with temperature
regulated at 22-24°C and relative humidity kept at 50—
55%. Mice were genotyped using PCR from ear notch
biopsy. Before behavioral testing, the animals were
handled daily for 1 wk. One hour before each behavioral
session, the mice were transported to the respective
testing area.

Stereotactic injections

ChAT::cre mice 2-3 mo of age were anaesthetized with
isoflurane (5% induction, 1-2% maintenance; Abbott)
mixed with oxygen (flow rate 0.8—-1.0 I/min) and placed in
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a stereotactic frame (David Kopf Instruments), the skull
was exposed via a small incision, and a small bilateral
craniotomy was performed to allow intracranial injections.
A stainless steel beveled microinjector was lowered to a
coordinate aimed at the NAc (anteroposterior +1.30 mm
in relation to bregma, laterally =0.70 mm in relation to
midline, and —4.2 mm and -4.5 mm deep from the skull
level). The microinjector was connected to a 1-ul Hamil-
ton glass syringe via polyethylene tubing, and an injection
rate of 0.1 wl/min was regulated by a microprocessor-
controlled programmable syringe pump (KD Scientific).
Starting from the ventral site, each injection site received
150-nl volume of one of the following viruses: AAV2-hSyn-
DIO-mCherry, AAV2-hSyn-DIO-rM3D(Gs)-mCherry, AAV2-
hSyn-DIO-hM3D(Gq)-mCherry, or AAV2-hSyn-DIO-hM4D(Gi)-
mCherry (titer 1-5 X 102 vg/mL, Gene Therapy Center,
University of North Carolina School of Medicine, Chapel Hill,
NC) followed by a 2-min wait, except for the dorsal site, for
which the waiting time was extended to 4 min. For postop-
erative care, mice received meloxicam (1 mg/kg s.c.; Boehr-
inger Ingelheim), and a recovery period of 5 wks was allowed
before behavioral testing.

Immunohistochemistry

To determine the specificity of receptors expression in
CINs, mice were anaesthetized with pentobarbital (500
mg/kg, intra-peritonally (i.p.); Vetoquinol) and transcardi-
ally perfused first with 0.1 m PBS followed by 10% neutral-
buffered formalin (Sigma-Aldrich). Brains were removed,
postfixed overnight at 4°C, and cryoprotected at 4°C with
30% w/v sucrose in PBS until the brains sank and were
completely submerged. Coronal sections (30 um) were
cut on a freezing sliding microtome (model 860; American
Optical Company). For both mCherry and VAChT immu-
nostaining, sections were washed at room temperature
(RT) in 0.1 m PBS, blocked with 1% BSA (Thermo Fisher
Scientific) supplemented with 0.3% Triton X-100 (Thermo
Fisher Scientific) in 0.1 m PBS. Sections were then incu-
bated overnight at RT in primary antibodies diluted in
blocking buffer, washed in PBS, incubated in secondary
antibodies for 2 h at RT, washed in PBS, mounted on
microscope slides, and coverslipped. Primary antibodies
were rabbit anti-mCherry (1:1000, ab167453; Abcam) and
guinea pig anti-VAChT (1:500, AB1588; EMD Millipore).
Secondary antibodies were donkey anti-rabbit Alexa Fluor
594 (1:1000; Abcam) and goat anti-guinea-pig Alexa
Fluor 488 (1:1000; Abcam). Digital images were captured
with a Zeiss Axioskop 2 microscope (Zeiss) and Qlmaging
QICAM Fast digital camera (QImaging). Images were
merged using Imaged (National Institutes of Health).

Electrophysiology

Coronal slices were made >9 wks postinjection. 250-
mm-thick slices were cut with a Leica VT 1200S vi-
bratome in ice-cold artificial CSF (ACSF; see below) and
allowed to recover for 1 h at 35°C in ACSF before record-
ings. Patch pipettes were manufactured from borosilicate
glass, and their tip resistances were 4-6 MQ when filled
with K-gluconate solution (see below). Whole-cell record-
ings were conducted at 37°C using an EPC-10 amplifier
and Patch-Master software (HEKA Elektronik). Only cells
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with access resistances of <20 M() were used for anal-
ysis. Current signals were low-pass filtered at 3 kHz and
digitized at 10 kHz. Data were analyzed using Axograph,
Patch-Master, and Igor Pro software. Whole-cell record-
ings were performed at 35°C using an EPC-10 amplifier
and Patch-Master software (HEKA Elektronik). ChAT-
containing cells were visualized in acute living brain slices
using a GFP filter set (Chroma). Clozapine-N-oxide (CNO;
Sequoia Research Products) was prepared in ACSF and
bath-applied at a concentration of 10 um.

Chemicals and solutions

Slice-cutting and recording ACSF was gassed with
95% O, and 5% CO,, and contained the following (in mm):
NaCl 125, NaHCO; 25, KCI 3, NaH,PO, 1.25, CaCl, 1
(cutting)/2 (recording), MgCl,, 6 (cutting)/1 (recording), so-
dium pyruvate 3, and glucose 25 (cutting)/5 (recording).
Pipettes were filled with (in mm): potassium gluconate
135, NaCl 7, Hepes 10, Na,-ATP 2, Na-GTP 0.3, and
MgCl, 2; pH was adjusted to 7.3 with KOH. All chemicals
were from Sigma-Aldrich, Tocris, and Abcam.

Whole-cell recording protocol

For determining the responsiveness of transduced CINs
to CNO, whole-cell recordings were made from identified
CINs. Immediately after whole-cell access, current pulses
were delivered for identifying signature CIN currents. Typ-
ically, CINs were spontaneously active at rest, but in
almost all cases, neuronal firing decreased with time. In a
few examples, constant positive current was injected for
triggering action potentials (Fig. 2B). To control for pre-
synaptic changes in excitability, in all cases synaptic an-
tagonists (in um: CNQX 20, AP5 100, CGP-52432 10, and
gabazine 10) were bath-perfused before CNO application.
To confirm recording stability, ~5 min elapsed between
whole-cell access and testing for CNO-mediated respon-
siveness. After 2 min of additional baseline recording,
CNO (10 um) was bath-applied for 3 min, and recordings
continued CNO-free for no less than 8 min. A voltage-
clamp ramp was delivered before and immediately after
CNO termination for determining the change in resting
membrane potential (Vmg; Fig. 2B). Current-voltage (I-V)
relationships were obtained by performing voltage-clamp
ramps from 0 to =120 mV in 1.5 s.

For determining the impact of CIN activation on me-
dium spiny neuron (MSN) responses, whole-cell record-
ings were made from putative NAc-MSNs. Immediately
after whole-cell access, current steps were delivered for
identifying signature MSNs currents. As was the case for
whole-cell CIN recordings, ~5 min elapsed between
whole-cell access and testing for CNO-mediated respon-
siveness. |-V relationships were obtained by performing
voltage-clamp ramps from 0 to —120 mV in 1.5 s in
voltage clamp immediately before recording baseline ac-
tivity. Next, while in current-clamp recording mode, cur-
rent was injected to bring the membrane potential of
MSNs close to threshold. After a 2-min baseline period,
10 uM CNO was bath-applied for 3 min to activate Gg-
expressing CINs. Changes in Vmg were determined by
comparing a MSNs-injected current ramp before (Fig. 7B,
black trace) recording and one 2 min after (Fig. 7B, brown
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trace) CNO termination. Only stable recordings were in-
cluded in the dataset.

Food intake behavior

For habituating animals to the experimental conditions,
mice were first gently handled for 1 wk in their home
cages, and thereafter placed at the onset of the dark cycle
(7 p.m.) on two consecutive days into individual cages for
a 2-h food intake measurement. After the habituation, the
ad libitum diet-fed mice were administered either with
CNO (1 mg/kg, i.p., Sequoia) or vehicle (10 mL/kg, i.p.,
sterile 0.9% saline supplemented with 0.5% DMSO) 30
min before the onset of the dark cycle in their home
cages. This i.p. injection of CNO timeframe has been
shown to reliably impact virally expressed designer recep-
tors in the CNS (Alexander et al., 2009). At the onset of the
dark cycle, mice were transferred to the individual cages
with food (standard diet, as above) on the food hopper
and water bottle installed, and food intake and body
weight were measured. The mice were tested with both
CNO and vehicle administered in a counterbalanced order
with a 2-d interval between sessions. After the acute food
intake experiment, the mice were fasted for 24 h in home
cages, and all mice received an injection of CNO (1 mg/
kg, i.p.) 30 min before the onset of the dark cycle. At the
onset of the dark cycle, the mice were placed into the
individual cages with food on the hopper and water bottle
installed, and food intake and body weight were measured.

Operant behavior
Apparatus

Experiments were performed in Bussey-Saksida mouse
operant touchscreen chambers (Campden Instruments)
as presented previously (Mar et al., 2013; Heath et al.,
2015). The apparatus has a perforated stainless steel floor
and trapezoidal walls bordering the area from a food
magazine to a touchscreen (12.1 inches; resolution 800 X
600) equipped with infrared beam arrays at <5 mm from
the screen surface to detect nose-poke responses with-
out animals having to apply pressure on the screen for a
response to be detected. To guide responding and decrease
unintentional touches on the screen, a screen mask made of
black acrylic with a row of five 4 X 4-cm openings 1 cm
apart from each other and 1.5 cm from the floor level was
placed in front of the screen. The white square visual stim-
ulus is presented only in the central opening/location. The
apparatus is enclosed in a sound-attenuating chamber with
a fan to provide ventilation and mask background noise. The
food magazine connects to a pump delivering a reward
(Yazoo Strawberry milkshake; Friesland Campina). A LED
and a speaker delivered a magazine light and a tone, re-
spectively, at the reward delivery.

Touchscreen training

All testing was performed during the light cycle. Before
start of experiments, the mice were food restricted to
85-90% of the free-feeding weight with water available ad
libitum in the home cage throughout. Mice were first
habituated to consume the milkshake reward in their
home cages for 2 d to avoid hyponeophagia, and to the
apparatus for two consecutive days, with all mice con-
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suming 200 pL milkshake that was delivered into the
magazine before the session start. To train the mice to
associate the stimulus with the reward delivery (20 ul), a
60-min session was started with a presentation of the
visual stimulus for 30 s followed by a delivery of a tone
(1000 ms, 3 kHz), a magazine light, and a reward. If the
visual stimulus was touched three times the quantity of
reward was delivered (60 ul). The magazine light was
turned off at the reward collection and followed by 5-s
intertrial interval (IT1). All animals collected 30 rewards and
thus reached the training criterion.

Fixed ratio training

After the initial training, the mice were trained for fixed
ratio (FR) performance with the following parameters:
stimulus removal for 500 ms, session length of 60 min,
reward volume of 20 uL, ITI of 4.5 s, and tone of 10 ms at
10 kHz. Mice were first trained to FR1 (one screen touch
for reinforcer delivery) and FR3, then continued to FR5.
Animals reached the criterion when 30 trials were com-
pleted during a session.

FR5 uncapped probe

Animals were administered with CNO (1 mg/kg, i.p.) or
vehicle 30 min before placing them into the chambers and
tested for FR5 performance with no trial limit in 60-min
sessions as in FR training. The mice were tested with both
CNO and vehicle administered in a counterbalanced order
with a 3-d interval with a break day and a training session
in between the test sessions.

Progressive ratio

Next, mice were tested on a progressive ratio 4 (PR4)
schedule that required incremental increases in the num-
ber of touches required for reinforcer delivery, as previ-
ously described (Heath et al., 2015). Sessions were
terminated after either 5 min of inactivity or after 60 min
had elapsed. The mice were tested with CNO (1 mg/kg,
i.p.) or vehicle administered in a counterbalanced order
with a single baseline nondrug day between each drug
test session.

Data analysis and statistics

All touchscreen testing data were automatically stored
in a database within ABET Il touch testing software. The
total response time was defined as the amount of time
between the first and last touch of a single trial and con-
verted to rate for both FR and PR sessions. Individual ses-
sions of FR response rate data were binned in blocks of 20
trials and fitted with the parabolic function y = b * x* + a for
stabilizing the variance and normalizing the distribution.
Individual sessions of PR response rate data were fitted
with the negative exponential function y = a™®*" as per
previously reported analysis (Bailey et al., 2016). These
data were analyzed using repeated-measures ANOVA with
trial bin and CNO/vehicle condition as within-subject fac-
tors. Post-reinforcement pause (PRP) was defined as the
time elapsed between the removal of the head from the
reward magazine and the emission of the first touch of
the next trial. These data were binned in blocks of 50 trials
for FR sessions. Statistical analysis of this measure was
conducted using linear mixed models, as this class of
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Figure 1. Selective expression of viral constructs in NAc cholinergic interneurons. Viral targeting of NAc-CINs in ChAT-cre mice
resulted in selective expression of MCY (B2) in neurons expressing the vesicular ACh transporter VAChT (B1, B3) in the medial core
and shell region of the NAc (n = 10; A, C). C, Darker shading corresponds to the qualitative greater density of the dendritic and
somatic extent of ACh-CIN labeling. ac, anterior commissure; ms, medial septum; NAcC, nucleus accumbens core; NAcS, nucleus
accumbens shell. White arrows, VAChT-expressing neurons; yellow arrowheads, neurons expressing both VAChT and MCY. Scale

bars: A, 100 um; B, 0.5 mm.

statistical modeling tolerates incompleteness, and ani-
mals cumulatively stopped responding throughout the
session. All statistical testing was conducted with a sig-
nificance level of p < 0.05.

Results

Designer receptors are expressed in NAc-CINS and
in sufficient quantities for modulating their
excitability

For effectively manipulating NAc-CIN activity in vivo, we
used a Cre-recombinase approach to express DREADDs
in ChAT-cre™ transgenic mice. Viral constructs that con-
tained mCherry only (MCY), Gq, Gs, or Gi-coupled DREADDs
were bilaterally injected in the medial division of the NAc
core and shell. Immunocytochemical analysis revealed
that viral expression in CINs was specific, since MCY-
expressing neurons were seen to be immunopositive for
the vesicular ACh transporter VAChT with high specificity
(Fig. 1A, B). Consistent with previous studies (Bolam
et al., 1984; Phelps et al., 1985; Contant et al., 1996; Zhou
et al.,, 2002), the extent of their dendritic and axonal
processes was limited to the NAc core and shell and did
not extend outside the NAc (Fig. 1A, C). To determine
whether the DREADD-specific ligand CNO was indeed
sufficient to modulate CIN activity, we performed whole-
cell recordings from identified transduced cells in acute
brain slices. Recorded neurons were regular spiking,
mostly spontaneously active at rest, and showed signa-
ture CIN intrinsic currents (Fig. 2A). As expected, in the
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presence of 10 um CNO, Gg-expressing CINs consis-
tently showed a depolarization (Fig. 2B7, C; Vmg: n = 10;
control, -60.7 = 3.1 mV; CNO, —-49.9 + 3.4 mV; paired t
test, p = 0.0007), whereas Gi-expressing CINs were hy-
perpolarized (Vmg: n = 9; control, -63.8 = 3.8 mV; CNO,
-67.2 £ 3.9 mV; paired t test, p = 0.02) with bath appli-
cation of CNO (Fig. 2B2, C). CNO-evoked responses in Gs
CINs were significantly depolarizing (Vmg: n = 11; control,
-55.4 = 2.7 mV; CNO, -52.8 = 2.6 mV; paired t test, p =
0.04), but the responses were smaller in magnitude than
those seen in Gg-expressing CINs (change in mV: Gg =
10,10.8 = 1.0mV; Gs = 11,2.5 = 1.5 mV; unpaired t test,
p < 0.0001; Fig. 2C). In contrast, there was no change in
the membrane potential of MCY-expressing CINs after
CNO application (Vmg: n = 6; control, -62.3 * 4.8 mV;
CNO, -63.8 = 4.8 mV; paired t test, p = 0.13). Compar-
isons of CIN input resistance before and after CNO deliv-
ery revealed a significant decrease in Gi-expressing CINs
(n = 9: Control, 329 + 28 M(Q; CNO, 282 + 24 MQ); paired
t test, p = 0.02) whereas neither Gg- nor Gs-expressing
CINs showed any change in response to CNO (Gqg, n =
10; control, 341 + 22 MQ; CNO, 359 + 43 MQ); paired t
test, p = 0.56: Gs, n = 9; control, 327 = 62 MQ; CNO,
318 += 55 MQ); paired t test, p = 0.564). Together, these
results provide evidence that Gg-, Gi-, and Gs-linked
designer receptors were selectively expressed in NAc-
CINs and in sufficient quantities for modulating their ex-
citability.
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Figure 2. Designer receptor expression was sufficient for modulating CIN excitability in vitro. A, Recorded neurons were regular
spiking and mostly spontaneously active at rest and showed signature CIN intrinsic currents. B, Bath application of 10 uM
CNO reliably depolarized the membrane potential of neurons expression Gg-coupled (n = 10; B1, C) and Gs-coupled (n = 11;
B3, C) designer receptors, whereas neurons expressing Gi-coupled (n = 9) receptors were inhibited (B2). Black arrowhead
(left), baseline current ramp injection; colored arrow (right), post-CNO current ramp injection. C, Results summary for
CNO-mediated response from left to right in Gg-expressing (green), Gi-expressing (red), Gs-expressing (blue), and MCY-only
(black; n = 6) CINs plotted as the change in membrane potential. Synaptic antagonists (in um) = CNQX 20, AP5 100, CGP-52432

10, gabazine 10.

CIN activity modulation does not change normal
feeding behavior

Previous pharmacological research investigating the
cholinergic regulation of NAc-dependent feeding behavior
has resulted in conflicting results, with reports of both
ACh receptor-specific increases and decreases in food
intake that have been attributed to NAc-CINs (Hoebel
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et al., 2007; Baldo et al., 2013). However, CIN communi-
cation is not restricted to ACh release, as CINs are known
to excite postsynaptic targets by releasing glutamate (Hi-
gley et al., 2011; Nelson et al., 2014a, b). Moreover, recent
anatomic data has shown that mesopontine brainstem
ACh neurons also project to the NAc (Dautan et al., 2014),
indicating that cholinergic regulation of NAc processes is
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for 24 h resulted in a significant reduction in food intake for Gg-expressing compared with both MCY- and Gi-expressing mice at 2
h after reintroducing home-cage food. Gqg, n = 10; Gs, n = 14; Gi, n = 10; MCY, n = 15. %, p < 0.05.

not restricted to CIN activity. As such, the relationship
between NAc-CIN activity and food intake remains unre-
solved. Using a designer-receptor approach in vivo, we
investigated how modifying the excitability of NAc-CINs
affected feeding behavior. To determine the impact of CIN
activity on daily home-cage feeding bouts, mice express-
ing Gg-linked (n = 10), Gs-linked (n = 14), and Gi-linked
(n = 10) linked DREADDs and MCY only (n = 15) in
NAc-CINs were injected with either CNO or vehicle (VEH)
30 min before the start of the active phase, when mice
normally show a significant increase in food intake. For all
conditions, VEH and CNO injections were counterbal-
anced over two testing sessions that were separated by 2
days. Regardless of whether they received CNO or VEH
injection, mice ate an equal amount of home-cage diet
2 hours after the start of the active phase (two-way
ANOVA: group effect, F395 = 1.00, p = 0.40; drug
effect, F; o0y = 0.003, p = 0.96; interaction, Fzgq =
1.28, p = 0.29; Fig. 3A). In addition to demonstrating
that CNO in control conditions (MCY group) has no
impact on normal eating behavior, these results provide
evidence that changes in CIN activity do not adversely
affect food intake by inducing taste aversion, as in-
creases in NAc-ACh activity have been previously
shown to do (Taylor et al., 2011).

March/April 2017, 4(2) e0328-16.2017

Under states of high motivation, CIN modulation
differentially affects food intake

In the preceding experiment, the motivation to con-
sume food was relatively low, since animals had free
access to homecage food in their normal feeding environ-
ment. Previous studies have shown CINs to be important
in reward-based behavior when the stimuli used are
strongly reinforcing, such as drugs of abuse and natural
rewards (Hajnal et al., 2000; Hikida et al., 2001, 2003). To
test for the involvement of NAc-CIN under heightened
levels of motivation, we increased the incentive value of
the home-cage food by fasting mice for 24 hours before
reintroducing food 30 min after CNO injections. Previous
studies have demonstrated that when fasted on multiple
occasions, mice increase their activity in anticipation for
food (Mieda et al., 2004; Storch and Weitz, 2009). To
avoid potential confounds from altered behavior induced
by multiple fasting events, a single fasting event was im-
posed, therefore allowing for a between-subject compari-
son. At 1 hour after the reintroduction of home-cage food,
differences in food consumption between MCY and Gg-
expressing mice began to emerge but were not statistically
different (two-way ANOVA; between groups, Fz o5y = 1.44,p
> 0.05; within-group, F ¢s5) = 3.08, p > 0.05; Fig. 3B). At
2 hours, however, Gg mice consumed significantly less than
MCY and Gi mice (MCY, 5.7 = 0.2; Gq, 4.8 = 0.6; Gi, 5.9 =
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0.4 g/100 g body weight; one-way ANOVA, group effect
F(3,44) = 3.70, p = 0.01; Bonferroni post hoc test; MCY vs.
Gqg p < 0.05, Gi vs. Gg p < 0.05; Fig. 3B), suggesting that
increases in NAc-CIN activity, when animals are motivated
by way of a 24-h fast, can act to reduce food consumption.

These results are in agreement with past research re-
lating increased NAc-ACh to reduced seeking behavior
for natural rewards (Rada et al., 2005; Avena et al., 2006)
and for drugs of abuse (Hikida et al., 2001, 2003; Zhou
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et al., 2007). Based on such findings, it has been pro-
posed that NAc-ACh can act to promote satiety signaling
by reducing the incentive value of rewarding stimuli. To
shed light on the interaction between hunger, food re-
ward, and satiety signaling, we trained food-restricted
mice to perform an operant task with a FR schedule of
reinforcement for receiving a palatable food reward (Fig. 4A).
The motivating nature of the stimulus and the spaced feed-
ing bouts provided by a FR regimen allowed us to measure
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changes in response rate that may reflect the cumulative
decrease in food intake that underlies satiety signaling. An-
imals were trained to touch an illuminated touchscreen lo-
cation five times (FR5) to receive 20 ulL of a palatable food
reward delivered to a well opposite the touchscreen. Con-
sistent with our results demonstrating a relationship be-
tween CIN activity and a reduction in food intake in fasted
mice, activating NAc-CINs with Gg- and Gi-linked DRE-
ADDs resulted in an respective decrease and increase in
total trials completed, compared with MCY animals (MCY,
180 * 6; Gq, 150 = 13; Gi, 207 = 5; Gs, 188 = 11; one-way
ANOVA: group effect F5 44y = 5.80, p = 0.002; Bonferroni
post hoc test; MCY vs. Gg p = 0.04, Gs vs. Gg p < 0.03, Gi
vs. Gg p = 0.009, MCY vs. Gi p = 0.02; Fig. 4B).

To further characterize the impact of CINs on food-
seeking behavior, we next measured changes in response
rate between CNO-injected and control mice throughout
the entire 1-hour session (Fig. 4). Despite equal initial
rates, Gg (n = 10) animals responded significantly less
than Gi (n = 10) animals toward the end of the session
(one-way ANOVA: group effect Fg 4oy = 3.39, p = 0.02;
Bonferroni post hoc test; Gi vs. Gq p = 0.01; Fig. 4C),
whereas the VEH-treated groups were not significantly
different from one another (one-way ANOVA: group effect
Fiaa2 = 1.62, p = 0.20; data not shown). Within-subject
comparisons (VEH and CNO sessions) for each group
revealed a significant interaction between trial and injec-
tion type (CNO vs. VEH) where Gq activation led to a
reduction in responding (one-way ANOVA with repeated
measures, group effect F(; g, = 5.07, p > 0.05; interaction,
bin = treatment, F9471) = 1.96, p = 0.01; Fig. 4D4),
whereas Gi-mediated inhibition of NAc-CINs resulted in
an elevated level of food seeking compared with control
conditions (one-way ANOVA with repeated measures:
group effect F; 4 = 3.22, p > 0.05; interaction, bin =
treatment, F4g 171y = 2.65, p < 0.001; Fig. 4D3). In con-
trast, neither MCY (n = 12) nor Gs (n = 14) animals treated
with CNO showed altered food-seeking behavior com-
pared with treatment with VEH (one-way ANOVA with
repeated measures: Gs group effect F; 1) = 0.58, p >
0.05, interaction, bin * treatment, F(;9209) = 0.68, p >
0.05; MCY group effect F; 15) = 0.78, p > 0.05, interac-
tion, bin * treatment, 44247 = 1.36, p > 0.05; Figs. 4D17,
D2). For all groups, mice injected with either CNO or VEH
were equally active throughout the session (two-way
ANOVA: group effect, F3 g4 = 1.54, p = 0.21; drug effect,
Fu,84y = 0.31, p = 0.58; interaction, F3g4 = 0.15, p =
0.93), suggesting that there was no overt behavioral def-
icit in responding (Fig. 5A).

We next measured the time after reward consumption
before animals voluntarily begin the next trial (Fig. 587).
This delay, known as the post-reinforcement pause (PRP)
has been shown to increase with food consumption and is
thought to reflect the decrease in motivation for food due
to satiety (Sidman and Stebbins, 1954; Patrikiou and
Keehn, 1964; Felton and Lyon, 1966). Consistent with the
notion that changes in CIN activity can affect motivation
for food, Gi-expressing mice injected with CNO showed a
significant decrease in PRP magnitude compared with
control mice (one-way ANOVA: Gi main effect by treat-
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ment F4 67y = 6.16, p = 0.01; interaction, bin * treatment
Fae3 = 1.17, p > 0.05; Fig. 5B3). Gq animals treated with
CNO, however, did not show an increase in PRP com-
pared with control conditions (one-way ANOVA: Gg main
effect by treatment F; 45) = 3.24, p = 0.08; interaction, bin
* treatment F5 45 = 1.81, p > 0.05; Fig. 5B5). Similarly,
CNO-treated MCY mice showed no difference compared
with control conditions (one-way ANOVA: MCY, main effect
by treatment F(; 5,y = 0.34, p > 0.05; interaction, bin =
treatment, F5 5y = 0.66, p > 0.05; Fig. 5B2). Surprisingly,
Gs mice showed a significant difference in control and
CNO conditions (main effect by treatment F(y ;5 = 5.01, p
< 0.05; interaction, bin = treatment F5 7 = 0.06, p >
0.05).

Stimulus incentive value that is largely independent
of satiety signaling is unaffected by CIN modulation

By demonstrating that changes in CIN excitability can
have opposing effects on food intake, these results indi-
cate that CINs play an active role in regulating motivation.
In is unclear, however, whether these CIN-induced differ-
ences in motivation were due to changes in the innate
reinforcer strength of the stimuli that were unrelated to
prior food consumption. To test this, mice were trained on
a PR schedule of reinforcement in which, after successful
trial completion, the correct touches necessary for food
delivery incrementally increased by four (Fig. 6A). The PR
task is well known to gauge reinforcer strength (Hodos,
1961; Eagle et al., 1999) that is mostly independent of
satiety signaling. The increased behavioral demand im-
posed by this schedule of reinforcement results in signif-
icantly less food being consumed compared with a FR5
regimen. In the current study, PR4 and FR5 control mice
consumed on average 14.4 = 1.1 (=288 ul) and 169.5 =
7.4 (=3.4 mL) rewards, respectively. The small amount of
food consumed in the PR4 task allowed us to determine
whether the time-dependent changes in response rates
could be attributed to adjustments in reinforcer strength
that is largely independent of satiety signaling. Both
between-subject (Fig. 6B) and within-subject (Fig. 6C)
analyses revealed that modulating CIN activity while ani-
mals sought food rewards in a PR4 task had no significant
effect on trials completed (one-way ANOVA: group effect
F(3,44) = 0.80, p > 0.05; Fig. 6B) or on response rates
(within group comparisons one-way ANOVA with repeated
measures, group effect: MCY (n = 12); F; 45, = 0.52, p >
0.05; interaction, bin = treatment, Fg 547, = 0.75, p > 0.05.
Gs (n = 14): F443 = 0.39, p > 0.05; interaction, bin =
treatment, Fig247) = 0.71, p > 0.05. Gg (n = 10): Fy o) =
0.05, p > 0.05; interaction, bin = treatment, Fg 171y = 0.42,
p >0.05. Gi(n=10): F.13 = 0.16, p > 0.05; interaction, bin
* treatment, Fg 247 = 0.97, p > 0.05; Fig. 6C), supporting
the viewpoint that CIN activity does not change the overall
incentive value of the rewarding stimuli.

Chemo-genetic activation of CINs inhibits accumbal
output neurons through nicotinic and GABAergic
receptor activation

It has previously been shown that NAc-CINs can effec-
tively inhibit NAc output MSNs (Witten et al., 2010; Nelson
et al., 2014a). In these studies, activating NAc-CINs op-
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togenetically with millisecond precision while recording
responses in MSNs showed that the CIN-evoked inhibi-
tion was likely due to an increase in GABA, receptor
activation (De Rover et al., 2002; Nelson et al., 2014a).
DREADD approaches lack such clear temporal relation-
ships, since activity is manipulated through G-protein—
coupled second messenger pathways. We thus tested in
vitro whether activating CINs using Gq DREADDs can
similarly inhibit MSNs (Fig. 7A). Bath application of 10 um
CNO in acute brain slices expressing Gq DREADDs in
CINs resulted in a significant hyperpolarization of MSNs
(n = 9: control, -76.2 = 2.1 mV; CNO, -78.6 = 1.5 mV;
paired t test, p = 0.03; Fig. 7B, C, left) that was dependent
on GABA, receptor activation (pretreatment with 10 uM
gabazine, n = 6: control, -78.9 = 1.0 mV; CNO, -77.1 =
2.1 mV; paired t test, p = 0.46; Fig. 7C, middle). In
addition, these changes in membrane potential were sim-
ilarly prevented by pretreating the tissue with the nonspe-
cific nicotinic receptor antagonist mecamylamine (10 uM;
n = 6: control, -76.6 = 3.2 mV; CNO, -74.9 = 3.9 mV;
paired t test, p = 0.15; Fig. 7C, right), a result consistent
with recent work showing that CIN activation in the dorsal
striatum can drive GABA release from local interneurons
that decreases MSN activity (Nelson et al.,, 2014a, b).

March/April 2017, 4(2) e0328-16.2017

These results suggest that Gg-mediated activation of
NAc-CINs may act to release ACh that then influences
local NAc networks.

Discussion

The present study demonstrates that modulation of
NAc-CIN activity is sufficient to bring about changes in
food-motivated behaviors. Through DREADD-mediated
bidirectional control of CIN activity, we show that, when
motivated by food restriction, increasing CIN activity led
to a reduction in palatable food consumption, whereas
reducing CIN excitability enhanced food intake. These
activity-dependent changes developed late in the session
and were unlikely to be driven by changes in the innate
reinforcer strength, since CIN manipulation did not affect
operant responses to the reinforcer when food consump-
tion was minimal. These results support the idea that CIN
modulation was instead affecting the cumulative change
in motivation underlying satiety signaling. Consistent with
past findings, we found that activating CINs in vitro led to
an inhibition of NAc output neurons that was dependent
on both GABA, and nicotinic receptor activation, sug-
gesting that NAc-CINs can act to dampen MSN activity
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through a feedforward activation of local GABAergic cir-
cuits.

These bidirectional changes in food-seeking behavior
were induced through Gg- or Gi-linked modified musca-
rinic second messenger systems. Because muscarinic M3
receptors are found in low levels in the striatum (Yasuda
et al.,, 1993), these effects were unlikely caused by dis-
rupted M3 receptor signaling but instead were likely
caused by increases in CIN activity (Fig. 2B7, C). It is
conceivable, however, that Gi-mediated increases in re-
sponding were attributed to disruptions in M2/4 second
messenger signaling, as activating M2/4 autoreceptors on
CINs can reduce Ca?" influx (Yan and Surmeier, 1996).
Occluding this signaling pathway would potentially dis-
rupt this Ca®* modulation, resulting in elevated excitabil-
ity of CIN axon terminals. We predict that such a scenario
would result in enhanced transmission and would there-
fore resemble the end effect of Gq activation. In contrast
to Gg-activated CINs, inhibiting CINs through Gi-DREADDs

March/April 2017, 4(2) e0328-16.2017

increased food-seeking behavior. These results thus sup-
port the interpretation that our manipulations had a bidi-
rectional impact on CIN excitability that resulted in
opposing influences on food-seeking behavior. Similar to
previous studies, many of these responses lasted well
after CNO washout (Alexander et al., 2009). Notably, de-
spite Gs-expressing CINs showing CNO-mediated changes in
activity in vitro, these changes in excitability were insuffi-
cient to affect behavior.

NAc cholinergic control of food intake

Our results are consistent with previous studies dem-
onstrating a link between NAc-ACh transmission and de-
creases in food-directed motivation. Past studies have
shown that toward the end of a meal there is a local rise
in NAc-ACh that strongly correlates with reductions in
food intake (Mark et al., 1992), the time course of which
can be extended in conditions where meal duration is
prolonged (Rada et al., 2005; Avena et al., 2008). More-
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Figure 7. Designer receptor activation of CINs inhibits MSNs through GABA, and nicotinic receptor activation. A1, Setup schematic:
in vitro whole-cell recordings from MSNs while bath-applying CNO onto Gg-expressing NAc-CINs. A2, Example of a typical MSN
recording showing changes in membrane potential in response to current injections. B, Example trace showing a reduction of MSN
activity after bath application of CNO and corresponding |-V relationship taken before (black trace, arrowhead) and after (orange trace,
arrowhead) CNO application. In this example, the membrane potential was held at above threshold with current injections through the
intracellular electrode. C, Group summary of CNO-evoked changes in membrane potential in control conditions (n = 9; left), when
pretreated with the GABA, receptor antagonist gabazine (GBZ, 10 uM; n = 6; middle), or with the nicotinic receptor antagonist

mecamylamine (MECA, 10 uM; n = 6; right).

over, mimicking such rises (as when ACh breakdown is
prevented) results in a significant decrease in food intake
(Mark et al., 2011). Similarly, increasing endogenous ACh
activity has been shown to reduce approach behaviors
toward drugs of abuse (De la Garza and Johanson, 1982;
Hikida et al., 2003), whereas eliminating NAc-CINs with
neurotoxins reduced such addiction-like behaviors
(Hikida et al., 2003). Together, these results support the
premise that NAc-CINs can act to reduce the reinforcing
effects of rewarding stimuli and therefore influence
reward-based behavior.

Despite much experimental support for NAc-CIN activ-
ity acting as a motivational stop signal, there has been
discrepant pharmacological data demonstrating a de-
crease, increase, or no impact on appetitive responding
after inactivation of local NAc muscarinic receptors (Mark
et al., 2006; Will et al., 2006; Perry et al., 2009; Pratt and
Blackstone, 2009; Nunes et al., 2013). The significance of
CINs for food-seeking behavior has further been con-
founded by recent anatomic work demonstrating a signif-
icant brainstem cholinergic input to the NAc (Dautan et al.,
2014), thus revealing alternative cholinergic influences on
NAc function. Moreover, in addition to ACh release, cen-
tral cholinergic neurons have been shown to affect post-
synaptic targets through glutamatergic mechanisms
(Witten et al., 2010; English et al., 2012; Nelson et al.,
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2014a, b). Despite our results demonstrating a bidirec-
tional influence of NAc-CINs on food-seeking behavior,
the interplay between these different circuits and their
synaptic influences on motivation remains unresolved.

Dual role for CINs in NAc-mediated motivation
Recent work has demonstrated that optogenetic inac-
tivation of NAc-CINs reduces conditioned cocaine place
preference (Witten et al., 2010), indicating that CINs, in
seeming contrast to our results, are involved in promoting
appetitive conditioning. Consistent with this, in vivo re-
cordings made from putative CINs in the ventral medial
striatum showed that during a food-reward learning task,
CINs increased their firing rate specifically at the end of
rewarded trials, thus demonstrating that CINs may be
encoding for reinforcing outcomes (Atallah et al., 2014).
Interestingly, these learning-related responses were not
seen when animals were engaged in a well-learned task,
suggesting that CIN activity may act to reinforce behavior
in the early stages of acquisition. This idea is consistent
with the viewpoint that fine-tuning CIN activity can regu-
late local NAc dopaminergic transmission (Cachope et al.,
2012; Threlfell et al., 2012) for supporting reward-based
learning (Brown et al., 2012). Notably, the modification of
CIN excitability in the present study occurred in the con-
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text of a familiar home cage and on well-trained operant
tasks (FR5 and PR4). Our results may support a differen-
tial role for NAc-CINs between initial reinforcement learn-
ing and incentive updating in well-learned conditions, as
is the case with satiety signaling. Consistent with this
view, NAc-ACh transmission can act to suppress the
reinstatement of heroin-seeking on a well-learned operant
task (Zhou et al., 2007). More recently, Lee et al. (2016)
further implicated CINs in updating well-learned rein-
forced behavior by showing that NAc-CIN manipulation
can modulate extinction learning. The wide range of mo-
tivational changes observed after NAc-CIN manipulation
suggests that this cellular population likely integrates sig-
nals from multiple sources to modulate at different times
motivational output.

Inhibitory CIN impact on NAc output

From a circuit-level perspective, the CIN-mediated de-
crease in food-seeking behavior may result from an over-
all increase in inhibitory tone onto NAc output neurons.
Previous studies have shown that optogenetically activat-
ing CINs can effectively inhibit MSNs (Witten et al., 2010).
Consistent with the known connectivity of CINs residing in
the dorsal striatum (English et al., 2012; Nelson et al.,
2014a; Faust et al., 2015), our results indicate that inhibitory
GABA responses evoked by CNO onto Gg-expressing NAc-
CINs were dependent on nicotinic receptor activation and were
likely due to the feedforward activation of local interneurons
that inhibit NAc-MSNSs. Different populations of MSNs that
can be broadly classified by their neuropeptide and do-
pamine (D1 and D2) receptor expression have been
shown to differentially affect the rewarding aspects of
cocaine. Whereas D1-type MSN activation can drive
cocaine-mediated learning, D2-type MSN activation has
the opposite effect (Lobo et al., 2010). More recently, it
has been shown that in mice activating D1- as well as
D2-expressing NAc-MSNs can increase motivation for
food rewards (Soares-Cunha et al., 2016). Interestingly,
devaluing the food reward by allowing mice free access to
food before the behavioral task completely disrupted the
enhanced motivation after D2-MSN stimulation. More-
over, optical inhibition of D2-MSNs diminished operant
responding for food. These results are consistent with our
current findings demonstrating that DREADD-activated
CINs can reduce food-seeking behavior while also de-
creasing the excitability of NAc-MSNs. Whether or not
these synaptic effects were preferentially on D1- or D2-
expressing MSNs was not investigated in the current
study. Dopaminergic inputs to spatially distinct CINs have
been shown to differentially impact their activity (Chuhma
et al., 2014), but whether specialized differences in micro-
circuit connectivity between NAc-CINs and MSNs exist
remains unclear.

Our results support a role for NAc-CINs in bidirectionally
influencing satiety. One potential mechanism by which CIN
activity can translate into reduced food-seeking behavior is
via an indirect inhibition of NAc-MSNs. The afferents that
drive CIN activity remain unclear, however. Potential satiety-
related sources that are positioned to impact CINs include
hypothalamic energy-sensing circuits (Sternson, 2013) and
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amygdala neurons known to encode for reappraising
stimulus value (Morrison and Salzman, 2010). Interest-
ingly, recent work has revealed that CINs express insulin
receptors whose activation excites CINs (Stouffer et al.,
2015), thus demonstrating an additional influence on CINs
with the appropriate time course for progressively driving
satiety. A more complete understanding of the various
circuits that impact CINs will help reveal the various influ-
ences on CINs that contribute to their regulation over the
drive to eat.
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