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Abstract

Background: Estrogen receptor (ER) 3 has been suggested to affect ovarian carcinogenesis. We examined the
effects of four ERB agonists on proliferation and gene expression of two ovarian cancer cell lines.

Methods: OVCAR-3 and OAW-42 ovarian cancer cells were treated with the ERB agonists ERB-041, WAY200070,
Liquiritigenin and 3(3-Adiol and cell growth was measured by means of the Cell Titer Blue Assay (Promega). ER3
expression was knocked down by transfection with specific siRNA. Additionally, transcriptome analyses were
performed by means of Affymetrix GeneChip arrays. To confirm the results of DNA microarray analysis, Western blot

experiments were performed.

Results: All ER agonists tested significantly decreased proliferation of OVCAR-3 and OAW-42 cells at a

concentration of 10 nM. Maximum antiproliferative effects were induced by flavonoid Liquiritigenin, which inhibited
growth of OVCAR-3 cells by 31.2% after 5 days of treatment, and ERB-041 suppressing proliferation of the same cell
line by 29.1%. In OAW-42 cells, maximum effects were observed after treatment with the ERB agonist WAY200070,
inhibiting cell growth by 26.8%, whereas ERB-041 decreased proliferation by 24.4%. In turn, knockdown of ERB with
specific siRNA increased cell growth of OAW-42 cells about 1.9-fold. Transcriptome analyses revealed a set of genes
regulated by ERB agonists including ND6, LCN1 and PTCH?2, providing possible molecular mechanisms underlying

the observed antiproliferative effects.

Conclusion: In conclusion, the observed growth-inhibitory effects of all ER agonists on ovarian cancer cell lines
in vitro encourage further studies to test their possible use in the clinical setting.
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Background

Ovarian cancer is the fifth most common cause of death
because of cancer in women and is the leading cause of
death from gynaecological malignancy in the developed
world [1]. Due to missing screening methods and its ag-
gressive behaviour, a vast number is diagnosed at an ad-
vanced stage [2]. Steroid hormones have an influence on
ovarian cancer cells [3] and it has been shown that 40—
60% of ovarian cancers express estrogen receptor (ER) a
[4, 5]. In advanced stages the selective estrogen receptor
modulator tamoxifen is used in patients as a well-
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tolerated and also effective treatment [6—8]. Moreover,
use of peri- and postmenopausal hormone therapy has
been shown to increase ovarian cancer risk [9]. One
extra ovarian cancer case per 1000 users can be ob-
served in women who use hormone therapy for 5 years
after the age of 50 years [9].

Investigating the underlying mechanisms, it is inevit-
able to consider the two ER types, ERa and P. So far, lit-
tle is known about the molecular mechanisms of ERP
function in ovaries and ovarian cancers. However, it has
been shown that both receptor types exert different bio-
logical functions [10, 11]. Given that ERp is able to
counteract ERa signaling in some settings, loss of ERp is
thought to enhance ERa-mediated proliferation of
hormone-dependent cancer cells [12]. Moreover, the
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influence of ERb signaling on apoptosis pathways has
been shown [13].

Comparing normal ovarian tissue with epithelial ovar-
ian cancers, a loss of ERP expression and a decrease in
ERP/ERa ratio can be observed [14—16]. Furthermore, in
metastases of ovarian cancers a complete loss of ERf
was observed, whereas in the corresponding primary tu-
mors low expression levels were still measurable [15]. A
positive correlation of ERP expression with survival has
been shown in ovarian cancer patients as well as animal
models [17, 18].

In vitro studies on other hormone-dependent tumors
as breast and prostate cancers revealed a tumor suppres-
sive role of ERP [10, 19]. Fewer reports suggest that this
receptor plays a similar role in ovarian cancer. Recently,
we investigated the effect of ERP overexpression on the
SK-OV-3 ovarian cancer cells. Particularly overexpres-
sion of ERP1 inhibited growth and motility of these cells
and induced apoptosis. In addition, we observed specific
changes in gene expression. Interestingly, the antitu-
moral effects of ERP were independent of estradiol and
functional ERa. However, we were able to show an in-
creased transcription of cyclin-dependent kinase inhibi-
tor 1, a decrease in cyclin A2 transcripts and an up-
regulation of fibulin 1c [20].

In another study, proliferation of ERa expressing
BG - 1 ovarian cancer cells decreased after reintroduc-
tion of ERP expression [17]. An increased expression of
ERp was associated with a decreased number of cells in
S phase, whereas more cells were found in the G2/M
phase. Also the cell cycle regulators cyclin D1 and A2
were affected by ER[ expression. When ERP was reintro-
duced, total retinoblastoma (Rb), phosphorylated Rb and
phospho-AKT content decreased. A part of the antipro-
liferative effect of ERP was explained by the strong in-
hibition of ERa activity and expression by ERP [17, 21].
To examine the role of ERB in a more physiological
model of ovarian carcinogenesis, Bossard et al. orthoto-
pically transplanted ER[} expressing ovarian cancer cells
in ovaries of Nude mice, which reduced both tumor
growth and the presence of tumor cells in sites of metas-
tasis, and led to improved survival [17].

The suggested role of ERP as tumor suppressor and
the observed decrease of expression in ovarian cancer
cells raise the question, whether ERP expression in these
cells might be high enough to make this receptor a po-
tential target in ovarian cancer therapy. Thus, we investi-
gated the effect of ERB agonists on proliferation and
gene expression of two ovarian cancer cell lines.

Methods

Material

The human ovarian cancer cell line OVCAR-3 was ob-
tained from American Type Culture Collection (ATCC
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#HTB-161, Manassas, USA), and OAW-42 ovarian can-
cer cells were obtained from Sigma Aldrich (#85073102,
St. Louis, USA). The cells were maintained in phenol
red-free DMEM culture medium that was obtained from
Invitrogen (Karlsruhe, Germany) containing FCS that
was purchased from PAA (Pasching, Austria). RNeasy
Mini Kit was obtained from Qiagen (Hilden, Germany).
Transfectin reagent was obtained from BioRad
(Hercules, USA). OptiMEM medium were purchased at
Invitrogen (Karlsruhe, Germany). ESR2 and control siR-
NAs were from Ambion (Life Technologies, USA).
Serum Replacement 2 (SR2) cell culture supplement and
17-B estradiol were from Sigma-Aldrich (Deisenhofen,
Germany). ERP agonists ERB-041 and WAY-200070
were from Tocris (Bristol, UK). 5a-androstane-33, 17f-
diol (3B-Adiol) was from Sigma (Deisenhofen, Germany)
and Liquiritigenin from Extrasynthese (Lyon, France).

Cell culture, transfection and proliferation assays
OVCAR-3 and OAW-42 cells were maintained in DMEM/
F12 medium supplemented with 10% FCS at 37 °C in a hu-
midified atmosphere containing 5% CO,. For transfection,
4 x 10° cells per well of a 6-well dish were seeded in
DMEM/F12 containing 10% FCS. The next day, 2 ml fresh
culture medium was added to the cells. 5 pl Transfectin re-
agent (BioRad) and a mix of three ESR2 siRNAs (10 nM
each) were used to prepare transfection solution in Opti-
MEM medium (Invitrogen). The siRNA mix contained
three different ESR2-specific Silencer siRNAs (siRNA IDs
145,909, 145,910, 145,911, Ambion), targeting exons 1, 2
and 3 of ESR2 mRNA. As a negative control, Silencer
Negative control siRNA #1 (Ambion) was used. Gene
knockdown of ESR2 was verified by means of Western blot
analysis 72 h after siRNA treatment as described below. For
cell proliferation assays, cells cultured in DMEM/F12 sup-
plemented with 10% FBS or serum replacement 2, both
containing 0.1 nM E2, were seeded in 96-well plates in trip-
licates (1000 cell/well). For agonist analyses, ERB agonists
were added in a 10 nM concentration 1day later. The rela-
tive numbers of viable cells were measured on days 0, 3, 4,
5, 6 and 7 using the fluorimetric, resazurin-based Cell Titer
Blue assay (Promega) according to the manufacturer’s in-
structions at 560Ex/590Em nm in a Victor3 multilabel
counter (PerkinElmer, Germany). Cell growth was
expressed as percentage of cells transfected with negative
control siRNA. Growth data were statistically analyzed by
the Kruskal-Wallis one-way analysis of variance.

Antibodies and Western blot analysis

OAW-42 and OVCAR-3 cells were lysed in RIPA buffer
(1% (v/v) Igepal CA-630, 0.5% (w/v) sodium deoxycho-
late, 0.1% (w/v) sodium dodecyl sulphate (SDS) in
phosphate-buffered solution (PBS) containing aprotinin
and sodium orthovanadate. Aliquots containing 10 pg of
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protein were resolved by 10% (w/v) SDS—polyacrylamide
gel electrophoresis, followed by electrotransfer to a
PVDF hybond (Amersham, UK) membrane. Immunode-
tection was carried out using monoclonal ERB (ESR2)
antibody 14C8 (ab288, Abcam, Germany), diluted 1:100
in PBS containing 5% skim milk (w/v), ERa (ESR1) anti-
body 6F11 (ab9269, Abcam, Germany) (1:500), lipocalin-
1 (LCN1) antibody STJ96584 by St John’s Laboratory
(London, UK) (1:300), Patched 2 (PTCH2) antibody
ABIN1673339 (1: 500) by antibodies-online (Aachen,
Germany), Mitochondrially Encoded NADH Dehydro-
genase 6 (MT-ND6) antibody ABIN311275 (1:1000) by
antibodies-online (Aachen, Germany), B-actin (ACTB)
antibody (clone AC-74) from Sigma Aldrich (Munich,
Germany) followed by horseradish peroxidase conju-
gated secondary antibody (1:50,000) which was detected
using chemiluminescence (ECL) system (Amersham,
Buckinghamshire, UK). The Western blot results from
three independent protein isolations were densitometric-
ally analyzed using Image] [22] and expressed in per-
centage of cell treated with a vehicle control.

GeneChip™ microarray assay
Processing of the RNA samples (two biological replicates
from OVCAR-3 and OAW-42 cells treated with E2
(0.1 nM) in combination with ERB agonists (10 nM) or
vehicle controls for 48 h) was performed at the local
Affymetrix Service Provider and Genomics Core Facility,
“KFB - Centre of Excellence for Fluorescent Bioanaly-
tics” (Regensburg, Germany; www.kfb-regensburg.de).
Samples were prepared for microarray hybridization as
described in the Affymetrix GeneChip Whole Transcript
(WT) Sense Target Labelling Assay manual. Double-
stranded ¢cDNA was generated from 300 ng of total
RNA. Subsequently, cRNA was synthesized using the
WT cDNA Synthesis and Amplification Kit (Affymetrix).
cRNA was purified and reverse transcribed into single-
stranded (ss) DNA. Subsequently a combination of uracil
DNA glycosylase (UDG) and apurinic/apyrimidinic
endonuclease 1 (APE 1) was used to fragment ssDNA,
which was afterwards labelled with biotin (WT Terminal
Labelling Kit, Affymetrix). In a rotating chamber, 2.3 pg
DNA were hybridized to the GeneChip Human Gene
1.0 ST Array (Affymetrix) for 16 h at 45 °C. After wash-
ing and staining the hybridized arrays in an Affymetrix
Washing Station FS450 using preformulated solutions
(Hyb, Wash & Stain Kit, Affymetrix), the fluorescent sig-
nals were measured with an Affymetrix GeneChip Scan-
ner 3000-7G.

Microarray data analysis

Summarized probe signals were created by using the
RMA algorithm in the Affymetrix GeneChip Expression
Console Software and exported into Microsoft Excel.
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Data was then analysed using Ingenuity IPA Software
(Ingenuity Systems, Stanford, USA) and Genomatix
Pathway Analysis software (Genomatix, Munich,
Germany). Genes with more than 2-fold changed mRNA
levels after ERP knockdown in both biological replicates
were considered to be differentially expressed and were
included in the analyses.

Results

Expression of ERa and 3 in OVCAR-3 and OAW-42 cells
First, we tested expression of ERa and ERP in the
employed ovarian cancer cell lines OVCAR-3 and
OAW-42. Western blot experiments demonstrated that
both cell lines expressed ERP protein at similar levels,
whereas ERa protein levels were about 4-fold higher in
OVCAR-3 cells (Fig. 1).

ERP agonists decreased proliferation of OVCAR-3 and
OAW-42 cells

OVCAR3 and OAW-42 cells were treated with four dif-
ferent ERP agonists, ERB-041, WAY-200070, Liquiriti-
genin and 3B-Adiol. Culture medium contained either
10% FCS or defined growth factor-free serum replace-
ment, both containing E2 (0.1 nM). After treatment of
OVCAR-3 and OAW-42 cells with the ERP agonists, all
of these drugs were observed to significantly decrease
proliferation in both cell lines at a concentration of
10 nM. We decided to test this concentration only, be-
cause the EC50 values for ERP binding of all drugs are
in the low nanomolar range, and we wanted to rule out
activation of ERa by higher drug concentrations, which
could be able to increase proliferation.
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Fig. 1 Expression of ERB and ERa in OVCAR-3 and OAW-42 ovarian can-
cer cells. Expression of the indicated receptors was examined by means
of Western blot analysis. Levels of 3-Actin (AKTB) were determined as in-
ternal control. Aliquots containing 10 g of protein isolated from both
cell lines were resolved by 10% (w/v) SDS—polyacrylamide gel electro-
phoresis, followed by electrotransfer to a PYDF hybond membrane
(Amersham, UK)
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In OVCAR-3 cells, maximum growth-inhibitory effects
were induced by Liquiritigenin, which decreased the
number of viable cells down to 68.8% after 5 days of
treatment in medium supplemented with 10% FCS,
when compared to cells treated with vehicle (Fig. 2). In
SR2 containing medium, Liquiritigenin reduced viable
cell numbers down to 78.6% on day 7. Treatment of
OVCAR-3 cells with ERB-041 decreased the number of
viable cells to 70.9% (day 5) in FCS containing medium
and down to 78.6% (day 7) when cultured with defined
serum replacement. WAY200070 treatment of OVCAR-
3 cells inhibited proliferation to 78.1% on day 5 in FCS
containing medium (79.3% on day 7 in SR2 containing
medium). When 3p-Adiol was added, maximum effects
were observed on day 3 with a decrease of viable cells
down to 79.6% or 83.8% in FCS or SR2 containing
medium, respectively.

All ERp agonists tested also exerted significant growth
inhibitory effects on OAW-42 cells. In contrast to
OVCAR-3 cells, these effects were more pronounced in
defined serum-free medium (Fig. 2). Maximum antipro-
liferative effects were observed in OAW-42 cells treated
with WAY200070 on day 6, with a decrease of viable cell
numbers to 73.2% in SR2 containing medium (81.8% on
day 4 in FCS containing medium). Treatment with ERB-
041 led to a maximum reduction of viable cells on day 3
down to 75.6% in SR2 and 81.3% in FCS containing
medium. When OAW-42 cells were treated with Liquiri-
tigenin, we observed a reduction of viable cell numbers
down to 76.8% on day 4 (in FCS; 83.1% in SR2 on day
5). After treatment with 3p-Adiol, a maximum antipro-
liferative effect was observed on day 6 when cells were
cultured in defined serum replacement (reduction of vi-
able cells to 80.4%), whereas cell numbers were de-
creased to 80.9% on day 4 when cultured in FCS.

Increased proliferation of OAW-42 cells after knockdown
of ERB

After having shown a decrease of ovarian cancer cell
proliferation resulting from treatment with ERp agonists,
we examined, whether knockdown of ERB would have
the opposite effect. In OAW-42 cells, 72 h after transfec-
tion with ESR2 siRNA, Western blot analysis revealed
maximum suppression of ERB protein levels down to
10,5% (p < 0.01) (Fig 3a). In OVCAR-3 cells, siRNA
treatment resulted in a knockdown of ERP by 65.7%
only, although different transfection parameters were
tested (data not shown). Since this knockdown was not
sufficient, we had to continue with OAW-42 cells only.
When OAW-42 cells were seeded 48 h after siRNA
transfection for assessment of proliferation, we observed
a significant increased growth rate of cells transfected
with ESR2 siRNA compared to negative control siRNA.
This effect was present from day 4 until day 6 of the
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Fig. 2 Effects of ERp-agonists on growth of OVCAR-3 and OAW-42 ovar-
ian cancer cells. OVCAR-3 and OAW-42 cells cultured in medium contain-
ing 10% FCS (open squares) or defined serum replacement SR2 (filled
triangles) were treated with 10 nM of ERB-041, WAY-200070, Liquiriti-
genin or 3B-Adiol as indicated for up to 7 days and relative numbers of
viable cells were determined by means of the fluorimetric CellTiter-Blue”
Assay (Promega). Data are expressed in percent of the vehicle controls

(n=4;*P <005 vs. control, ** P < 0.01 vs. control)

proliferation assay, with a maximum effect of ESR2
siRNA on day 4, resulting in a 1.9-fold increase of viable
cells (p < 0.01) (Fig. 3b).
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Fig. 3 Effect of an ERB knockdown on proliferation of OAW-42 cells. a:
ERB expression in OAW-42 ovarian cancer cells after transfection with
ERB siRNA compared to controls. 72 h after transfection, total protein
was isolated and knockdown was examined on the protein level by
means of Western blot analysis as described in the methods section. ER(
expression levels after transfection with a mix of ESR2 siRNAs (10 nM
each) were compared to levels in cells transfected with negative control
SIRNA (n = 4). *p < 001 vs. control-transfected cells. b: Proliferation of
OAW-42 cells with reduced levels of ERB. Cells were transfected with
ESR2-specific siRNA or negative control siRNA and seeded into 96-well
plates (1000 cells/well) in medium containing 10% FCS the next day. 0, 3,
4, 5,and 6 days after transfection, relative numbers of viable cells were
determined by means of the fluorimetric CellTiter-Blue” Assay (Promega).
From one vial of transfected cells, 72 h after transfection total RNA and
protein was isolated in parallel to confirm knockdown of ESR2 expression.
Data are expressed in percent of day 0 (n = 4). *p < 007 vs.
control-transfected cells

Drug effects on the transcriptome of OVCAR-3 and OAW-
42 cells

To analyze the molecular mechanisms underlying the
antiproliferative effect of ERP agonists, we employed
Affymetrix Human GeneChips 1.0 to analyze the effect
of ERB-041, Liquiritigenin and WAY200070 on tran-
scriptome of both cell lines. While changes of the tran-
scriptome were smaller than expected, cell line OAW-42
was found to be more sensitive to treatment with ERP
agonists in terms of gene expression changes than
OVCAR-3 cells. Whereas in OAW-42 cells 3 genes were
induced and 9 were downregulated more than 2-fold by
at least one of the drugs, in OVCAR-3 cells transcript
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levels of only 3 genes were found to be decreased more
than 2-fold. Among the upregulated genes, C60RF99
and TPTE2 were more than 2-fold increased in OAW-
42 cells by two different ERP agonists (Table 1). In
OVCAR-3 cells, expression of the genes LCNI and
C210RF94 was more than 2-fold decreased after treat-
ment with ERB-041 and Liquiritigenin. LCN1 gene was
also found to be downregulated by ERB-041 in OAW-42
cells. In the latter line, other significantly downregulated
genes were PTCH2, SNORD25, ND6 and SNORD1.

To confirm the results of DNA microarray analysis on
the protein level, we performed Western blot experi-
ments to study the effects of ERP agonists on protein ex-
pression of four of those genes most considerably
regulated on the mRNA level. In these experiments, we
observed strong down-regulation of PTCH2 protein by
WAY200070 down to 18.7% in OAW-42 cells (p < 0.01),
decrease of LCN1 by agonist ERB-041 down to 21.3% in
OVCAR-3 cells (p < 0.01). ND6 protein levels in OAW-
42 cells decreased down to 13.9% after treatment with
ERB-041 (p < 0.01), to 25,5% by Liquiritigenin (p < 0.01)
and to 15.4% by WAY200070 (p < 0.01) (Fig. 4). In con-
trast, we did not observe a significant effect of the ERB
agonists tested on protein expression of EpCAM which
was suggested by microarray results (data not shown).

DNA Microarray analyses also revealed agonist-
triggered regulation of two growth-associated genes
which might be an underlying mechanism of the ob-
served growth inhibition. Cyclin E2 (CCNE2) expression
was found to be decreased after treatment with ERP
agonist Liquiritigenin by 38.6% in OVCAR-3 cells and
by 32.8% after treatment with WAY200070 in the same
cell line (both p < 0.05). In OAW-42 cells, the latter
agonist reduced cyclin E2 expression by 35.1%
(p < 0,05). In contrast, expression of growth arrest spe-
cific 2 (GAS2) gene was elevated after treatment with
ERB agonists ERB-041 and WAY200070 in OAW-42
cells (by 42.5% or 37.0%, respectively, p < 0.05), and in
OVCAR-3 cells by 31.6% after treatment with Liquiriti-
genin (Fig. 5a).

Pathway analysis

Analysis of the transcriptome changes triggered by ERP
agonists using Ingenuity Pathway Analysis software
(IPA, Ingenuity Systems) revealed an estrogen-
dependent network consisting of the downregulated
genes LCN1, EpCAM, PTCH2 and ND6 (Fig. 5b).

Discussion

In this study, for the first time we report significant in-
hibitory effects of ERP agonists on growth of ovarian
cancer cell lines. In turn we demonstrated a significant
proliferation increase after siRNA-mediated knockdown
of ERP, corroborating both our agonist findings and the
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Table 1 Genes regulated after treatment of the indicated ovarian cancer cell lines with the specific ER agonists ERB-041, Liquiriti-
genin (LIQ.) and WAY — 2,000,070 for 48 h. Shown are genes with at least 2-fold regulation in one experimental setting (values in
italics). Data were assessed by means of Affymetrix GeneChip 1.0 microarray analyses and are expressed in -fold change compared
to the vehicle control

OAW-42 OVCAR-3
ERB-041 LiQ. WAY200070 ERB-041 LIQ. WAY200070
Up-regulated genes
C60RF99 2,52 381 191 1,35 1,01 -117
TPTE2 1,67 2,05 2,26 1,05 122 1,08
CcD177 1,55 -1,08 2,14 1,53 1,62 1,79
Down-regulated genes
LINC00314 1,24 -1,26 -1,44 -1,86 -2,09 -2,71
EPCAM -1,35 -1,41 -2,20 -1,21 -1,02 -1,05
SNORD25 -2,07 -1,07 -2,00 -1,03 -1 -1,07
RNU4-2 -1,46 -2,09 -1,49 -1,16 -1,21 -1,03
RNU2-1 -1,62 -1,57 -2,05 -1,29 -1,03 -1,30
PTCH2 -1,67 -1,76 -2,08 -137 -1,10 -133
RNUS5B-1 -1,51 -1,79 -2,54 -1,11 =123 -1,09
ND6 -2,11 =212 -4,01 -1,38 -1,11 1,42
FAM48B2 -1,29 -1,30 -1,73 =211 -1,72 -1,76
LCN1 -2,28 =112 =11 -2.14 -2,38 -1,61
SNORA1 -1,82 -2,07 -2,09 -1,39 =141 -1,71

suggested tumor suppressor role of this receptor in ovar-
ian cancer. Though all ERB agonists inhibited ovarian
cancer cell growth, their effect on gene expression par-
tially differed due to their known structural differences.
In ovarian cancer, steroid hormone receptors ERa and
B are commonly expressed. Especially in normal ovarian
tissue ERP shows high expression levels, which decrease
during carcinogenesis [3, 14, 15, 23-26]. This loss of
ERp could be an important step for the development of
ovarian cancer and might even be a general mechanism

during tumorigenesis of estrogen-dependent tissues. A
number of in vitro studies, including one from our
group, support the tumor-suppressive role of ERfB in
ovaries [20, 27-33].

The results of our knockdown experiments, clearly
suggesting an antiproliferative effect of ERp in ovarian
cancer cells, are in line with previous studies by us and
others, reporting growth inhibition after overexpression
of ERB or growth increase after knockdown of this re-
ceptor [17, 20].
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Fig. 4 Western blot analysis demonstrating down-regulated protein expression of the indicated genes after treatment with the ERB agonists ERR-
041, WAY200070 and Liquiritigenin. 72 h after stimulation with 10 nM of the agonists, total protein was isolated and subjected to Western blot
analysis. Analyses were performed using specific antibodies against the gene products of LCN1, ND6 and PTCH2 and additionally ACTB as a load-
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expression. Prediction by IPA Software (Ingenuity Pathway Analysis,
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In our study we addressed the question, whether ex-
pression of ERP in ovarian cancer cells still might be
high enough to make this receptor a potential target in
ovarian cancer therapy. Thus, we investigated how ovar-
ian cancer cells responded to treatment with ERP ago-
nists, which have been reported to bind preferentially to
this receptor, but only to a much smaller extent to ERa.
3p-Adiol (5a-androstane-3f, 17B-diol) is a dihydrotes-
tosterone metabolite which does not bind androgen re-
ceptors. However, it efficiently binds ERB [34] and acts
as a physiological ERB-activator in different tissues [35,
36]. ERB-041 and WAY-200070 are highly specific syn-
thetic ERP agonists [37, 38]. ERB-041 is known to dis-
play a more than 200-fold selectivity for ERP than for
ERa (ECs0 ERB = 2 nM), WAY-200070 still has a 68-fold
higher selectivity for ERp than for ERa (ECs0 ERp = 2 nM
[39]). Liquiritigenin is a plant-derived flavonoid from lic-
orice root, which acts as a highly selective agonist of
ERP (ECso ERP = 36,5 nM [40]). Recently, we have
shown that Liquiritigenin and 3B-Adiol inhibit
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proliferation of different breast cancer cell lines. How-
ever, proliferation of ERa-positive breast cancer cell lines
was not affected by the agonists WAY200070 and ERB-
041 [41, 42]. We decided to use a 10 nM concentration
of the agonists only, because the EC50 values for ERP
binding of all drugs are in the low nanomolar range, and
possible ERB-unspecific effects of higher drug concen-
trations on proliferation e.g. via ERa activation thus
could be ruled out. Though all agonists affected prolifer-
ation regardless of the serum supplement used, our ob-
servation that agonist effects in the presence of 10% FCS
were higher on OVCAR-3, but lower in OAW-42 cells
compared to defined growth-factor free serum replace-
ment might be explained by the different mutation sta-
tus of these cell lines. OAW-42 cells derive from ascites
from a serous ovarian cancer, they obtain mutations of
BRCA1I and PIK3CA, but not of p53 [43]. OVCAR-3
cells were attained from ascites of a patient with high-
grade serous ovarian cancer (G3) and exhibit a mutation
of p53 [43]. Thus, proliferation of OVCAR-3 cells, which
is elevated due to mutated p53 and is further increased
by growth factors, might be more sensitive to growth in-
hibition by ERP agonists [44].

The transcriptome analyses of both cell lines we per-
formed after treatment with ERP agonists ERB-041,
Liquiritigenin and WAY-200070 revealed possible mo-
lecular mechanisms underlying the observed antiprolif-
erative effects. In our study we observed down-
regulation of PTCH2 in OAW-42 cells both on the
mRNA and protein level after treatment with ERP agon-
ist WAY200070. PTCH2 gene encodes a transmembrane
receptor and is part of the hedgehog signaling pathway,
which is known to play an important role in the devel-
opment of several malignancies [45—49]. High expres-
sion of PTCH?2 was associated with a poorer survival in
patients with bladder cancer [47]. Recently, Worley et al.
showed a significant overexpression of PTCH2 in
ovarian clear cell carcinoma and associated endomet-
riosis [50]. Given that knockdown of PTCH2 was re-
ported to exert significant growth inhibition in a clear
cell cancer cell line, this gene might be in part re-
sponsible for the observed growth inhibitory effects of
this ERp agonist [50].

Pathway analysis suggested that the observed effects of
ERp agonists are mediated by B-catenin (CTNNB1) and
amyloid [ precursor protein (APP), which have been re-
ported to form a complex [51]. Expression of APP and
CTNNBI previously has been reported to be inducible
by estrogens [52, 53]. CTNNBI activity has been re-
ported to be inhibited by ESR2 and is known to affect
expression of EpCAM and PTCH2, which could explain
the link between ER[ agonists and decreased expression
of PTCH2 and EpCAM we observed in OAW-42 cells
[54—56]. The fact that estrogen-inducible APP has been
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reported to increase expression of ND6 and PTCH?2 pro-
vides a putative molecular mechanism between ESR2
knockdown and the observed downregulation of ND6
and PTCH2 [57, 58].

Our observation of LCNI downregulation particularly
by ERB-041 in both cell lines could be explained by the
fact that E2 has been reported to regulate LCNI gene
expression [59, 60]. The role of this transporter of small
lipophilic ligands in cancer is unclear. However, it re-
mains to be investigated whether LCNI might exert
tumor-promoting functions like its family member
LCNZ2 known to induce epithelial to mesenchymal tran-
sition and to promote breast cancer invasion in an ERa-
dependent manner [61, 62].

Conclusions

In this study, we were able to demonstrate a significant
decrease of proliferation of two ovarian cancer cell lines
triggered by different ERP agonists. Microarray analyses
revealed a set of cancer-associated genes being regulated
by these agonists. This and the observed increase of pro-
liferation after ERP knockdown suggest an important
role of this receptor in growth control of ovarian cancer
cells. Our data suggest, that ERP could be a promising
target for therapy of ovarian cancer. To what extent ERP
agonists could be suitable in the clinical setting has to
be examined in further studies.
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