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Abstract
Macrophage inflammatory protein (MIP)-2 is one of the 
CXC chemokines and is also known as chemokine CXC 
ligand (CXCL2). MIP-2 affects neutrophil recruitment 
and activation through the p38 mitogen-activated-
protein-kinase-dependent signaling pathway, by 
binding to its specific receptors, CXCR1 and CXCR2. 
MIP-2 is produced by a variety of cell types, such 
as macrophages, monocytes, epithelial cells, and 
hepatocytes, in response to infection or injury. In 
liver injury, activated Kupffer cells are known as the 
major source of MIP-2. MIP-2-recruited and activated 
neutrophils can accelerate liver inflammation by 
releasing various inflammatory mediators. Here, we 
give a brief introduction to the basic molecular and 
cellular sources of MIP-2, and focus on its physiological 
and pathological functions in acute liver injury induced 
by concanavalin A, lipopolysaccharides, irradiation, 
ischemia/reperfusion, alcohol, and hypoxia, and 
hepatectomy-induced liver regeneration and tumor 
colorectal metastasis. Further understanding of 
the regulatory mechanisms of MIP-2 secretion and 
activation may be helpful to develop MIP-2-targeted 
therapeutic strategies to prevent liver inflammation.

Key words: Macrophage inflammatory protein-2; Liver 
injury; Polymorphonuclear neutrophils; Macrophages; 
Inflammation

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Macrophage inflammatory protein (MIP)-2 

Macrophage inflammatory protein-2 as mediator of 
inflammation in acute liver injury

Chao-Chao Qin, Yan-Ning Liu, Ying Hu, Ying Yang, Zhi Chen

Chao-Chao Qin, Yan-Ning Liu, Ying Hu, Ying Yang, Zhi 
Chen, State Key Laboratory for Diagnosis and Treatment of 
Infectious Diseases, The First Affiliated Hospital, Zhejiang 
University School of Medicine, Hangzhou 310003, Zhejiang 
Province, China

Chao-Chao Qin, Yan-Ning Liu, Ying Hu, Ying Yang, Zhi 
Chen, Collaborative Innovation Center for Diagnosis and 
Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang 
Province, China

Author contributions: All authors contributed to this paper; 
Qin CC, Liu YN and Chen Z contributed to study conception, 
literature review and analysis, and drafting and critical revision of 
the manuscript; Hu Y and Yang Y contributed to literature review 
and analysis and figure drawing. 

Supported by the State 12th 5-Year Plan S&T Projects of China, 
No. 2012ZX10002007; and National Natural Science Foundation 
of China, No. 81272679, No. 81470851. 

Conflict-of-interest statement: The authors declare that there 
are no conflicts of interest related to this study.

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Dr. Zhi Chen, Professor, State Key 
Laboratory for Diagnosis and Treatment of Infectious Diseases, 
The First Affiliated Hospital, Zhejiang University School of 
Medicine, 866 Yuhong Road, Hangzhou 310003, Zhejiang 
Province, China. zjuchenzhi@zju.edu.cn
Telephone: +86-571-87236579
Fax: +86-571-87068731

Received: November 1, 2016
Peer-review started: November 3, 2016

REVIEW

3043 May 7, 2017|Volume 23|Issue 17|WJG|www.wjgnet.com

Submit a Manuscript: http://www.f6publishing.com

DOI: 10.3748/wjg.v23.i17.3043

World J Gastroenterol  2017 May 7; 23(17): 3043-3052

 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)



is produced by a variety of cell types in response to 
infection or injury, and affects neutrophil recruitment 
and activation by binding to chemokine CXC receptor 
(CXCR)1 and CXCR2. MIP-2 plays a complex dual role 
in the development of liver diseases by mediating liver 
inflammation at a high concentration and promoting 
liver regeneration at a low concentration. Here, we 
review its physiological and pathological functions in 
various types of liver damage. Further understanding of 
the regulatory mechanisms of MIP-2 may be helpful to 
develop MIP-2-targeted therapeutic strategies.
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INTRODUCTION
The chemokine family with its ability to mediate 
leukocyte chemotaxis can be classified into four 
subgroups according to the polypeptide chain cysteine 
location: C, CC, CXC, and CX3C[1,2]. To date, about 
50 chemokines that exhibit various physiological and 
pathological properties have been discovered, and 
most of them belong to the CC and CXC families[3]. 
Macrophage inflammatory protein (MIP)-2, also known 
as CXC ligand (CXCL)2, is one of the CXC chemokines. 
It assists in the recruitment of polymorphonuclear 
neutrophils (PMNs) to sites of injury or infection 
and thereby modulates immune and inflammatory 
responses. 

MIP-2 is released by a variety of cells in response 
to infection or injury, and was originally detected 
in macrophages as a part of their response to 
inflammatory stimuli. Kupffer cells contribute as potent 
effectors of inflammation in acute liver injury[4]. In 
contrast to Kupffer-cell-sufficient mice, Kupffer-cell-
ablated mice are resistant to lipopolysaccharide (LPS)-
induced mortality and acute liver injury[5]. Accumulation 
of neutrophils, which may drive inflammation in liver 
injury by releasing cytokines, in the liver of Kupffer-
cell-ablated mice is significantly reduced. Since MIP-2 
and its related molecules regulate neutrophil infiltration 
and microabscess formation, further understanding of 
MIP-2 function and its signaling network may provide 
new ideas for control of liver inflammation. The present 
review summarizes the basic molecular and cellular 
sources of MIP-2, and focuses on MIP-2 production and 
function in acute liver injury.

BASIC MOLECULAR AND RECEPTORS 
OF MIP-2
The murine (mu) MIP-2 genomic clone has four exons 

and three introns, which is the typical structure of 
platelet factor (PF)4 chemokine sub-family[6-8]. Murine 
keratinocyte chemoattractant (KC)[9] and rat gene 
product/cytokine-induced neutrophil chemoattractant[10] 
are involved in the sub-family[6]. There are many human 
homologs of rodent MIP-2, including human platelet 
basic protein[11], human growth-related oncogenes/
melanoma growth stimulating activity, MIP-2α, and 
MIP-2β[6,12]. Although MIP-2 is a distinct member of 
the PF4 family, its sequence is closely related to that of 
the growth-related oncogene KC cytokines[12]. MIP-2γ 
is a novel CXC chemokine from a human dendritic cell 
cDNA library, and has no known ELR motif and shares 
greatest homology with MIP-2α/β. Murine MIP-2γ is 
highly homologous to human MIP-2γ[13].

MIP-2 family members are potent chemotactic 
factors for neutrophils. MIP-2α/β affect neutrophil 
recruitment and activation through the p38 mitogen-
activated protein kinase (MAPK)-dependent signaling 
pathway, by binding to two specific receptors be-
longing to the G-protein-coupled receptor family, CXC 
chemokine receptor (CXCR)1 and CXCR2[14]. MIP-2γ 
can mediate neutrophil recruitment by binding to a 
novel CXC chemokine receptor, other than CXCR1 or 
CXCR2[13]. 

MIP-2 SECRETING CELLS
MIP-2 is produced by a variety of cell types, such 
as macrophages, monocytes, epithelial cells, and 
hepatocytes, in response to infection or injury[14]. In 
liver injury, activated Kupffer cells are the major source 
of MIP-2. Lentsch et al[15] and Mosher et al[16] reported 
that the level of plasma MIP-2 in GdCl3-pretreated 
mice, in which Kupffer cell activity was inhibited, was 
significantly reduced in a model of hepatic ischemia/
reperfusion (IR) injury. The extent of liver injury and 
neutrophil infiltration was also significantly decreased 
in GdCl3-treated mice, which might have been asso-
ciated with the decreased levels of MIP-2. Kupffer cell 
blockade by GdCl3 treatment significantly reduced liver 
MIP-2 gene expression and liver inflammation after 
the administration of high doses of adenovirus vectors, 
which can induce innate immune responses in mice[17]. 

The production of MIP-2 is regulated by multiple 
factors. Synthesis of chemokines is regulated at 
the transcriptional level by signaling through Toll-
like receptor (TLR)2, TLR3, and TLR4 in response 
to diverse pathogens[18]. MIP-2 production can be 
effectively inhibited in LPS-stimulated mouse peri-
toneal macrophage cell line, RAW 264.7, through 
downregulating mRNA accumulation and protein 
expression of membrane TLR4/mCD14. This indicates 
that upstream inhibition of the TLR4/CD14-mediated 
inflammation pathway may be an effective thera-
peutic approach for attenuating damaging immune 
activation[19]. So et al[20] found that Scutellariae Radix 
and Liriopis Tuber (SL) significantly inhibited the release 
of MIP-2 in LPS-induced RAW 264.7 cells. Another 
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study showed that histone deacetylase modulated 
MIP-2 secretion. The secretion of MIP-2 was enhanced 
in LPS-stimulated and interleukin (IL)-1β-stimulated rat 
small intestinal epithelial cells by butyrate, a bacterial 
metabolite, through modulating histone acetylase. 
Furthermore, acetylation of histones by a specific 
inhibitor of histone deacetylase enhanced MIP-2 ex-
pression in IL-1β-stimulated cells[21]. 

MIP-2 MEDIATES INFLAMMATION BY 
NEUTROPHIL RECRUITMENT
Neutrophils are the most abundant circulating white 
blood cell type and a major innate immune cell subset 
in humans. Inappropriate activation and recruitment 
of neutrophils to the microvasculature contributes 
to the pathological manifestations of many types 
of inflammation[22]. In the liver, the recruitment of 
neutrophils to the sites of injury or infection is MIP-2 
dependent.

MIP-2 as potent neutrophil chemotactic factor
MIP-2 is a potent chemotactic and activation factor 
of neutrophils and plays a critical role in neutrophil 
recruitment during acute inflammation in rat disease 
models[23]. It was found that corneal MIP-2 levels 
were correlated with persistence of PMNs in the 
cornea of susceptible (cornea perforates) mice after 
Pseudomonas aeruginosa challenge. By treating 
systemically with recombinant MIP-2, the number of 
corneal PMNs was significantly increased, and resulted 
in exacerbated corneal disease in resistant (cornea 
heals) mice[24]. In the cecal ligation and puncture 
(CLP) model for sepsis, MIP-2 mRNA and protein 
were significantly upregulated after CLP in mice, while 
the neutralization of MIP-2 by anti-MIP-2 antibody 
reduced peritoneal PMN migration. Mercer-Jones 
et al[25] also found that mast cells were necessary for 
PMN migration into the peritoneum, and significantly 
less migration of PMNs into the peritoneal cavity in the 
mast-cell-deficient mice after MIP-2 injection. MIP-2 
was also involved in neutrophil recruitment in the 
central nervous system during experimental bacterial 
meningitis. The kinetics of MIP-2 mRNA expression 
are paralleled by the recruitment of inflammatory cells 
and disease severity. Blocking of MIP-2 bioactivity 
by anti-MIP-2 antibodies results in significantly de-
creased neutrophil influx[26,27]. When injected in vivo 
as recombinant chemokines, KC and MIP-2 in models 
of inflammation, can cause neutrophil influx[28,29]. The 
results of other studies have highlighted MIP-2 as the 
major chemoattractant[29]. In liver injury, neutralizing 
KC and MIP-2 result in less neutrophil extravasation 
and reduce neutrophil-induced injury in a mouse 
model of cholestatic liver damage[30]. Further studies 
have shown that neutrophil extravasation into the 
parenchyma requires a chemotactic signal such as 
MIP-2 and KC from macrophages, hepatocytes, or 

already-extravasated neutrophils. Tissue damage 
and cell necrosis often result in the release of 
damage-associated molecular patterns, which lead 
to intercellular adhesion molecule-1 upregulation 
on sinusoidal endothelial cells. Neutrophils are then 
recruited to endothelial cells or hepatocytes via a β2 
integrin macrophage antigen (Mac)-1-dependent 
adhesion mechanism[24,31-35]. 

Neutrophils drive inflammation in liver injury by 
releasing inflammatory mediators
The recruitment of neutrophils to target cells tri-
ggers full activation of the neutrophils with a long-
lasting adherence dependent oxidative stress and 
degranulation. The activated neutrophils release 
various inflammatory mediators, including proteolytic 
enzymes, lipocalin 2, arachidonic acid metabolites, and 
reactive oxygen species (ROS)[36-40]. 

Several mechanisms of neutrophil-mediated tissue 
injury have been proposed. One is the production of 
reactive oxygen intermediates, which may directly 
induce hepatic endothelial damage or indirectly 
induce tissue injury by triggering other inflammatory 
mediators[41,42]. Neutrophil-derived proteases facilitate 
extravasation and are involved in the regulation of 
inflammatory mediator production. The adhesion via 
Mac-1 triggers superoxide formation by NADPH oxidase 
and degranulation with the release of myeloperoxidase 
(MPO) and proteases[43]. Optimal oxygen-dependent 
microbicidal activity depends on MPO as the critical 
enzyme for the generation of hypochlorous acid and 
other toxic oxygen products. Although the proteases 
appear to be mainly involved in the promotion of 
chemokines, hydrogen peroxide, and MPO-derived 
hypochlorite, they also induce intracellular oxidative 
stress in hepatocytes and eventually cause oncotic 
necrosis[44,45]. 

Liver dysfunction and cell injury induced by neutro-
phils have been demonstrated in several experimental 
models including hepatic IR injury[46], endotoxic 
shock[47], sepsis[48], alcoholic hepatitis[49], obstructive 
cholestasis[50], LPS injury[51], remote organ trauma[52], 
and concanavalin A (ConA)-induced liver injury[53]. 
Neutrophil-mediated injury was also demonstrated in 
two-hit models of IR injury or drug hepatotoxicity in 
combination with endotoxemia[54]. 

Recruitment of neutrophils to the sites of liver injury 
is MIP-2 dependent, and the activated neutrophils 
can accelerate liver inflammation by releasing various 
inflammatory mediators.

MIP-2 PRODUCTION IN MURINE MODELS 
OF ACUTE LIVER INJURY
MIP-2 plays an important role in the progression of 
inflammation. Some clinical studies have shown the 
correlation between MIP-2 and organ inflammation, 
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MIP-2 production was inhibited in LPS-stimulated RAW 
264.7 though downregulation of mRNA accumulation 
and protein expression of TLR4[19], indicating that TLR4 
is the important receptor in LPS-induced liver injury. 
Further studies have shown that the LPS-induced 
MIP-2 production is dependent on NF-κB activation 
via inhibition of the IKK pathway[70-72]. Intraperitoneal 
injection of anti-MIP-2 antibody significantly decreases 
the influx of neutrophils in the liver of rats after LPS 
injection[73]. Interference with MIP-2 function protects 
against septic liver damage, which may constitute a 
potential therapeutic strategy to control pathological 
inflammation in endotoxemia[74].

Irradiation-induced acute liver injury
Liver is considered to be a radiosensitive organ. 
Radiation therapy involves the use of high-energy 
rays to treat local or regional malignancies. Free 
radicals such as ROS containing unpaired electrons are 
generated after irradiation in the irradiated tissue, and 
cells that are chemically active are prone to oxidative 
stress. Liver damage is a serious clinical complication 
of radiation therapy[64,75]. Single dose γ-irradiation (25 
Gy) focused on the liver recruits neutrophils attached 
to the portal vessels and to portal (myo) fibroblasts in 
the liver, and several chemokines may be necessary 
in their recruitment, adhesion, and transmigration. 
Rapid and early induction of expression of several 
chemokines and chemokine receptor CXCR2 genes 
in irradiated liver tissue and portal area has been 
observed. MIP-2 has been detected in the portal 
vessel walls, and CXCR2 in the portal area but not in 
the parenchyma[64,76]. The induction of the mediators 
in cells of portal area (mainly myofibroblasts) may 
happen through ROS[39].

IR-induced acute liver injury
IR-induced hepatic injury is an important clinical 
problem after liver resection or transplantation. Initial 
IR-induced hepatic injury is reported to be mediated 
by activated Kupffer cells without dependence on 
neutrophils[77,78]. The later phase of IR injury is de-
pendent upon hepatic neutrophil sequestration, 
and the subsequent increased adherence between 
neutrophils and endothelial cells. Depletion of 
neutrophils and Kupffer cells before ischemia greatly 
reduces reperfusion injury[79,80]. MIP-2 is also known 
as an important mediator in IR-induced liver injury by 
regulating hepatic neutrophil accumulation[41,42,73,81,82]. 
Expression of MIP-2 mRNA was induced within 3 h 
after reperfusion, before neutrophil accumulation in 
the liver, and was increased to a greater extent in the 
ischemic liver lobe at 9 h post-reperfusion[15]. The anti-
inflammatory cytokine IL-10 affects inflammatory 
reactions partly through inhibitory effects on NF-κB. 
Yoshidome et al[83] found that IL-10 protects against 
hepatic IR injury by suppressing NF-κB activation as 
well as hepatic mRNA expression and the serum level 

such as in pneumonia[55]. However, there are few 
clinical reports about the effect of MIP-2 in acute 
liver injury. At present, most of the studies on the 
mechanism of MIP-2 secretion and regulation in acute 
liver injury have been in animal models.

ConA-induced acute liver injury
ConA-induced hepatitis is a well-characterized form 
of autoimmune hepatic damage in murine models, 
with a pathophysiology similar to that of human viral 
and autoimmune hepatitis[56]. T cells, particularly 
CD4+ cells, play an essential role in the development 
of ConA-induced hepatitis. Activated T lymphocyte 
infiltration induces hepatocyte apoptosis and necrosis 
and provokes production and secretion of a series of 
proinflammatory cytokines, such as tumor necrosis 
factor (TNF)-α, interferon (IFN)-γ, IL-6 and ROS[57,58]. 
Besides that, MIP-2 is another major mediator of ConA-
mediated inflammation[53]. The infiltration of F4/80+ 
macrophages and the mRNA level of MIP-2 were 
dramatically increased in the liver of ConA-treated 
mice[53,54]. The plasma MIP-2 level was elevated and 
reached a peak value at 2 h after ConA injection[59]. 
Pretreatment with anti-MIP-2 antibody suppressed the 
elevation of plasma alanine aminotransferase (ALT) 
levels and reduce hepatic necrosis in a dose-dependent 
manner[20,32,60]. Hepatic infiltration of neutrophils was 
also attenuated by MIP-2 blockade[60,61]. Another 
study showed that antithrombin III, an important 
physiological inhibitor of the coagulation cascade, 
prevents ConA-induced liver injury through inhibition 
of MIP-2 release[59]. Our previous study showed that 
emodin pretreatment protects against ConA-induced 
liver injury in mice, and this effect may occur partially 
through inhibition of macrophages infiltration and 
activation of the p38 MAPK/nuclear factor (NF)-κB 
pathway in macrophages[53]. 

LPS-induced acute liver injury
LPS is one of the most potent innate immune-activating 
stimuli. LPS binds to TLR4 to induce macrophage 
activation, which results in the secretion of the CXC 
chemokines and proinflammatory mediators. In-
flammatory cells such as neutrophils, T lymphocytes, 
multiple leukocyte subtypes, monocytes, eosinophils, 
basophils, dendritic cells, and natural killer cells can 
be attracted into the injured tissue sections through 
the portal vessels and play a pivotal role in initiating 
an inflammatory response[23,62-64]. Some studies have 
shown that MIP-2 is one of the key mediators in LPS-
induced liver injury[65,66]. MIP-2 expression was induced 
in freshly isolated rat hepatocytes following treatment 
with LPS[67]. The hepatic expression of chemokine 
mRNAs was elevated after LPS exposure, with the 
maximal expression of MIP-2 mRNA at 1 h after LPS 
treatment[66,68]. LPS in vivo also induced high levels of 
chemokine MIP-2 mRNA in mouse liver and lung, with 
a concomitant increase in circulating MIP-2 protein[69]. 
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of MIP-2. A recent study showed that Pin1, as a critical 
regulator for NF-κB/DNA binding and activation, might 
be an important protective factor for hepatocytes 
against IR injury by reducing serum MIP-2 level after 
reperfusion[84]. 

Alcohol-induced acute liver injury
Alcohol is a well-known risk factor related to liver 
injury. Excessive alcohol exposure leads to alcohol 
liver disease; a major cause of morbidity and mortality 
worldwide. Alcohol abuse also causes hepatic steatosis. 
Alcohol combination with a high-fructose diet could 
aggravate alcoholic fatty liver disease[85]. The major 
pathogenetic factors are multifactorial and complex, 
involving increased hepatic de novo lipogenesis and 
triglyceride synthesis, impaired mitochondrial fatty acid 
β-oxidation, decreased very low-density lipoprotein 
secretion, and increased levels of chemokine secretion 
and adhesion molecule expression[86-88]. 

MIP-2 also plays a potent role in alcohol-induced 
liver injury. In alcohol-fed male Sprague-Dawley rats, 
alcohol intoxication induced hepatic injury through 
endotoxin influx in the circulation, and stimulated 
the Kupffer cells to produce MIP2 and upregulated 
expression of adhesion molecules on hepatic cells, 
which resulted in altered hepatic function and 
hepatotoxicity by hepatic neutrophils recruitment[89]. 
Nanji et al[90] showed that alcohol-induced liver injury 
was more severe in female than in male rats. Female 
rats had higher levels of endotoxin, lipid peroxidation, 
non-heme iron, and chemokines MCP-1 and MIP-2 
after alcohol intake. The upregulation of MIP-2 in 
alcohol-induced liver injury has also been shown 
to be NF-κB dependent[90,91]. Inhibition of NF-κB 
activation by treatment with a phenolic antioxidant, 
curcumin, prevented the pathological and biochemical 
changes induced by alcohol, and enhanced MIP-2 
expression[91,92]. 

Hypoxia-induced liver injury
In cellular responses to hypoxia, hypoxia-inducible 
factors as well as proinflammatory cytokine/chemokines 
are released. Oxygen consumption by hepatocytes 
and infiltrating inflammatory leukocytes is dramatically 
increased. Mice exposed to chronic intermittent hypoxia 
(CIH) exhibited lobular inflammation and fibrosis 
in the liver. CIH caused significant increases in lipid 
peroxidation in serum and liver, and increased hepatic 
levels of proinflammatory cytokines IL-1β, IL-6 and 
CXC chemokine MIP-2[93]. An in vitro study showed that 
MIP-2 expression was prominently induced by hypoxia 
both at the mRNA and protein level in RAW264.7 cells, 
while it was abolished by a mutation targeted to an NF-
κB binding site in the MIP-2 promoter, suggesting that 
hypoxia-induced MIP-2 expression occurs exclusively 
via the NF-κB pathway. Further study of the mechanism 
by using inhibitors of signaling kinases have shown that 
the induction of MIP-2 is correlated with p42/p44 and 

PI3 kinase but not p38 kinase signaling in hypoxia[94]. 

OTHER FUNCTIONS OF MIP-2
Apart from its major role in mediating inflammation, 
MIP-2 also plays important roles in liver regeneration 
and engraftment of colorectal metastasis at extra-
hepatic sites. Administration of exogenous MIP-2 after 
70% hepatectomy dramatically increases hepatocyte 
proliferation. Inhibition of the MIP-2 receptor, CXCR2, 
decreases baseline hepatocyte proliferation in the 
setting of partial hepatectomy. These data suggest that 
MIP-2 is important for hepatocyte proliferation and 
pharmacological doses of MIP-2 after hepatic injury 
may accelerate hepatic regeneration[95]. Adenovirus-
mediated gene therapy or acetaminophen inges-
tion often produces profound hepatocellular injury. 
MIP-2 has a protective role in both adenovirus- and 
acetaminophen-mediated hepatotoxicity, suggesting 
that MIP-2 promotes hepatic regeneration follow-
ing acute hepatic injury[96,97]. CCR2 is the primary 
receptor for chemokine MCP-1, which mainly attracts 
macrophages to secrete MIP-2. It was shown that 
CCR2-deficient mice had increased hepatic toxicity 
after acetaminophen exposure[98]. Further studies have 
shown that the properties in liver regeneration of ELR-
CXC chemokines, such as MIP-2, in acetaminophen 
challenge are attributed mainly to the ELR motif[77,99,100]. 

Other studies have demonstrated the role of MIP-2 
in the hepatectomy-induced acceleration of tumor 
growth[101,102]. Major liver resection often initiates rapid 
regeneration of the remnant liver to restore functional 
hepatic capacity. Besides parenchymal regeneration, 
hepatectomy also accelerates tumor growth in the 
remaining liver and remote organ sites[6]. MIP-2 con-
tributes to liver-resection-induced acceleration of 
colorectal metastasis at extrahepatic sites. Blockade of 
MIP-2 decreases the hepatectomy-induced increase of 
CXCR2 expression on tumor cells, thus attenuating the 
augmentation of angiogenesis and metastatic tumor 
growth after hepatectomy[103]. A further study showed 
that liver-resection-associated MIP-2 upregulation 
stimulates extrahepatic tumor cell engraftment but not 
the growth of established metastases[101].

MIP-2 SIGNALING PATHWAYS
A variety of cytokines and signal pathways regulate the 
production level of MIP-2 in macrophages (Figure 1). 
MIP-2 expression is partially inhibited by intradermal 
injection of a neutralizing antibody against IL-1, 
which has modest stimulus activity for MIP-2[103]. Fas 
ligation induces MIP-2 expression in the liver through 
activation of caspase-3 and nuclear translocation 
of activator protein-1[104]. The increased production 
of ROS by ATP-stimulated macrophages activates 
the signaling pathways that promote MIP-2 produc-
tion, which, in turn, induces neutrophil migration[105]. 
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Cotreatment with IL-17A synergistically enhances 
the upregulation of MIP-2 in taurocholic-acid-treated 
primary mouse hepatocytes, suggesting that IL-17A 
promotes hepatic inflammation by enhancing bile-
acid-induced production of MIP-2[106]. Treatment of 
RAW264.7 cells with an inhibitor of p38 attenuated the 
synergistic effects of C5a and MIP-2 on cells primed 
with muramyl dipeptide[107]. Another study has shown 
that inhibiting ELR-CXC chemokines can block ELR+ 
CXC chemokines neutrophil recruitment and activation 
in vitro. In IR-induced hepatic injury, the hepatic 
levels of ELR+ chemokines, including MIP-2, were 
decreased in response to IFN-γ, which is known to 
upregulate ELR-CXC chemokines[108]. IL-10 also shown 
protects against hepatic IR injury by suppressing NF-κB 
activation and subsequent expression of MIP-2[83,109].

CONCLUSION
MIP-2 plays a dual role in mediating liver inflammation 
and promoting liver regeneration. Liver regeneration 
depends on the physiological concentration of MIP-2, 
however, excessive elevation of MIP-2 induced by acute 
liver injury promotes liver inflammation by neutrophil 

recruitment. An imbalance of MIP-2 secretion resulting 
in a disorder between the pro- and anti-inflammatory 
mediators may be vital in determining the outcome of 
liver injury. Since the signaling mechanisms of MIP-2 
secretion remain to be elucidated, further understanding 
of the regulation mechanism of MIP-2 secretion is 
helpful to develop MIP-2-targeted therapeutic strategies 
for preventing liver inflammation. 
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Figure 1  Molecular mechanisms involved in macrophage inflammatory protein-2 secretion of macrophages. The Figure illustrates several reciprocal 
molecular pathways for the secretion of MIP-2. These include: LPS-mediated induction of MIP-2, IL-6, IL-1β, TNF-α through the NF-κB/MAPK signaling pathway; 
IL-6-mediated induction of MIP-2 through the NF-κB/MAPK signaling pathway; TNF-α-mediated induction of MIP-2 through the NF-κB/MAPK, caspase-3 signaling 
pathway; FasL-mediated induction of MIP-2 through the caspase-3 signaling pathway; Ca2+- and ATP-mediated induction of MIP-2 through the PI3K signaling 
pathway; IL-1β-mediated induction of MIP-2 through the NF-κB/MAPK signaling pathway; IFN-γ and IL-10-mediated inhibition of MIP-2, IL-6, IL-1β and TNF-α 
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